Bending Modes, Elastic Constants and Mechanical Stability of Graphitic Systems

Gianluca Savini

University of Sussex and Radboud University Nijmegen

Outline

- 1) Introduction
- 2) Elastic constants and Bending Modes
- 3) Elastic constants in graphitic systems
- 4) Conclusions

Why study layered graphitic systems

- Graphitic systems are used for many industrial applications ranging from refractory materials to <u>neutron moderator</u> in nuclear fission reactor and <u>plasma shield</u> for the next generation of fusion reactor;
- The discovery of the unusual electronic properties of graphene has raised the interest on bulk graphitic system as a <u>route to produce</u> <u>graphene samples of high quality and in large scale</u>;
- Experiments have suggested that <u>stacking misorientations</u> may decouple the layers giving rise to a <u>quasi 2D electronic systems</u> in turbostratic graphite (massless Dirac quasiparticles & quantum Hall effect)

Why study the elastic constants

- a) Their values are decisive in engineering design to avoid material failure;
- b) They affect the mechanism of exfoliation that are relevant for the production of graphene;
- c) They strongly affect the thermodynamic properties due to a low-lying branch of acoustic vibrations, the bending modes, predicted by Lifshitz over fifty years ago [1];
- d) The knowledge of the elastic constant values is unexpected poor;

[1] I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 22, 475 (1952)

Experimental Studies

	hex-g (AB)	turbo-g
	Exp. (Bosak et al.)	Exp. (Blakslee et al.)
C_{11}	$1109~\pm~16$	$1060~\pm~20$
C_{12}	139 ± 36	$180~\pm~20$
C_{33}	38.7 ± 7	36.5 ± 1
C_{13}	0 ± 3	15 ± 5
C_{44}	5.0 ± 3.0	0.18 / 0.35

Table I: Experimental elastic constant values for hexagonal (AB stacking) and turbostratic graphitic systems (unit of GPa).

A. Bosak *et al.*, Phys. Rev. B **75**, 153408 (2007)

O.L. Blakslee et al., J. Appl. Phys. 41, 3373 (1970)

• By imposing that the elastic strain energy as positively definite, the stability conditions are given by:

$$2C_{13}^2 < C_{33} \left(C_{11} + C_{12} \right) \quad C_{11}, C_{12}, C_{33}, C_{44} > 0$$

Elastic constants \Leftrightarrow Bending Modes

Dispersion law for the out-of-plane acoustic mode:

$$\rho \times \omega^2 \left(q \right) = C_{44} \left(q_x^2 + q_y^2 \right) + C_{33} q_z^2 + \kappa \left(q_x^2 + q_y^2 \right)^2 / c$$

Figure 1: Transversal acoustic (bending) mode. The bending changes the local stacking between graphitic layers. The boxes (a-d) show regions with different slopes and stackings.

Elastic constants \Leftrightarrow Bending Modes

Dispersion law for the out-of-plane acoustic mode:

$$\rho \times \omega^2 \left(q \right) = C_{44} \left(q_x^2 + q_y^2 \right) + C_{33} q_z^2 + \kappa \left(q_x^2 + q_y^2 \right)^2 / c$$

Using trigonometric considerations, the maximum shear stacking value is:

Figure 1: Geometrical construction of the disregistry Δd in $\xi = 0$ (origin of the coordinate system). (a) The black $t_u(x)$ and red $t_l(x)$ dashed line are the tangent lines in $\xi = 0$ for the upper $z_u(x)$ and lower $z_l(x)$ plane respectively (black lines). The blue dashed line $n_l(x)$ is the normal line of the lower plane in $\xi = 0$. (b) Zoom of the cross area (red circle in caption a). The cross point $(\chi, n_l(\chi))$ is the intersection between the normal line $n_l(x)$ and the upper plane $z_u(x)$. The approximate cross point $(\chi', n_l(\chi'))$ is the intersection between the lower normal line $n_l(x)$ and the upper tangent line $t_u(x)$.

 $\lambda = 0.25$

 $\overline{a}/\lambda = 0.10$

 $\overline{a} / \lambda = 0.05$

 $\lambda = 20$

Theoretical Framework

- Density-functional theory within Local Density Approximation (LDA)
- 1) ABINIT package:
 - Plane waves with cut-off energy of 150 Ry
- 2) AIMPRO package:
 - Localized basis-set composed of s, p and d Gaussian orbitals
- 3) FIREBALL package:
 - Localized basis-set and second-order perturbation theory to include van der Waals interactions within LDA

The *k*-point mesh was chosen so that the average density for all computed structures correspond to 32x32x16 mesh for hex-g.

