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NGWFs are strictly localised in real space by being
constrained inside spherical regions of fixed radius.

da(r) = an(r)Mnm Sap = (Balds) and Pn(r) = da(r)(M )%,

Example:

Oy @ @, @5 are limited
to sphere 1.

@, @, @, are limited to
sphere 2. Etc...
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Benefits from using NGWFs: Sparse matrices

* The elements (S,;) of the NGWF overlap matrix are
nonzero only for pairs of functions whose spheres
overlap. Their number scales linearly with system size.
The same is true for all operators in the NGWF
representation (e.g. the Hamiltonian matrix elements

Hap)-

the number of non-zero elements of a
sparse matrix must be /ess than 7% for sparse matrix
operations to be computationally more efficient than
full-matrix operations.

ESDG 6/8/2003



% nonzero overlaps

(10, 10) armchair nanotube

10
9 —— Rngwf = 5a0
8 —=— Rngwf = 6a0
! —— Rngwf = 7a0
: Rngwf = 8a0
4
3.

5 .
1
0 ‘ ‘ ‘ ‘ ‘ ‘

200 700 1200 1700 2200 2700 3200

number of atoms




Overlap sparsity example: Bulk silicon
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Expressing the band energy in terms of NGWFs
E[{¢n}] - 22 Sn€n = 22fﬂ<¢n|ﬁ|¢n>

Band energy becomes

Eftn}] =2 faltnlHYn) =2 fa(M™1),*(¢a|H|pg) (M )5,

= 2H,K?* = E[K, ¢,] where K°* =3 (M)’ f, (M~1),2

T

p(r,r') = gpa(r) K*PPj3(r')  and m  p(r,r) =0
r—r!/|—o0
The {¢} are localised by construction. What remains is to make K sparse by
truncating its elements that correspond to spheres separated by more than some

cutoff threshold distance.
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Optimisation of E w.r.t. K

Optimise K using conjugate gradients or steepest descents.

Constraints on K: Idempotency (i.e. f, equal to 1 or 0) and constant number
of electrons.

Need search direction

OE

VK= 5K

= 4H,3 (a covariant tensor).

The search direction should be a contravariant second order tensor as is K:
1 , - N
KJH) = K§) — M(ST)PTHY) (571
E. Artacho, L. M. delBosch, Phys. Rev. A, 43 (1991) 5770.

Need to calculate S-1in O(N) operations!

ESDG 6/8/2003 7



Hotteling’s recursive improvement of S~

e Definitions
residual: R =1—S,'S

expansionin R: S™1 = (I-R) 'Sy = I+R+R?+...)So

1

e Hotelling's recurrence:

0.3

S(—2}H—1) _ 28;1 . SEISSEI —0.5_ / 0.5 1 1.5 2\2.5

S;'=1+R+R*+...+R"S,

where

Involves only matrix multiplications that can be done In
O(N) operations when the matrices are sufficiently sparse!
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Total energy optimisation strategy: two nested loops.

Use C.G. to optimise E[{ @} K ], w.r.t. { ¢}
while Hotelling-updating S-1 for every
change in {@}.

Find K, for current { ¢} :
Use C.G. to optimise E[{ @} ,K] w.r.t. K.

Impose on S-1 same sparsity pattern as K.
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Example: Calculations on butane C,H,,

Convergence of NGWFs with CG iterations
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Relative 1-norm of S-inv
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Approximation Total Energy (Eh)

Exact S-1 -28.674482206
Hotelling x3 -28.674482199
Hotelling x2 -28.674478544
Hotelling x1 -28.674485824
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