Lattice dynamics of mercury(II)iodide

Lydia Nemec University of Regensburg

Supervisor:
Dieter Strauch

ESDG, $19^{\text {th }}$ May 2010

Lattice dynamics of mercury(II)iodide

- Motivation
- Method
- Geometry
- Electronic Structure
- Lattice Dynamics
- Scattering Spectra
- Conclusions and Outlook

Motivation

- Mercury(II)iodide $\left(\mathrm{HgI}_{2}\right)$ is an important material for X - and γ-ray detection at room temperature.
- High quality crystals are difficult to grow.
- Vibrational properties have been studied experimentally and theoretically in two of three symmetry directions.
- Full experimental phonon data are not available.
- Computer simulation to support neutron scattering experiment

Lattice dynamics of mercury(II)iodide

- Motivation
- Method
- Geometry
- Electronic Structure
- Lattice Dynamics
- Scattering Spectra
- Conclusions and Outlook

Method: Density Functional Theory

ABINIT ${ }^{1}$, SIESTA 2 and Pseudopotentials

- Total energy $E_{\text {tot }}$ and density $n(\vec{r})$ as a function of Kohn-Sham wavefunctions $\varphi_{i}(\vec{r})$

$$
E_{t o t}=\sum_{\alpha}^{o c c}\left\langle\varphi_{i}\right| T+v_{e x t}\left|\varphi_{i}\right\rangle+E_{H_{x c}}[n(\vec{r})] \quad n(\vec{r})=\sum_{\alpha}^{o c c} \varphi_{i}^{c c}(\vec{r}) \varphi_{i}(\vec{r})
$$

- solve Kohn-Sham equations self-consistently

Code	ABINIT	SIESTA
Basis	Plane Wave basis Cut-off Energy: 700 eV	Numerical atomic orbitals basis set Optimized with SIMPLEX
XC - functional	GGA	GGA
Pseudopotential	Optimized Pseudopotential Generated by OPIUM	
Used for	Electronic structure and phonons	Kerker Pseudopotential Generated bei ATOM
	Electronic structure	

Method: Phonons

- So far: total energy with fixed position of the atoms \rightarrow Born-Oppenheimer Approximation
- Now: add atomic vibrations \rightarrow expansion of the total energy around the equilibrium geometry

$$
\begin{gathered}
\underset{\substack{\text { Equilibrium } \\
\text { cell } a \\
\text { position } \\
\text { of Atom } \alpha}}{R_{i \alpha}^{a}=R_{i}^{a}+\tau_{i \alpha}^{\boldsymbol{V}}+u_{i \alpha}^{a}} \begin{array}{c}
\text { displacement } \\
\text { of Atom } \text { in } \\
\text { direction } i
\end{array} \\
E_{t o t}^{h a r m}(\boldsymbol{u})=E_{t o t}^{(0)}+\frac{1}{2} \sum_{i \alpha a} \sum_{j \alpha^{\prime} a^{\prime}} \underbrace{\frac{d^{2} E}{d u_{i \alpha}^{a} d u_{j \alpha^{\prime}}^{a^{\prime}}}}_{=: C_{i \alpha, j \alpha^{\prime}}\left(a, a^{\prime}\right)} u_{i \alpha}^{a} u_{j \alpha^{\prime}}^{a^{\prime}}
\end{gathered}
$$

$\xrightarrow{\mathrm{u}[\text { Ang }]}$
force constant matrix (FCM)

- The Fourier transformed FCM: $\quad \bar{C}_{i \alpha, j \alpha^{\prime}}(\vec{q})=\sum_{i \alpha, j \alpha^{\prime}} C_{i \alpha, j \alpha^{\prime}}\left(0, a^{\prime}\right) \mathrm{e}^{i \vec{q} \vec{R}_{\sigma^{\prime}}}$
- The full solution of vibrational states: $\operatorname{det}\left|\bar{D}(\vec{q})-\omega^{2}\right|=0$
- The dynamical matrix $\quad \bar{D}_{i \alpha, j \alpha^{\prime}}(\vec{q})=\frac{\bar{C}_{i \alpha, j \alpha^{\prime}}(\vec{q})}{\sqrt{M_{i}{ }^{\prime} M_{j}}}$