Bending Modes, Elastic Constants and Mechanical Stability of Graphitic Systems

Methods to determine the elastic constants

• **Response-function**:

To calculate the 2^{nd} derivate of the total energy with respect to the strain components, and then the elastic constants C_{ij}

• Elastic density energy:

$$w = \frac{1}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} C_{ij} \varepsilon_i \varepsilon_j$$

For each elastic constant we have applied 21 strain components ε_{ij} to the equilibrium structures and the atomic positions were allowed to relax. The C_{ij} were determined by fitting the calculated total energy to a 6-order polynomial function in the strains:

Bending Modes, Elastic Constants and Mechanical Stability of Graphitic Systems

 C_{44} = describes shear between graphitic layers

 C_{13} = deformations along basal plane and *c*-axis

0000000000

 C_{44} = describes shear between graphitic layers

 C_{13} = deformations along basal plane and *c*-axis

••••

0 0 0 0 0 0 0 0 0 0 0

.....

0000000000

 C_{44} = describes shear between graphitic layers

 C_{13} = deformations along basal plane and *c*-axis

 •••••••••
 •••••••••

 •••••••••
 •••••••••

 •••••••••
 ••••••••••

 C_{44} = describes shear between graphitic layers

 C_{13} = deformations along basal plane and *c*-axis

Bending Modes, Elastic Constants and Mechanical Stability of Graphitic Systems

Figure 1: (a) Stacking-fault energy surface. The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal graphite viewed perpendicular (above), parallel (below) to the *c*-axis.

	$a_0 [{ m \AA}]$	\overline{c}_0 [Å]	$E_f \; [\text{meV/atom}]$
hex-g (AB)	2.450	3.34	0.00(0.00)
rhombo-g	2.450	3.34	$0.10 \ (0.10)$
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66 (2.05)
hex-g (AA)	2.450	3.60	9.29(7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Figure 1: (a) Stacking-fault energy surface. The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal graphite viewed perpendicular (above), parallel (below) to the *c*-axis.

	$a_0 [{ m \AA}]$	\overline{c}_0 [Å]	$E_f \; [\mathrm{meV/atom}]$
hex-g (AB)	2.450	3.34	0.00 (0.00)
rhombo-g	2.450	3.34	0.10 (0.10)
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66(2.05)
hex-g (AA)	2.450	3.60	9.29 (7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Our work: $C_{44} = 4.5 \text{ GPa} \text{ (Exp. 5.0 \pm 3 GPa)}$ $C_{13} = -2.5 \text{ GPa} \text{ (Exp. 0 \pm 3 GPa)}$

Figure 1: (a) Stacking-fault energy surface. The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal graphite viewed perpendicular (above), parallel (below) to the *c*-axis.

	$a_0 [{ m \AA}]$	\overline{c}_0 [Å]	$E_f \; [\mathrm{meV/atom}]$
hex-g (AB)	2.450	3.34	$0.00 \ (0.00)$
rhombo-g	2.450	3.34	0.10(0.10)
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66(2.05)
hex-g (AA)	2.450	3.60	9.29 (7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Our work: $C_{44} = 4.4 \text{ GPa}$ $C_{13} = -2.5 \text{ GPa}$

Figure 1: (a) Stacking-fault energy surface. The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal graphite viewed perpendicular (above), parallel (below) to the *c*-axis.

	a_0 [Å]	\overline{c}_0 [Å]	$E_f \; [\mathrm{meV/atom}]$
hex-g (AB)	2.450	3.34	$0.00 \ (0.00)$
rhombo-g	2.450	3.34	$0.10 \ (0.10)$
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66(2.05)
hex-g (AA)	2.450	3.60	9.29 (7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Our work:

Figure 1: (a) Stacking-fault energy surface. The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal graphite viewed perpendicular (above), parallel (below) to the *c*-axis.

