Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

TCM Electronic Structure Discussion Group

James Shepherd

(CUC3, Alavi Group)

February 14, 2012

(日) (四) (문) (문) (문)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

$$\hat{H} = \sum_{lpha} -rac{1}{2}
abla^2_{lpha} + \sum_{lpha
eq eta} rac{1}{2} \hat{v}_{lphaeta} + rac{1}{2} N v_{\mathsf{M}}$$

- N electrons in a periodic (cubic) box of length L
- Uniform density: $\rho(\mathbf{r}) = \frac{N}{L^3}$
- Characteristic lengthscale: $r_s = \left(\frac{L^3}{\frac{4}{3}\pi N}\right)^{\frac{1}{3}}$
- Plane waves: $\psi_{js}(\mathbf{r},\sigma) = \sqrt{\frac{1}{L^3}} e^{j\mathbf{k}_j\cdot\mathbf{r}} \delta_{s\sigma}$.
- Thermodynamic limit: $N \to \infty$, $\frac{N}{L^3} = \text{const.}$

Introduction	MP2	<i>E_k</i> -cutoff	<i>E_g</i> -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	000000000	0000000	O	
Droblomo	with [Dotormin	antal Eve	ancione		

Problems with Determinantal Expansions

- $|\Psi
 angle = \sum_{\mathbf{i}} c_{\mathbf{i}} |D_{\mathbf{i}}
 angle$
- Perturbative approaches MP series and CCSD(T) diverge in T.L.
- Size extensivity important truncated CI will retrieve zero energy in T.L.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

[credit: George Booth]

Introduction	MP2	E_k -cutoff	<i>E_g</i> -cutoffs	FCIQMC	Solids	Concluding Remarks
0000●	000	000	000000000	0000000	O	
Overview						

• 1) Simple theory to model basis set incompleteness: MP2 Drawbacks: low-level, diverges, unphysical

Benefits: analytic matrix elements, cheap, qualitative short-range cusp behaviour

- 2) Introduce momentum transfer vector based basis set truncation
- 3) Apply this to FCIQMC by re-summation of the projected energy

• 4) Apply to plane-wave solid-state systems (if time)

- $H = \sum_{\alpha} F_{\alpha} + H'$
- Perturbing Hamiltonian couples in double excitations from the full N-fold excited states

$$E_{\text{MP2}} = \sum_{i>j}^{\text{occ}} \sum_{a>b}^{\text{virt}} \frac{|\langle ij|\hat{v}|ab\rangle - \langle ij|\hat{v}|ba\rangle|^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b} \qquad \text{(spinorbitals)}$$

• Transform MP2 expression into k-space representation:

$$E_{\text{MP2}} = \sum_{i>j}^{\text{occ}} \sum_{a>b}^{\text{virt}} \delta_{\mathbf{k}_i - \mathbf{k}_a, \mathbf{k}_j - \mathbf{k}_b} \frac{2 v_{\mathbf{k}_i - \mathbf{k}_a}^2 - v_{\mathbf{k}_i - \mathbf{k}_a} v_{\mathbf{k}_j - \mathbf{k}_a}}{\Delta \epsilon}$$

• FT:
$$v_{\mathbf{k}_i - \mathbf{k}_a} = \frac{4\pi}{L^3 (\mathbf{k}_i - \mathbf{k}_a)^2}$$

- These two terms are called 1) *direct* and 2) *cross* or *exchange-like* terms
- Momentum is conserved: $\mathbf{k}_i + \mathbf{k}_j = \mathbf{k}_a + \mathbf{k}_b$
- Can define a momentum transfer vector: $\mathbf{g} = \mathbf{k}_a \mathbf{k}_i$

An excitation in the continuous regime (direct and cross shown)

Use a kinetic energy $\frac{1}{2}k_c^2$ cutoff: $\sum_{ab \in \text{virt}} \rightarrow \sum_{\substack{k_f \leq k_a \leq k_c \\ k_f \leq k_b \leq k_c}}$ Allowed excitations now fall within a certain radius in k-space. Call this E_k -cutoff.