Universität Regensburg

Method:

Phonons - Task find the dynamical Matrix

- Frozen Phonons: Frequencies of selected phonon modes are calculated from differences in the total energy and forces acting on a nuclei "frozen" at position R_{i} produced by finite, periodic displacements of a few atoms in an otherwise perfect structure at equilibrium. A frozen phonon calculation for lattice vibrations at a generic reciprocal-lattice vector \vec{q} requires a supercell. The size of the supercell must be at least equals phonon wavelength.

Long-range polarization fields are not compatible with the periodic boundary conditions for supercells. Hence, the long-range polarization fields are artificially suppressed in supercells resulting in a vanishing LO-TO splitting. Long-range fields can be handled via the asymptotic behaviour of planar force constants between very distant planes, requiring very extended supercells.

- Density Functional Perturbation Theory: DFPT avoids the problem of large supercells. Within this approach one starts from the ground state results obtained for the primitive unit cell. The response to arbitrary infinitesimal displacements of the atoms and to corresponding changes of the ionic potential is calculated by means of perturbation theory. The derivatives are taken at equilibrium positions, i.e., use of full symmetry.

Another advantage is the rigorous inclusion of long-range polarization fields introduced by LO phonons near the Gamma-point in ionic semiconductors resulting in a LO-TO splitting near Gamma.

Method: Density Functional Perturbation Theory DFTP

$$
E_{t o t}=\sum_{\alpha}^{o c c}\left\langle\varphi_{i}\right| T+v_{e x t}\left|\varphi_{i}\right\rangle+E_{H_{x c}}[n(\vec{r})]
$$

Perturbation in the crystal structure \rightarrow change in the external potential Expand perturbed potential in a small parameter λ :

$$
v_{e x t}^{\lambda}=v_{e x t}^{(0)}+\lambda v_{e x t}^{(1)}+\frac{1}{2} \lambda^{2} v_{e x t}^{(2)}+O\left(\lambda^{3}\right)
$$

The perturbed quantities $E_{\text {tot }}^{\lambda}, \varphi_{i}^{\lambda}(\vec{r}), n(\vec{r})$ are expanded in the same way Hellmann-Feynman theorem $\rightarrow \frac{\partial E_{\text {tot }}}{\partial \lambda}$ depends only on $n^{(0)}(\vec{r})$

$$
\frac{\partial^{2} E}{\partial \lambda^{2}}=\int d^{3} r \frac{\partial v_{e x t}^{\lambda}(\vec{r})}{\partial \lambda} \cdot n^{(1)}(\vec{r})+\int d^{3} r n^{(0)}(\vec{r}) \frac{\partial^{2} v_{e x t}^{\lambda}(\vec{r})}{\partial \lambda^{2}}
$$

$(2 n+1)$-theorem ${ }^{1} \rightarrow$ set of equations to be solved self-consistently

Method: Density Functional Perturbation Theory DFTP

Solve self-consistently for any fixed vector \vec{q} : start with initial guess for $H^{(1)}$

- From $H^{(t)}$ calculate $\varphi^{(1)}{ }_{i}$ by solving

$$
\begin{gathered}
\left(H^{(0)}-\epsilon_{i}\right)\left|\varphi_{i}^{(1)}>.=-P_{c} H^{(1)}\right| \varphi_{i}^{(0)}>. \\
P_{c}=1-\sum_{i=1}^{N}\left|\varphi_{i}><\varphi_{i}\right|
\end{gathered}
$$

