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Overview

Introduction to plane-wave peudopotential DFT for
large systems.

*Reformulation in terms of strictly localised Non-
orthogonal Generalised Wannier Functions, as
iImplemented in the ONES code. The linear-scaling
capability.

Examples of calculations with the ONES method.

How polarisation effects could be calculated within
the ONES method.
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Pseudopotential plane-wave density functional theory with
periodic boundary conditions for large systems

e The simulation cell is large and equal to the crystal therefore the first Brillouin
zone is (inversely proportional) small and is sampled by only one k-point.

e This is selected to be the I'-point (k = 0). With this choice the Kohn-Sham
eigenfunctions:

ﬁKS"]an(r) — Enﬂwnﬂ(r); <wn0‘7,bm0 > — 5nm

Yno(r) = Pn(r) = uno(r) = un(r).

can be chosen to be real.
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e Single-particle density matrix:

) = Z fn‘wnﬂwn‘

Z futon(r)

T:»

p(r, ')

Here f, is the occupation of 1),, which we will assume it can take only the
values 0 or 1 i.e. we will limit our discussion to insulators.

o The charge density n(r) = p(r,r) is the diagonal element in the position
representation of the density matrix.
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e Minimise total energy E|[p(r,r’)| subject to constraints:

<?;anm — nm and an—

or equivalently:
p* = p and Tr[p] = N..
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Non-orthogonal Generalised Wannier Functions

Wannier Functions (WFs): Unitary transformation of ,(r) in k-space to
obtain an equivalent set of functions which are no longer Bloch-periodic
but formally extend over all the crystal and are associated with particular
simulation cells w,,(r —R). In our case, since our simulation cell is the crystal,
our Wannier functions and “bands” are the same objects.

Generalised Wannier Functions (GWFs): Perform unitary transformations
between groups of bands before the k-space transformation. This leads
to more localised functions and /or functions that look more “meaningful” such
as sp® hybrids, o and 7 bonds, etc. In our case this means constructing
another set of orthonormal orbitals which are no longer eigenfunctions of the
Hamiltonian.
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Non-orthogonal Generalised Wannier Functions (NGWFs): Perform a (non-
singular) linear transformation between groups of bands before the k-space
transformation that leads to a non-orthogonal set of functions. NGWFs are
more localised than GWFs because they do not have “orthogonality tails”.

In our case: mix occupied (and 0 or more unoccupied) eigenfunctions of
Hamiltonian into an equivalent linearly independent set of non-orthogonal
functions. ~ NGWFs for TI'-point-only calculations (implicit summation
convention for repeated Greek indices from now on):

Pa(r) = Z¢n(r)Mnaa Sap = (Pa|dp) and Py (r) = qsa(r)(M_l)an

ESDG 2/7/2003 7



The ONES method: Forget about delocalised “bands” {1, }
and perform plane-wave pseudopotential DFT directly with
NGWFs {¢,}

o The density matrix becomes p(r,r') = - ¥n(r) fathi(r') = da(r) K*P g (x')

where the density kernel is defined by K*° =Y (M—YH2 f, (M~T)7?

o The energy Elp(r,r')] = E[K, {¢}]
has to be minimised w.r.t. both K and {¢}. Subject to constraints:

1. Idempotency (i.e. f, equalto 1 or 0): KSK =K (= p?=p)
2. Constant number of electrons: Tr[KS] = N, (= Tr[p] = N)
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NGWFs are strictly localised in real space by being
constrained inside spherical regions of fixed radius.

Currently the spherical
regions are centred on atoms
(and move with them)

Example:

Oy @ @, @5 are limited
to sphere 1.

@, @, @, are limited to
sphere 2. Etc...
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Benefits from using NGWFs: Sparse matrices

* The elements (S,;) of the NGWF overlap matrix are
nonzero only for pairs of functions whose spheres
overlap. Their number scales linearly with system size.
The same is true for all operators in the NGWF
representation (e.g. the Hamiltonian matrix elements

Hap)-

*The sparsity pattern of the matrices is therefore fixed
during energy minimisation iterations and the energy is
variational because no ad hoc truncation of the
matrices is needed.
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Strict localisation in real space means strict delocalisation
In reciprocal space!

Expand NGWFs in plane-
waves of reciprocal lattice
vectors G of cube with
edge 2X|Gface|-

|Gvertex|

|G¢.cel = T1/@ Where:
a=real space grid spacing.

Provided the NGWFs are
converged with respect to
sphere size:

ECASTEP(leaxl = |Gvertex|) = EONES < ECASTEP(leaxl = |Gface|)
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NGWEFs are stored in their real-space representation
which is independent of system size. Storage (memory)
requirements scale linearly.