Introduction MP2 E_k -cutoff E_g -cutoffs occords o

Analysis of the Limiting Behaviour

- *E_k*-cutoff: radius of *k_c* in *k*-space
- $\Delta E_{
 m MP2}(k_c) = E_{
 m MP2}(\infty) E_{
 m MP2}(k_c)$ [basis set incompleteness error]
- $\Delta E_{\text{MP2}}(k_c) = \sum_{\substack{0 \le k_i \le k_f \\ 0 \le k_j \le k_f}} \sum_{\substack{k_a > k_c \\ k_b > k_c}} \delta_{\mathbf{k}_i \mathbf{k}_a, \mathbf{k}_j \mathbf{k}_b} \frac{2 v_{\mathbf{k}_i \mathbf{k}_a}^2 v_{\mathbf{k}_i \mathbf{k}_a} v_{\mathbf{k}_j \mathbf{k}_a}}{\Delta \epsilon}$
- $\sum_{\substack{0 \leq k_i \leq k_f \\ 0 \leq k_j \leq k_f}}$: assume same power-law for each electron pair

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- $\Delta \epsilon \propto k_a^2$, numerator $\propto 1/k_a^4$
- $\sum_{\substack{k_a \geq k_c \\ k_b \geq k_c}} \delta_{\mathbf{k}_i \mathbf{k}_a, \mathbf{k}_j \mathbf{k}_b}$: single sum over k_a
- $\Delta E_{\mathrm{MP2}}(k_c) \propto \sum_{k_a \geq k_c} \frac{1}{k_a^6}$
- $\Delta E_{\mathrm{MP2}}(k_c) \propto \int_{k_c}^{\infty} \mathrm{d}k_a \; \frac{1}{k_a^5} \; k_a^2 \propto \frac{1}{k_c^3}.$

Introduction 00000	MP2 000	E_k -cutoff 00 \bullet	<i>E</i> g-cutoffs	FCIQMC 0000000	Solids O	Concluding Remarks
$1/k^3 \rightarrow 1$	/ <i>M</i>					

14 electrons, $r_s = 5.0$ a.u.

Momentum Transfer Vectors

- It is possible to define two momentum transfer vectors for an excitation.
- Seek to define basis sets using this, to see if there are better extrapolation properties.
- Show there are *three* sensible choices for basis sets
- Originates from basis set convergence work in solid state systems.

$$E_{\text{MP2}} = \sum_{\text{FS}} \sum_{V} \delta_{\mathbf{g},\mathbf{g}'+\mathbf{k}_i-\mathbf{k}_j} \frac{\left(2 \ v_{\mathbf{g}}^2 - v_{\mathbf{g}} v_{\mathbf{g}'}\right)}{\Delta \epsilon}$$

[disclaimer: these diagrams do not show volume excluded due to occupation effects]

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction	MP2	<i>E_k-cutoff</i>	<i>E_g</i> -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	00●000000	0000000	O	
Local Eg-	cutoff					

 E_g -cutoff: radius of g_c in $k\mbox{-space},$ but bounds momentum transfer vector ${\bf g}$

Introduction	MP2	<i>E_k</i> -cutoff	E_g -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	00000000	0000000	O	
Local Eg-	cutoff	(2)				

・ロト ・部ト ・モト ・モト

æ

14 electrons, $r_s = 5.0$ a.u.

Introduction	MP2	<i>E_k</i> -cutoff	<i>E</i> g-cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	0000€0000	0000000	O	
Local E _g -	cutoff	(3)				

- Treats electron coalescences on the same footing
- Different basis set per k-point/electron
- Spans further into k-space for the same number of functions per electron
- Loss of variationality w.r.t. CBS limit
- Breaks permutational symmetry
- Loss of size extensivity

Introduction	MP2	E_k -cutoff	<i>E_g</i> -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	00000€000	0000000	O	
Intersect	tion E_{g}	-cutoff				

Introduction	MP2	E_k -cutoff	<i>E</i> g-cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	000000●00	0000000	O	
Intersecti	on E _g -	cutoff (2)			

14 electrons, $r_s = 5.0$ a.u.