- The first order density is given by

$$
n^{(1)}(\vec{k})=\varphi_{i}^{c c(1)(\vec{k}+\vec{q})} \varphi_{i}^{(0) \vec{k}}+\varphi_{i}^{c c(0) \vec{k}} \varphi_{i}^{(1)(\vec{k}+\vec{q})}
$$

- Build new perturbed Hamiltonian

$$
H^{(1)}=v_{e x t}^{(1)}+v_{H_{x c}}=v_{e x t}^{(1)} \mathrm{e}^{i \vec{q} \cdot \vec{r}}+\int d r^{\prime}\left|\frac{\partial^{2} E_{H_{x c}}}{\partial n(\vec{r}) \partial n(\vec{r})}\right|_{n^{(0)}} \cdot n^{(1)}\left(\vec{r}^{\prime}\right)+\frac{d}{d \lambda} \frac{\partial E_{H_{x c}}}{\partial n\left(\vec{r}^{\prime}\right)}
$$

- Repeat until a desired accuracy is reached

Lattice dynamics of mercury(II)iodide

- Motivation
- Method
- Geometry
- Electronic Structure
- Lattice Dynamics
- Scattering Spectra
- Conclusions and Outlook

Geometry

The Geometry of HgI_{2}

- Tetragonal system
- Space group: $\mathrm{P4}_{2} / \mathrm{nmc}$
- Distorted by \boldsymbol{u} from an ideal cubic close packing

Code	$\mathrm{x}=\mathrm{y}[\AA]$	$\mathrm{z}[\AA]$	u	$\mathrm{D}(\mathrm{I}-\mathrm{I})[\AA]$
ABINIT	4.426	13.259	0.130	0.240 z
SIESTA	4.214	12.124	0.134	0.231 z
WIEN97 1	4.577	13.583	0.128	0.244 z
Experiment				
Jeffrey et al.				
Nicolau et al.	4.361	4.374	12.450	0.139

Lattice dynamics of mercury(II)iodide

- Motivation
- Method
- Geometry
- Electronic Structure
- Lattice Dynamics
- Scattering Spectra
- Conclusions and Outlook

Electronic Structure:

Comparison between SIESTA, ABINIT previous results

- The band gap depends sensitively on the total pressure of the unit cell
- Only the calculations from Ayres et al. took into account geometry optimization
- The band gap was underestimated using 37.6% by ABINIT

Code	Siesta relaxed Unit Cell	Siesta fixed Unit Cell	ABINIT relaxed Unit Cell
Band gap $[\mathrm{eV}]$	0.38	0.396	1.33

Experiment/ Theory	Experiment	Turner et al. ${ }^{2}$	Solanki et al. 3	Ayres et al. ${ }^{4}$
Band gap [eV]	2.13	Muffin-tin orbital calculation (LDA)	Scalar relativistic linear muffin-tin orbital	All-electron, full- potential LAPW incl. Spin-Orbit

[^0]UR
2 D. E. Turner and B. N. Harmon; Phys. Rev. B 40 (15), 10516 (1989)
3 A. K. Solanki, A. Kashyap, T. Nautiyal, S. Auluck, M. A. Khan; Phys. Rev. B 55 (15), 9215 (1997)
4 F. Ayres, L. V. C. Assali, W. V. M. Machado and J. F. Justo; Brazilian Journal of Physics 34, 681 (June 2004)

Electronic Structure:

Primitive Brillouin Zone

Band Structure for Hgl_{2}
Density of States Hgl_{2}

UR

Lattice dynamics of mercury(II)iodide

- Motivation
- Method
- Geometry
- Electronic Structure
- Lattice Dynamics
- Scattering Spectra
- Conclusions and Outlook