	$a_0 [{ m \AA}]$	\overline{c}_0 [Å]	$E_f \; [\mathrm{meV/atom}]$
hex-g (AB)	2.450	3.34	$0.00 \ (0.00)$
rhombo-g	2.450	3.34	0.10(0.10)
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66(2.05)
hex-g (AA)	2.450	3.60	9.29 (7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Our work: $C_{44} = -2.7 \text{ GPa}$

Figure 1: (a) Stacking-fault energy surface. The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal graphite viewed perpendicular (above), parallel (below) to the *c*-axis.

	a_0 [Å]	\overline{c}_0 [Å]	$E_f \; [\text{meV/atom}]$
hex-g (AB)	2.450	3.34	$0.00 \ (0.00)$
rhombo-g	2.450	3.34	0.10(0.10)
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66(2.05)
hex-g (AA)	2.450	3.60	9.29 (7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Our work: $C_{44} = -2.7 \text{ GPa}$ _____ $C_{44} = 7.7 \text{ GPa}$ _____

Figure 1: (a) Stacking-fault energy surface. The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal graphite viewed perpendicular (above), parallel (below) to the *c*-axis.

	a_0 [Å]	\overline{c}_0 [Å]	$E_f \; [\mathrm{meV/atom}]$
hex-g (AB)	2.450	3.34	$0.00 \ (0.00)$
rhombo-g	2.450	3.34	$0.10 \ (0.10)$
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66(2.05)
hex-g (AA)	2.450	3.60	9.29 (7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Our work: $C_{44} = -2.7 \text{ GPa}$ _____ $C_{44} = 7.7 \text{ GPa}$ _____ $C_{13} = -2.6 \text{ GPa}$

Figure 1: (a) Stacking-fault energy surface. The square and circle symbols indicate the stationary points corresponding to the following high-symmetric structures; (b) The hexagonal, orthorhombic, rhombohedral and AA hexagonal graphite viewed perpendicular (above), parallel (below) to the *c*-axis.

	a_0 [Å]	\overline{c}_0 [Å]	$E_f \; [\text{meV/atom}]$
hex-g (AB)	2.450	3.34	$0.00 \ (0.00)$
rhombo-g	2.450	3.34	$0.10 \ (0.10)$
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66 (2.05)
hex-g (AA)	2.450	3.60	9.29 (7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Our work: $C_{44} = -3.8 \text{ GPa}$ $C_{13} = -3.0 \text{ GPa}$

Figure 1: An example of turbostratic stacking. Each layers is rotated with respect to each other with a fixed angle of 38.21° and randomly translated along the basal plane.

Figure 1: An example of turbostratic stacking. Each layers is rotated with respect to each other with a fixed angle of 38.21° and randomly translated along the basal plane.

	$a_0 [{ m \AA}]$	\overline{c}_0 [Å]	$E_f \; [\mathrm{meV/atom}]$
hex-g (AB)	2.450	3.34	$0.00 \ (0.00)$
rhombo-g	2.450	3.34	$0.10 \ (0.10)$
turbo-g	2.450	3.42	3.03 (4.63)
ortho-g	2.450	3.37	1.66(2.05)
hex-g (AA)	2.450	3.60	9.29 (7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

Figure 1: An example of turbostratic stacking. Each layers is rotated with respect to each other with a fixed angle of 38.21° and randomly translated along the basal plane.

	a_0 [Å]	\overline{c}_0 [Å]	$E_f \; [\mathrm{meV/atom}]$
hex-g (AB)	2.450	3.34	0.00(0.00)
rhombo-g	2.450	3.34	$0.10 \ (0.10)$
turbo-g	2.450	3.42	3.03(4.63)
ortho-g	2.450	3.37	1.66(2.05)
hex-g (AA)	2.450	3.60	9.29(7.70)

Table I: Intralayer a_0 and interlayer \overline{c}_0 repeat distances for the five graphitic systems. The last column shows the relative formation energies E_f per atom. The value between brackets are calculated using the van der Waals corrections.

$$B_{a} = \frac{C_{33} (C_{11} + C_{12}) - 2C_{13}^{2}}{C_{33} - C_{13}} \qquad C_{13} = 0 \text{ GPa} \qquad \longleftrightarrow \qquad B_{a} = 1240 \text{ GPa}$$

$$C_{13} = 15 \text{ GPa} \qquad \longleftrightarrow \qquad B_{a} = 2080 \text{ GPa}$$

 $B_{a} = \frac{C_{33} (C_{11} + C_{12}) - 2C_{13}^{2}}{C_{33} - C_{13}} \qquad C_{13} = 0 \text{ GPa} \qquad \longleftrightarrow \qquad B_{a} = 1240 \text{ GPa}$ $C_{13} = 15 \text{ GPa} \qquad \longleftrightarrow \qquad B_{a} = 2080 \text{ GPa}$

Figure 1: In-plane lattice parameters *vs.* pressure. The solid line represents the results found for hex-g and rhombo-g. The dashed line shows the result found for turbostratic graphite. For comparison, the experimental results are also plotted.