Introduction	MP2	E_k -cutoff	<i>E_g</i> -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	0000000●0	0000000	O	
Union E_{g}	-cutoff	:				

Introduction	MP2	<i>E_k</i> -cutoff	E_g -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	00000000	0000000	O	
Union E _g	-cutoff	(2)				

14 electrons, $r_s = 5.0$ a.u.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

• Write wavefunction as a series of Slater Determinants

$$|\Psi
angle = \sum_{\mathbf{i}} c_{\mathbf{i}} |D_{\mathbf{i}}
angle$$

- Solve using a stochastic algorithm
- Energy can be found by projection onto a reference

$$E_{ ext{corr}} = \sum_{\mathbf{j} \in \{ ext{doubles}\}} \langle D_{\mathbf{j}} | H | D_{\mathbf{0}}
angle rac{c_{\mathbf{j}}}{c_{\mathbf{0}}}$$

• As before, FT:

$$E_{\text{corr}} = \sum_{ij}^{\text{occ}} \sum_{ab}^{\text{virt}} \delta_{\mathbf{k}_i - \mathbf{k}_a, \mathbf{k}_j - \mathbf{k}_b} \left(v_{\mathbf{k}_i - \mathbf{k}_a} - v_{\mathbf{k}_j - \mathbf{k}_a} \right) \frac{c_{\mathbf{k}_i \mathbf{k}_j}^{\mathbf{k}_a \mathbf{k}_b}}{c_{\mathbf{0}}}$$

$$E_{\text{corr}} = \sum_{ij}^{\text{occ}} \sum_{ab}^{\text{virt}} \delta_{\mathbf{k}_i - \mathbf{k}_a, \mathbf{k}_j - \mathbf{k}_b} \left(v_{\mathbf{k}_i - \mathbf{k}_a} - v_{\mathbf{k}_j - \mathbf{k}_a} \right) \frac{c_{\mathbf{k}_i \mathbf{k}_j}^{\mathbf{k}_a \mathbf{k}_b}}{c_0}$$

- Apply cutoffs as before
- Unlike before, this is now approximate
- Good enough for large M
- Extrapolation from a single calculation (SPE)

Introduction	MP2	E_k -cutoff	E _g -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	000000000	000€000	O	
Applicati	on to	FCIQMO	2 (3)			

◆ロ → ◆昼 → ◆ 臣 → ◆ 臣 → ◇ へ (?)

Introduction	MP2	<i>E_k</i> -cutoff	E _g -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	000000000	0000€00	O	
Compari	son wi	ith DMC				

• N = 14 (Somewhat different trend than for 54 electrons)

DMC results: Pablo López Ríos

Consistent with: K.M. Rasch, L. Mitas, Chem. Phys. Lett. (2012), doi:10.1016/j.cplett.2012.01.016

<ロ> <問> <問> < 回> < 回>

æ

<ロ> (日) (日) (日) (日) (日)

э

[DMC results: Pablo López Ríos]

<ロ> <問> <問> < 回> < 回>

æ

[VMC results: Pablo López Ríos]

Introduction 00000	MP2 000	<i>E_k</i> -cutoff 000	<i>E_g</i> -cutoffs 000000000	FCIQMC 0000000	Solids ●	Concluding Remarks
LiH solid						

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Introduction	MP2	<i>E_k-cutoff</i>	E _g -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	000000000	0000000	O	●○○
Conclusio	ons					

- 1) Analyzed basis set incompleteness error for UEG
- 2) Found 1/M power-law holds for MP2
- 3) Discussed alternative momentum transfer vector basis sets
- 4) Applied this to FCIQMC by re-summation of the projected energy

Introduction	MP2	E_k -cutoff	<i>E_g-cutoffs</i>	FCIQMC	Solids	Concluding Remarks
00000	000	000	000000000	0000000	O	○●○
Looking /	Ahead					

- Twist-averaging to reach the thermodynamic limit
- More accurate electron gas energies (benchmark DMC fixed-node error)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• Does the CC series diverge for metals?

Introduction	MP2	E_k -cutoff	E_g -cutoffs	FCIQMC	Solids	Concluding Remarks
00000	000	000	000000000	0000000	0	000

Acknowledgements

- Prof. Ali Alavi
- Dr. Andreas Grueneis (CCSD and RPA calculations; solid state applications) & VASP
- Dr. George Booth (MP2 and FCIQMC code)
- Dr. Pablo López Ríos (VMC/DMC) & CASINO
- Alavi Group
- EPSRC

References

- FCIQMC: GH Booth, AJW Thom, A Alavi, JCP 131 5, 054106 (2009)
- i-FCIQMC: D Cleland, GH Booth, A Alavi, JCP 132 4, 041103 (2010)
- HEG/i-FCIQMC: JJS, GH Booth, A Gruneis, A Alavi, PRB 85, 081103(R) (2012)
- HEG/i-FCIQMC/Extrapolation: JJS, GH Booth, A Alavi, arXiv:1201.4691 [physics.comp-ph]

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

MP2/Extrapolation/Solid State: upcoming