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Motivation
Mercury(II)iodide (HgI2) is an important material for 
X- and γ-ray detection at room temperature.

Computer simulation to support neutron 
scattering experiment

High quality crystals are difficult 
to grow.

Vibrational properties have been 
studied experimentally and 
theoretically in two of three 
symmetry directions.

Full experimental phonon data 
are not available. 
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Method: Density Functional Theory
ABINIT1, SIESTA2 and Pseudopotentials

Code ABINIT SIESTA

Basis
Plane Wave basis
Cut-off Energy: 700 eV

Numerical atomic orbitals basis set
Optimized with SIMPLEX4

XC -  functional GGA GGA

Pseudopotential
Optimized Pseudopotential
Generated by OPIUM3

Kerker Pseudopotential
Generated bei ATOM2

Used for Electronic structure and phonons Electronic structure

1 X. Gonze et al.; Z. Kristallogr. 220, 558–562  (2005)
2 J. Soler, M. E. Artacho,  J. D. Gale, A.  García,  J.  Junquera, P. Ordejòn, D.J. Sànchez-Portal; Phys: Condens Matter 14, 2745 (2002)
3 A. M. Rappe, K. M.  Rabe, E. Kaxiras, J. D. Joannopoulos; Phys. Rev. B 41, 1227 (1990)
4 E. Anglada,  J. M. Soler, J.  Junquera,  M. E. Artacho; Phys Rev B  66, 205101 (2002)
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Method: Phonons
So far:  total energy with fixed position of the atoms  → Born-Oppenheimer Approximation

Now: add atomic vibrations  expansion of the total energy around the equilibrium geometry→
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direction i

force constant matrix (FCM)

det∣D q−2∣=0The full  solution of vibrational  states :

The dynamical matrix            

=:C i , j  ' a ,a ' 

The Fourier transformed FCM: C i , j ' q= ∑
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Method:
Phonons – Task find the dynamical Matrix

Frozen Phonons:  Frequencies of selected phonon modes are calculated from differences 
in the total energy and forces acting on a nuclei “frozen” at position Ri produced by finite, 
periodic displacements of a few atoms in an otherwise perfect structure at equilibrium. A 
frozen phonon calculation for lattice vibrations at a generic reciprocal-lattice vector  
requires a supercell. The size of the supercell must be at least equals phonon wavelength.

Long-range polarization fields are not compatible with the periodic boundary conditions 
for supercells. Hence, the long-range polarization fields are artificially suppressed in 
supercells resulting in a vanishing LO-TO splitting. Long-range fields can be handled via 
the asymptotic behaviour of planar force constants between very distant planes, requiring 
very extended supercells.  

Density Functional Perturbation Theory:   DFPT avoids the problem of large 
supercells. Within this approach one starts from the ground state results obtained for the 
primitive unit cell. The response to arbitrary infinitesimal displacements of the atoms and 
to corresponding changes of the ionic potential is calculated by means of perturbation 
theory. The derivatives are taken at equilibrium positions, i.e., use of full symmetry.

Another advantage is the rigorous inclusion of long-range polarization fields introduced by 
     LO phonons near the Gamma-point in ionic semiconductors resulting in a LO-TO                 
     splitting near Gamma. 

q



  

Method: Density Functional Perturbation Theory DFTP
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Perturbation in the crystal structure  change in the external potential→
Expand perturbed potential in a small parameter λ:

Hellmann-Feynman theorem →
∂ E tot

∂
depends only on n0r 

The perturbed quantitiesE tot
 , i


r  , n r  are expanded in the same way

(2n+1)-theorem1  set of equations to be solved self-consistently→

1 X. Gonze and J. Vigneron, Physical Review B 39, 13120 (1989) 
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Method: Density Functional Perturbation Theory DFTP

Solve self-consistently for any fixed vector    : start with initial guess for H(1) 

From H(1) calculate φ(1)
i by solving

The first order density is given by

Build new perturbed Hamiltonian

Repeat until a desired accuracy is reached
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Code x = y [Å] z [Å] u D(I – I)[Å]

