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GENERAL DEFINITION OF
PERTURBATION THEORY

In general all quantities (operators, wavefunctions,
observables) depend on parameter(s) A (e.g. atomic
cooordinates, components of uniform external electric field,
cell dimensions of periodic systems etc.)

It is assumed that each generic quantity X (\) of the
system can be written as a perturbation series (Taylor series):

X)) = X9 1 ax® 4 A2x®@ 4 ...

where n

n! 8)\77' A=0

In the case of a functional which obeys a variational
principle, (such as the energy in density functional theory)

E[®,in(N); A] = (I)milr%A){E[CI)tTial()\); Al}
tria

there are two important theorems which apply:

2n+1 theorem: knowledge of up to <I>£:L"2n is sufficient for the
determination of E up to EZ"*D.
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This theorem allows us to calculate force constants (second
order derivatives of energy w.r.t. atomic positions) and
hence phonon spectra only from the first order corrections
to the wavefunctions. It is also used to calculate third
order derivatives (such as hyperpolarisabilities) but formulae
become quite complicated with increasing order.

Even-order variational principle: For every even order of E
there exists a variational principle of the form

n—1 (2n)
E® = min <E [Z Ao 4 Ao A])

(n) —
(I)t'r’ial i=0

through which ®™ and E(?™ can be determined.

A comprehensive analysis for the case of density functional
theory can be found in:

X. Gonze. Rhys. Rev. A 52(2) (1995) 1096.
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DENSITY FUNCTIONAL
PERTURBATION THEORY

Also known as “Linear response theory”:

S. Baroni, S. de Gironcoli and A Dal Corso. Rev. Mod.
Phys. 73, (2001) 515.

In the quantum chemistry community it has been known
as “Analytic second derivatives of the energy” or “Coupled-
perturbed Hartree-Fock equations”:

J. Gerratt and I. M. Mills. J. Chem. Phys. 49 1719.

Start with Kohn-Sham equation (where H is the self-
consistent Kohn-Sham Hamiltonian)

I:I"pn = €n¢n

- 0y — D
Want to find out % o = P,

All unperturbed {1(®} (valence and conduction functions

together) are a complete set of functions, so expand solution
in them
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(1) Z |,¢(0)><¢(0)|¢(1)> — Z w(o)c

How to find C,,? Differentiate Kohn-Sham eigenvalue
equation:

HOpO® 4 gOpM — Dy 4 (00 (1)
Multiply by (9| from the left to get

(0) (1)y,/,00)
1) _ ) (U [ H  |0,7)
¢n T Z wm E(0) (0)

m#n n° T €m

This equation involves sum over all states (conduction and
valence) and it is not practical to use in most cases.

Instead of trying to expand @bg), in the set of all {w(o)} we
can rearrange equation (1) to obtain the “Sternheimer” equation

(H? = M)y = —(HY = )y,

This is actually a linear system of equations that can be
solved to get v,bq(ll). The righthand side depends on all gb,,(ll) that
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belong to the set of (occupied) valence functions {1,&1,}1\[0“/2

because the derivative of the Kohn-Sham Hamiltonian is

HO = vO (1) 1e /|n(r fduwc(”) n®(r)

nue r —r/| dn |,_,0

where
NOCC

n(r) = 4Re > 0" 1)y (r)
v=1

Hence we have a system of N,../2 linear nonhomogeneous
equations each one of dimensions M X M where M is the size
of the basis set.

These systems of equations are linearly coupled to each
other so they need to be solved together either as a large
NoeeM /2 X Nyee M /2 system or by a self-consistent process
for all smaller M x M system:s.

Two major difficulties in solving the Sternheimer equation:

1. While the final results are invariant w.r.t. unitary rotations
in the space of occupied orbitals, ("gauge invariant”), a
choice of gauge has to be made which affects the solution
process and the imosition of the orthonormality constraint.

2. In the case of periodic systems, the treatment of the
perturbation due to a uniform electric field is problematic
because the position operator r which describes this
perturbation is not periodic.
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DENSITY MATRIX DENSITY
FUNCTIONAL PERTURBATION
THEORY

Derived (with formulae up to arbitray order) by:
M. Lazzeri and F. Mauri. Phys. Rev. B 68 (2003) 161101(R).

Rather than determining the Kohn-Sham orbitals, focus on
the density matrix

NOCC

p= D )t

Use projectors on valence and conduction zeroth order bands

Py = | (@ = p and Pc =1 - Py

For a Hermitian operator A define
Acc = PcAPg, Ayy = Py APy, and
Acv = PoAPy, and Aye = (Acy)'
which leads to:

A= Acc + Avy + Acv + Ave
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To find out p(M) = P(c% + pg/lz/ + p(cl‘)/ + pszj

1) From the idempotency property of the density matrix we
have

p = pp
PcpPc = Pcp(Pc+ Pv)pPc
pcc = pccpcc + pcvpve
Poe = PoePow + PoePoL T POV PV + POV AL
Poe = PGLPCE T POLPOE
poc = Pect Peo
oo = O

In a similar way we can show that pgg/ = 0.

Therefore pM) = pg‘)/ + (,oS%,)Jr and we only need a way

to find p4),.

2) From the requirement that the density matrix commutes
with the self-consistent (Kohn-Sham) Hamiltonian we have

[H,p] = 0
(Y, p™) + [H, p)]

I
o

(2)
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also we can write pg‘)/ as

p0y = 3" 1 (@ oDy (O = 3 19y ()

By multiplying the commutator sum of equation (2) by Pc
from the left and [1{?)) from the right we obtain

(H = e)n,”) = =PolHY, pN|,”)

This system of coupled nonhomogeneous linear equations is
identical in form to the Sternheimer equations and can be

solved iteratively to determine the set of {nfjl)}Nocc and hence
(1)

poy and p(l).

The advantage of this approach is that the perturbed
operator [HY, p(®] is well-defined in an extended insulator
with periodic boundary conditions even if the perturbation A is
a uniform electric field. This is because the density matrix p(o)
goes to zero exponentially and therefore [r, p'¥] is localised
in space (actually in the centres of the Wannier functions)
rather than being extended. Also p() IS a gauge-invariant
operator. This approach is also very suitable for calculating the
first derivative of the polarisation.

2e
NS,

P=—

Tr{rp}

However, no-one has implemented this method yet to see how
it works in practice!

Chris-Kriton Skylaris, Electronic Structure Discussion Group, 17 December 2003 10