Lattice dynamics: The dielectric constant

- HgI_{2} is an ionic crystal
- Hg^{28} and I^{δ} ions are moved against each other \rightarrow Results in a macroscopic polarisation \vec{P}

$$
\begin{aligned}
& \vec{P}=\frac{1}{v} \sum_{i}^{N} Z_{i}^{*} \vec{u}_{i} \begin{array}{l}
v \ldots \text { unit cell volume } \\
\begin{array}{l}
N \ldots \text { number of atoms } \\
Z_{i}^{*} \ldots \text { Born effective charge of atom } i
\end{array}
\end{array} \\
& \overrightarrow{E_{m a c}}=-4 \pi \frac{(\vec{k} \cdot \vec{P})}{\vec{k}^{2}} \vec{k}
\end{aligned}
$$

- $\overrightarrow{E_{m a c}}$ is a macroscopic electric field where \vec{k} is the wave vector
- Calculated Born effective charges for $\alpha-\mathrm{HgI}_{2}$

		Hg	I_{x}	I_{y}	I_{z}
Experiment	$Z_{\text {.\|\| }}^{*}$	2.227	---	---	---
Bielmann and Prevot ${ }^{1}$	$Z_{\text {. }}^{*}{ }^{*}$	3.06	---	---	-1.53
ABINIT	$Z_{\text {,\|\| }}^{*}$	2.765	-0.455	-2.310	---
Relaxed UC	$Z^{*}{ }_{.}{ }^{\text {e }}$	1.706	---	---	-0.853
ABINIT	$Z_{\text {.\|\| }}^{*}{ }^{*}$	2.752	-0.434	-2.318	---
Exp UC	$Z_{\text {. }}^{*}{ }^{*}$	2.074	---	---	-1.037
SIESTA	$Z_{\text {.\|\| }}^{*}{ }^{*}$	2.771	-0.429	-2.342	---
relaxed UC	$Z^{*}{ }_{. \perp \vec{E}}$	2.488	---	---	-1.244

Lattice dynamics:

The dielectric constant

Universität Regensburg

Lattice dynamics:

Phonon modes at the Gamma point

- The irreducible representations: $\left(\mathrm{A}_{1 g}, 2 \mathrm{~A}_{2 u}, \mathrm{~B}_{2 u}, \mathrm{~B}_{1 g}, 3 \mathrm{E}_{g}, 3 \mathrm{E}_{\mathrm{u}}\right)$
- Inversion symmetry \rightarrow even mode (g) differs from corresponding odd mode (u) by an interlayer phase shift of 180°
- Davidov pairs: pair of even and odd mode
- Raman and Infrared active modes are mutually exclusive

Lattice dynamics:

Phonon modes at the Gamma point

Lattice dynamics: Angle dependence in Gamma

 and LO-TO Splitting- Transversal modes $\mathrm{E}_{\mathrm{u}}^{2}$ and $\mathrm{E}_{\mathrm{u}}^{1}$ split into transverse optical and longitudinal optical mode
- $\mathrm{E}_{\mathrm{u}}^{1}$ changes polarisation, but not the symmetric presentation
- Longitudinal $\mathrm{A}_{2 \mathrm{u}}^{1}$ mode changes its frequency due to the electric field
- Electric field perpendicular energy is maximised

Lattice dynamics:

Phonon dispersion in the [100], [001] and [110]- plane

Universität Regensburg

Lattice dynamics of mercury(II)iodide

- Motivation
- Method
- Geometry
- Electronic Structure
- Lattice Dynamics
- Scattering Spectra
- Conclusions and Outlook

Streuintensitäten:

Comparison between experiment and theory

Lattice dynamics of mercury(II)iodide

- Motivation
- Method
- Geometry
- Electronic Structure
- Lattice Dynamics
- Scattering Spectra
- Conclusions and Outlook

Conclusions:

- Geometry and band gap: excellent agreement with experiment (better than previously published results)
- Detailed discussion of the LO-TO splitting of the optical modes
- First ab initio results for phonon dispersion in the [100] and [001]plane: comparable with published data
- Phonon dispersion of the so far unpublished [110]-plane

Outlook

- Neutron scattering experiment planned

[^0]: 1 M. Piechotka; Materials Science and Engineering: R: Reports 18, 1-98 (1997)