T. Yagi *et al.*, Phys. Rev. B 46, 6031 (1992).
M. Hanfland *et al.*, Phys. Rev. B 39, 12598 (1989).
Y.X. Zhao *et al.*, Phys. Rev. B 40, 993 (1989).

- The powder samples are ranging from well crystallized to poorly crystallized grains
- The good agreement indicate that B_a does not depend on the stacking order.
- The measured value is:

$$B_{\rm a} = 1250 \,\,{\rm GPa} \qquad C_{13} = 0.3 \,\,{\rm GPa}$$

 $B_{a} = \frac{C_{33} (C_{11} + C_{12}) - 2C_{13}^{2}}{C_{33} - C_{13}} \qquad C_{13} = 0 \text{ GPa} \qquad \longleftrightarrow \qquad B_{a} = 1240 \text{ GPa}$ $C_{13} = 15 \text{ GPa} \qquad \longleftrightarrow \qquad B_{a} = 2080 \text{ GPa}$

Figure 1: In-plane lattice parameters vs. pressure. The solid line represents the results found for hex-g and rhombo-g. The dashed line shows the result found for turbostratic graphite. For comparison, the experimental results are also plotted.

T. Yagi et al., Phys. Rev. B 46, 6031 (1992). M. Hanfland et al., Phys. Rev. B 39, 12598 (1989). Y.X. Zhao et al., Phys. Rev. B 40, 993 (1989).

- The powder samples are ranging from well crystallized to poorly crystallized grains
- The good agreement indicate that B_a does not depend on the stacking order.
- The measured value is: $B_{\rm a} = 1250 \,{\rm GPa}$ $C_{13} = 0.3 \,{\rm GPa}$

We propose that the same value found in hex-g $C_{13} = 0 \pm 3$ GPa should be appropriate also for turbo-g.

	hex-g (AB) turbo-g		rhombo-g	ortho-g	hex-g (AA)		
	Experiment 7	Theory	Experiment	Theory	Theory	Theory	Theory
C_{11}	$1109~\pm~16$	1109	$1060~\pm~20$	1080 ± 3	1107	1095	1028
C_{12}	$139~\pm~36$	175	$180~\pm~20$	$171~\pm~4$	175	173	162
C_{33}	$38.7~\pm~7$	29(42)	$36.5~\pm~1$	$27 \pm 2 \ (36 \pm 1)$	29(42)	26 (38)	21 (30)
C_{13}	$0~\pm~3$	-2.5	15 ± 5	-2.7 ± 1	-2.5	-2.6	-3.0
C_{44}	$5.0~\pm~3.0$	4.5 (4.8)	$0.18 \ / \ 0.35$	$0.24 \pm 0.06 \ (0.27 \pm 0.05)$	4.4(4.8)	-2.7/7.7 (-2.9/7.3)	-3.8 (-3.8)

Table I: Elastic constants in unit of GPa for different graphitic systems. The values between brackets are calculated using the van der Waals correction. We have shown that the C_{13} values do not significantly change between turbo-g and hex-g and we have proposed that the same value 0 ± 3 GPa should be appropriate also for turbostratic stacking.

- The lower exfoliation energy and the lower C_{44} (more bending modes) suggest that flakes with random stacking should be easier to exfoliate than the ones with perfect or rhombohedral stacking in agreement with a recent experiment [1];
- The bending modes may contribute to decouple the layers giving rise to a <u>quasi 2D electronic systems</u> in turbostratic graphitc systems;

^[1] Y. Hernandez et al., Nature Nanotech. 3, 563 (2008).

Conclusions

- 1. We have explained the importance of C_{44} as the main parameter that controls the bending branch and mechanical stability in graphitic systems;
- 2. We have provided the first complete description of the elastic constants in layered graphitic systems;
- 3. The higher formation energy (3-5 meV/atom) and the lower C_{44} value found in turbostratic graphite suggest that we could take advantage of this stacking to produce graphene samples in large scale.

Acknowledgements

HPC-Europa project

My collaborators:

Annalisa Fasolino and Mikhail I. Katsnelson, Nijmegen, The Netherlands

Y. Dappe, Madrid, Spain (van der Waals implementation)

J-C Charlier, Belgium

S. Öberg, Luleå, Sweden

Acknowledgements

Thank you

