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Hartree-Fock theory and Homogeneous Electron Gas
Noncollinear spins and Spiral Spin Density Waves
The Overhauser Instability

Results

Interpretation



NONCOLLINEAR SPINS

Collinear: definite spin (up or down) with respect to global quantization axis.
Particles are distinguishable, simplifies calculation.

Noncollinear: spin directions that are not parallel to the global quantization
axis and the spin direction can vary with position.

Wavefunction depends on position and spin coordinates.



Spin density or Magnetization density: net magnetic moment due to spin.
Vector function of position. Noncollinear eyxample:
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Spiral Spin Density Wave
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(GENERALIZED HARTREE-FOCK THEORY

HF theory of noncollinear spins. Orbitals have full spin dependence.

Can write orbitals as function of space-spin coordinates 1(x).

Can write orbitals as two-component spinors: ¥(r) = ( Un(r) )

Pa(r)

Determinant of spinors: ¥ = \/iv_!det 9. (rj)]-

Total energy is E = (W|H|¥). Evaluate variation with respect to orbitals,
subject to orthonormality constraint.



Gives single-particle HF equation (depending on form of ﬁ) such as:

(K+U+V-J) (r) =e), (1) (1)

This is a 2x2 matrix equation. K (kinetic energy), U (external potential), V
(direct term) and J (exchange term) are 2x2 matrices of spatial operators.

For spin independent H, J can still have off-diagonal components, giving rise
to noncollinearity.

Collinear case is special case with ¢(r) = ¢(r)x, where x is a spin eigenstate.
Reduces problem to Unrestricted HF theory.

HF equation needs to be solved self-consistently.



OVERHAUSER INSTABILITY

What is ground state of Homogeneous Electron Gas in Hartree-Fock theory?

High-density (low r,) limit: paramagnet. Low-density (high 75): ferromagnet.
Collinear states.

Overhauser: paramagnet is never ground state, but instead a Spiral Spin
Density Wave is.

Proof and analytical solution for 1D with repulsive o-function interaction.
(A. W. Overhauser, Giant spin density waves, Phys. Rev. Lett. 4, p.462
(1960))

Proof of existence for 3D with Coulomb interaction. (A. W. Overhauser, Spin
density waves in an electron gas, Phys. Rev. 128, p.1437 (1962))



HARTREE-FOCK THEORY OF HOMOGENEOUS ELECTRON (GAS

Hamiltonian: H =", —IVZ4 Y U(r;) + 2 D iji VI(TiTj) + A

V' could be Coulomb or Ewald interaction.

Single-particle HF equation is self-consistently solved by SSDW orbitals:

Y, (r) = kT < cos(6y) o—itqr )
Tk

sin(50k) etizar

=N

k is plane-wave vector, q is magnetization wave vector (constant), and the
orbital has its spin pointing in (6, q - r) direction (spiral in space).

Mixing up spin at k — %q with down spin at k + %q.



e Paramagnet and ferromagnet are special cases. They correspond to particular
choices of occupation and 6.

e Example: paramagnet is two overlapping spheres in k-space:




ANALYTICAL PART

Total energy:

4 1
FE = Z {k2_|_ q — k- qCOSHk}——— Z |k k,‘ZCOS —(Qk—ek/) 2 f
k, k/=£k
(2)

(¢ is Ewald self-image term)

Single-particle HF equation:
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NUMERICAL PART

Aim Find occupation of k-space and form of 6y self-consistently. Find value
of q that gives lowest energy.

Start by choosing initial occupation of orbitals and 6.

Two schemes: best guess at solution (Overhauser) and paramagnetic
occupation with randomized angles.

lterate to self-consistency.
Consistency of result: total energy vs. sum of eigenvalues.

Numerically tricky, false local minima.



Energy per particle (a.u.)
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REsuLTS: ENERGY VS. SYSTEM SIZE

Energy per particle (a.u.)
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REsSULTS: ENERGY VS. Q
SDW HF
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Lowest energy is achieved when q is near 2kp (3.84 a.u.).




RESULTS: ENERGY VS. 74
SDW HF
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Effect gets smaller at higher density, tricky at 4, = 1.0.
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NATURE OF THE INSTABILITY

SDW HF Angles

N10082 rs 5 18 ky=0 kz=0
4 T T | T | T | T T

— Start
—— Converged




NATURE OF THE INSTABILITY

Instability is associated with formation of a gap. The spiral spin density is a
short-wavelength periodic structure.
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CONCLUSIONS

Demonstrated the existence of the instability for a range of densities. Its
nature is qualitatively as predicted by Overhauser.

There is always a Spiral SDW solution that has lower energy than paramagnet.

Work in progress: other types of instabilities, densities below the
para/ferromagnetic crossover.

Work in progress: Quantum Monte Carlo (VMC) calculations using the HF
orbitals.
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