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Slater-type orbitals (STO)

• Introduced by J. C. Slater [Phys. Rev. 36, 57 (1930)]
ψζnlm(r, θ, ϕ) = Rζn(r)Ψlm(ϑ, ϕ)

Rζn(r) = rn−1 e−ζr

→ inspired by the eigenstates of the hydrogen atom
→ nodeless radial function (rn−1 instead of Laguerre polynomials)

→ multiple-ζ basis sets for higher precision (typically up to quadruple-ζ)[typical basis set notation: DZ (�double-ζ�)TZ2P (�triple-ζ, doubly polarized�)]
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PROs and CONs of STOs

PROs+ localised basis+ very small basis set(∼ 1/2 the size of a contracted gaussian basis for similar precision)+ correct electron-nucleus cusp by simple linear constraint+ well-behaved asymptoticsCONs� no asymptotic basis set completion� very demanding numerical integration
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ADF(Amsterdam Density Functional package)

→The only (?) production-quality electronic structure code based on STOs.

• includes various libraries of basis sets up to QZ4P
• frozen core approximation optional (no pseudopotentials)
• implements Hartree-Fock, DFT and hybrids
• user-friendly interface (also GUI) and excellent documentation(including export data formats)

• ADF for molecules, BAND for 1d, 2d and 3d periodic systems

→ http://www.scm.com
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STO vs. gaussian - atoms

� # electrons5



STO vs. gaussian - molecules

� # electrons
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The electron-nucleus cusp

→ Tosio Kato [Comm. Pure Appl. Math. 10, 151 (1957)]Kato cusp condition for electronic wavefunction near nucleus (point charge):
(

∂ 〈Ψ〉

∂r

)

r→0

= −Z 〈Ψ〉
r=0[〈Ψ〉: spherical average of wfn at distance r from nucleus]HF/DFT � appropriate basis set neces-sary to represent wave function nearnucleus(e.g. contracted gaussians)QMC � cusp condition has to be exactlysatis�ed to prevent divergent localenergy

Ma et al., J. Chem. Phys. 122, 224322 (2005)7



Cusp corrections for gaussian orbitals
→ Ma, Towler, Drummond and Needs [J. Chem. Phys. 122, 224322 (2005)]

• Replace wfn near nucleus by polynomial that exactly satis�ed cusp
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Linear cusp constraints for STOsBasis set (unnormalized):

ψi(r) = Yli,mi
(ϑ(r −Ri), ϕ(r −Ri))×

∣

∣r −Ri|
ni × exp(− ζi|r −Ri|)One molecular orbital: Ψ(r) =

∑

i
ciψi(r −Ri)One linear constraint per nucleus I at position RI:

〈

d

dr
Ψ(r)

〉∣

∣

∣

∣

r=RI

= −ZIΨ(RI)

→ LHS depends only on local 1s and 2s basis functions:

〈∂rΨ〉
RI

= −
∑

i∈(1s,I)

ζici +
∑

i∈(2s,I)

ci

→RHS depends only on local 1s and all nonlocal basis functions:

Ψ(RI) =
∑

i∈(1s,I)

ci +
∑

i� (I)

ciψi(RI −Ri)
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Linear cusp constraints for STOsLinear constraint for nucleus I:

−
∑

i∈(1s,I)

ζici +
∑

i∈(2s,I)

ci = −ZI

(

∑

i∈(1s,I)

ci +
∑

i� (I)

ciψi(RI −Ri)

)

Cusp constraint vector χI for nucleus I (depends on basis set only):

∑

i

χi
Ici = 0
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Enforcing cusp constraints (c-c)

• unconstrained molecular orbital C ∈Vec(Nbas)
• c-c-matrix χ∈Mat(Nnuc×Nbas)
• �nd constrained orbitals C ′ satisfying cusp condition: χC ′= 0

• select Nnuc c-c-orbitals (the narrowest s-type orbital of each nucleus)

→ ζcc should be larger than Z + 1 to prevent long-ranged e�ects

• assume coe�cients ordered as ( Ccc
Cnon-cc

)

• split χ into blocks ( χcc χnon-cc

)

→ cusp condition: χccCcc′ + χnon-ccCnon-cc
′ = 0

Ccc′ 4 − χcc−1χnon-ccCnon-cc Cnon-cc
′ =Cnon-cc(χcc−1 ill-conditioned only if ζcc close to Z)11



The e�ects of cusp-constraints
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Comparison of timingall runs: NaCl molecule (28 electrons), 500000 VMC steps/proc

# of basis functions WFDET total (sec)gaussian (no CC) 70 40.6gaussian (gauss. CC) 70 41.3gaussian (gen. purp) 70 40.6STO (TZP) 51 37.3STO (pVQZ) 83 46.4STO (QZ4P) 110 62.0

→ performance of STO in QMC similar to that of gaussians
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Atomic energies
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Atomic energies - compare STO with numerical

→ numerical basis set data by M.D.Brown et al [J. Chem. Phys. 126, 224110 (2007)]

STO (pVQZ basis) allow same precision as numerical orbitals

→ basis set limit reached within target precision
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Molecules - atomization energies (G2 set)

• J. C. Grossman [J. Chem. Phys. 117, 1434 (2002)]: pseudopotential DMC

• M.D. Towler [unpublished]: CASINO DMC using gaussian orbitals

• Feller et al. [J. Chem. Phys. 129, 204105 (2008)]: CCSDT+corrections 16



Technical details for DMC calculations
• STO/pVQZ basis set, LDA trial wavefunction

• optimized Slater-Jastrow term: C = 3, Nu =Nχ = 10, NF = 3

• using MADMIN → recovering avg. 75% of correlation energy
• DMC computing time: ~1 CPU hour / electron (at dtdmc=0.005)

• target population: 100 walkers, using weighted DMC (lwdmc)

• using automatic reblocking (thanks, Pablo!)
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Overall quality of G2 energies

mean abs devJ.C.Grossman 2002 pseudopotential DMC 2.9 kcal/molM.D.Towler 200? CASINO AE-DMC (Gaussians) 4.7 kcal/molD.Feller et al. 2008 CCSD(T) + corrections 0.2 kcal/molmy attempt 2009 CASINO AE-DMC (STO) 4.6 kcal/molexperimental precision 0.3 kcal/mol

Error sources:

• timestep error <1.9 kcal/mol (< 〈|Edt=0.01−Edt=0.005|〉)

• statistical error <0.46 kcal/mol
• population control error <0.3 kcal/mol

• �xed node error: in total energy∼ 9.5 per atom (Be...F)

⇒ hoping for cancellation...18



Conclusions

• STO wavefunctions in CASINO and ADF import �lter implemented andtested for atoms and G2 molecules

• e-n cusp condition exactly satis�ed by linear constraint
• constraint can be safely applied to existing wave functionsif basis set is large enough

• performance of STO in QMC comparable to Gaussians (same basis size)

• STO basis sets smaller for same precision (∼ factor 1/2)

• basis set limit reached with pVQZ basis setfor atomic calculations using DMC-SJ

• G2 energies reproduced with same precision as previous attempt basedon Gaussian orbitals
• G2 energies not quite as good as pseudopotential-based QMC
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