However, for operations in reciprocal space the number
of plane-waves per NGWEF is proportional to the system

size — a situation that leads to quadratic scaling! ®
oIt turns out that the NGWFs are smooth in reciprocal

space and can be represented with a small number of
plane-waves which is independent of system size:

Linear-scaling restored by the 1 ©
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A linear-scaling pseudopotential plane-wave code

*Sparse matrices with O(N) non-zero elements.

* O(N) storage requirements in real and in reciprocal
space for all NGWFs together.

*The density matrix decreases exponentially in
insulators, so it should also be O(N) sparse.

p(r,r’) = da(r) K*P¢5(r')  and m ol ) =0
r—r/|—oo

The {¢} are localised by construction. What remains is to make K sparse by

truncating its elements that correspond to spheres separated by more than some

cutoff threshold distance.
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Total energy (Eh)
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Examples:

Silane molecule,
SiH,.

Convergence of
total energy with:

*Grid spacing
*NGWF radius

«Comparisons
with CASTEP
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Error in total energy with respect to NGWF spheres of radius 10a0
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Description in terms of NGWFs is not unique

Si NGWFs “atomic” or “sp3 hybrids”.

“Traditional” Generalised
Wannier functions

o

|dentical
total energy

Hydrogen
NGWF

1
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Acetaldehyde — Vinyl alcohol reaction

NGWF rms gradient
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NGWFs:

Four on each C,O

with spheres of 6a0.

One on each H with
spheres of 5a0

Relative energies in kJ/mol

ONES | CASTEP | NWChem
(0.5a0) | (600eV) | (pTZV)
A 0 0 0
A-V TS 224 227 235
v 27 45 31
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Nonane: CgH,,

56 NGWFs, 4 on each C atom and
1 one each H atom.

Isosurfaces of NGWFs.

Strict localisation,
no “orthogonality
tails”!
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*Finite system, no
periodicity: Polarisation is
defined as dipole moment
per unit volume. Surface
contribution must be taken
Into account as it does not
vanish in the
thermodynamic limit.

*Periodic system: No

surface! Bounding surface enclosing whole

sample and surface charge can

always be chosen.
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In experiments, changes (infinitesimal or finite) in
polarisation are measured and these appear to be bulk
properties.

RN VLU TE

++ 4+ + + + + +
ﬁ‘ lﬁ@; @

rrrrr EEER

*Changes in polarisation result in changes to surface
charge — equivalent to current flow through the solid.
Current flow is a bulk property and can be calculated as a
phase of the wavefunction, hence it can be applied to
solids with periodic boundary conditions and no surfaces!
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e Assume electronic current density flowing through system J,(t) = %%(X )
where slow (adiabatic approximation) change of system in time is assumed.

e Change in electronic polarisation is defined as:

€

Lg(()’{)(ﬁt) _ ()"()(0)) — plat) _ p(0)

At
AP, = / dJ, (1) =
0

oce

o However, the position operator X = > 0%z, can not be used in a Hilbert
space of periodic functions since when it acts on the functions they are no
longer periodic.
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o Fix this difficulty by defining:

(%)=

Im In (|’ X | L)
2T

where U is the many-body wave function.

e In the mean field case, the change in polarisation can (apparently) be written
as:

?,26 U 3 d (o
:t: — 3 Z/ ( 8k (Af)> _ <u${)ak$u£ﬂg>)
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or in terms of Wannier functions:

Noce

2e
AP, = = (AL) (212 [0(0) ()2
P [ = (1w = P 0)) a

and this expression is invariant to the various choices of Wannier (or generalised
Wannier) functions.

e Indinvidual Wannier (but not generalised Wannier) function centres can be
thought of as classical “positions” of the electrons. The conventional
multiplicative position operator re-emerged in the above formula as the Wannier
functions are no longer periodic (in the ideal case of infinitely extended systems,
continuous Brillouin zone sampling).
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e The change in polarisation is defined however only modulo (2¢/Q)R ( ="the
quantum of polarisation”) which corrsponds to charge transport through cells.
For small perturbations it should not be observed.

e How can we calculate polafisati¢n: charjgéd with ONES? Express Wannier
function formula for change in polarisation in NGWF representation:

2
AP, = (K*PA0((20algf) - K20 (90lal))

Not as elegant as in the case of the (orthogonal) Wannier functions, but it may
still be that diagonal position operator elements (¢ |z|d,) between NGWFs
have some meaning. To be continued...
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