ABINIT 4.426 13.259 0.130 0.240z

SIESTA 4.214 12.124 0.134 0.231z

WIEN971 4.577 13.583 0.128 0.244z

Experiment

Jeffrey et al.2 4.361 12.450 0.139 0.22z

Nicolau et al.3 4.374 12.435 0.139 0.222z

Tetragonal system

Space group: P42/nmc

Distorted by u  from an ideal cubic close packing

Geometry
The Geometry of HgI2 

1 F. Ayres, L. V. C. Assali, W. V. M. Machado and J. F. Justo, Brazilian Journal of Physics 34, 681 (June 2004)
2 G. A. Jeffrey and M. Vlasse, Inorganic Cemistry 6, 396 (Feb. 1967)
3 Y. F. Nicolau, M. Dupuy and Z. Kabsch, Nuclear Instruments and Methods in Physics Research Section A 283, 149 (1989)
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Electronic Structure:
Comparison between SIESTA, ABINIT previous results

Code Siesta relaxed 
Unit Cell

Siesta fixed 
Unit Cell

ABINIT relaxed 
Unit Cell

Band gap [eV] 0.38 0.396 1.33

Experiment/
Theory

Piechotka 1 Turner et al . 2 Solanki et al. 3 Ayres et al. 4

Experiment Muffin-tin orbital 
calculation (LDA)

Scalar relativistic 
linear muffin-tin 
orbital

All-electron, full-
potential LAPW 
incl. Spin-Orbit

Band gap [eV] 2.13 0.52 0.95 0.98

1 M. Piechotka; Materials Science and Engineering: R: Reports 18, 1-98 (1997)
2 D. E. Turner and B. N. Harmon; Phys. Rev. B 40 (15), 10516 (1989)
3 A. K. Solanki, A. Kashyap, T. Nautiyal, S. Auluck, M. A. Khan; Phys. Rev. B 55 (15), 9215 (1997)
4 F. Ayres, L. V. C. Assali, W. V. M. Machado and J. F. Justo; Brazilian Journal of Physics 34, 681 (June 2004)

The band gap depends sensitively on the total pressure of the unit cell

Only the calculations from Ayres et al. took into account geometry optimization

The band gap was underestimated using 37.6% by ABINIT



  

Electronic Structure:
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HgI2 is an ionic crystal

Hg+2δ and I-δ ions are moved against each other  Results in a macroscopic polarisation→

         is a macroscopic electric field where    is the wave vector

Calculated Born effective charges for α-HgI2

Lattice dynamics: The dielectric constant
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---
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Lattice dynamics:
The dielectric constant

The frequency dependent dielectric constant ε(ω)

i =∞∏
j

LO j
2 −2

T0 j
2 −2



  

The irreducible representations:  (A1g, 2A2u, B2u, B1g, 3Eg, 3Eu)

Inversion symmetry  even mode (g) differs from corresponding odd mode (u) by an →
interlayer phase shift of 180°

Davidov pairs: pair of even and odd mode 

Raman and Infrared active modes are mutually exclusive

Lattice dynamics:
Phonon modes at the Gamma point



  

Lattice dynamics:
Phonon modes at the Gamma point



  

Lattice dynamics: Angle dependence in Gamma

and LO-TO Splitting

Transversal modes E2
u and E1

u 
split into transverse optical and 
longitudinal optical mode

E1
u changes polarisation, but 

not the symmetric presentation

Longitudinal A1
2u mode changes 

its frequency due to the electric 
field

Electric field perpendicular 
energy is maximised



  

Lattice dynamics:
Phonon dispersion in the [100], [001] and [110]- plane

The whole phonon spectrum splits 
into 10 low energy branches with a 
maximum of 1.62 THz and 8 high 
energy branches with a minimum 
of 2.88 THz
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Streuintensitäten:
Comparison between experiment and theory
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Geometry and band gap: excellent agreement with experiment 
(better than previously published results)

Detailed discussion of the LO-TO splitting of the optical modes

First ab initio results for phonon dispersion in the [100] and [001]-
plane: comparable with published data

Phonon dispersion of the so far unpublished [110]-plane

Outlook
Neutron scattering experiment planned

Conclusions:
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