Intermolecular Interactions The Perturbation Theory Approach

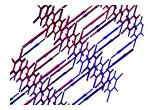
Alston J. Misquitta

TCM Cavendish Laboratories

28 Jan, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

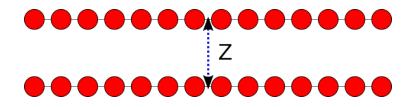
 The Problem
 Methods
 The two-body energy occococo
 Dispersion
 SAPT(DFT)
 Applications
 People

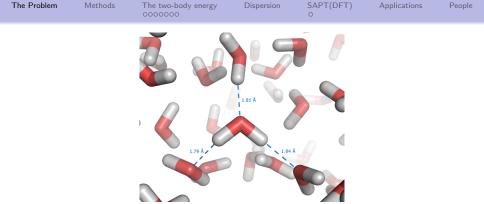

 Small clusters (high accuracy): Helium:
 Infinite systems consisting of

> -11.009(8) K (Cencek *et al.* 2004)

Water:

Infinite systems consisting of finite elements:


Understanding interactions (interpretation):



э

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People

We may want to probe the fundamental nature of intermolecular interactions:

- Evolution on a potential energy surface (PES). Finite T.
- Born-Oppenheimer
- Energy differences (MC) (& gradients (MD)):

V(every atom in cell)

◆□> ◆□> ◆豆> ◆豆> □豆

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
Electror	nic struc	ture method	s			

V(every atom in cell)

All electron calculations:

- DFT
 - 1 Efficient. Flexible. Superb codes.
 - 2 Accuracy? Dispersion? Interpretation?
- QMC, CCSD(T)
 - 1 Accurate (in principle). Also superb codes.
 - 2 Impossible (or very hard?)!
- Perturbation theory (PT):
 - Generally formulated for two or three bodies.

• So use the many-body expansion...

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People
Many-b	ody exp	ansion I				

$$V = V(2) + \Delta V(3) + \Delta V(4) + \cdots$$

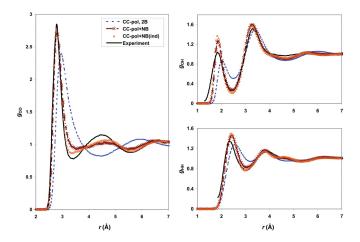
where

$$V(2) = \sum_{A>B} V(2)_{AB}$$
$$= \sum_{A>B} E^{AB} - E^A - E^B$$

$$\Delta V(3) = \sum_{A > B > C} \Delta V(3)_{ABC}$$
$$= \sum_{A > B > C} E^{ABC} - E^{AB} - E^{AC} - E^{BC}$$
$$+ E^{A} + E^{B} + E^{C}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
Many-b	ody exp	ansion II				


$$V = V(2) + \Delta V(3) + \Delta V(4) + \cdots$$

- Efficient if converges quickly.
- Hierachy of theory-levels possible: PT/QMC/CCSD(T) for V(2) and $\Delta V(3)$, DFT/polarizable model for the rest.

- Though V(2) dominates (basis for all potentials), the many-body terms contribute as much as 30% for polar systems. Polarizable potentials are needed.
- Can be cumbersome.
- Gradients are difficult.
- On-the-fly methods only now becoming possible.

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People
Many-b	ody exp	ansion III				

An example: liquid water

・ロト ・聞ト ・ヨト ・ヨト

æ

Bukowski et al. Science 2007

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
$V(2)_{AB}$						

Let us now focus on the two-body energy for *rigid* molecules:

$$V(2)_{AB} = V(AB) = E^{AB} - E^A - E^B$$

Supermolecular method

- 1 Variety: MP2, CCSD(T),...
- 2 Lots of efficient codes
- 3 BSSE
- 4 Little interpretation

Perturbation Theory

$$\mathcal{H}=\mathcal{H}^{A}+\mathcal{H}^{B}+\lambda\mathcal{V}$$

- Physical decomposition into electrostatic, exchange, dispersion, etc.
- 2 Basis for all model building.
- Higher-order terms complicated, but possible.

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
Raleigh-	Schrödi	nger PT I				

$$\mathcal{H} = \mathcal{H}^{A} + \mathcal{H}^{B} + \lambda \mathcal{V}$$

Let's assume we know the eigenfunctions and eigenvalues of the unperturbed Hamiltonians:

For $\lambda = 0$: $\psi^{(0)} = |0_A 0_B\rangle$ and $E^{(0)} = E_0^A + E_0^B$. For $\lambda > 0$: perturbation expansion for the wavefunction and energy:

$$\psi = \psi^{(0)} + \lambda \psi^{(1)} + \lambda^2 \psi^{(2)} + \cdots,$$

$$E^{AB} = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \cdots$$
(2)

(日) (日) (日) (日) (日) (日) (日) (日)

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
Raleigh-	Schröd	inger PT II				

The interaction energy is given by

$$V(AB) = E^{(1)} + E^{(2)} + \cdots$$
 (3)

At first-order,

$$E^{(1)} = \langle 0_A 0_B | \mathcal{V} | 0_A 0_B \rangle$$
(4)
=
$$\iint \rho_A(\mathbf{r}_1) \mathcal{V}(\mathbf{r}_1, \mathbf{r}_2) \rho_B(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2.$$
(5)

where $\rho_A = N \int \cdots \int |\phi_A(1, 2, ..., N)|^2 d\mathbf{r}_2 ... \mathbf{r}_N$ is the electron density. This is called the electrostatic energy, $E_{\text{elst}}^{(1)}$.

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
Raleigh-	Schröd	inger PT III				

At second-order:

$$E^{(2)} = -\sum_{mn\neq 00} \frac{|\langle 0_A 0_B | \mathcal{V} | m_A n_B \rangle|^2}{E_m^A + E_n^B - E_0^A - E_0^B}.$$
 (6)

We can separate this into:

$$E_{\rm ind}^{(2)}(A) = -\sum_{m \neq 0} \frac{|\langle 0_A 0_B | \mathcal{V} | m_A 0_B \rangle|^2}{E_m^A - E_0^A},$$
(7)
$$E_{\rm ind}^{(2)}(B) = -\sum_{n \neq 0} \frac{|\langle 0_A 0_B | \mathcal{V} | 0_A n_B \rangle|^2}{E_n^B - E_0^B},$$
(8)
$$E_{\rm disp}^{(2)} = -\sum_{m \neq 0} \sum_{n \neq 0} \frac{|\langle 0_A 0_B | \mathcal{V} | m_A n_B \rangle|^2}{E_m^A + E_n^B - E_0^A - E_0^B}.$$
(9)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 The Problem
 Methods
 The two-body energy 0000000
 Dispersion
 SAPT(DFT)
 Applications
 People

 Raleigh-Schrödinger PT IV

 $E_{ind}^{(2)}(A)$ describes the change in energy of molecule A in response to the electric field of molecule B. It is the *induction energy* of molecule A. Similarly $E_{ind}^{(2)}(B)$ is the induction energy of molecule B. The final term, $E_{disp}^{(2)}$, is the *dispersion energy*.

Some comments on the induction energy

- At long-range: $E_{\text{ind}}^{(2)}(A)$ depends on polarizability of A and permanent multipole moments of B. So $E_{\text{ind}}^{(2)}(A)$ is zero if B has no permanent multipole moments.
- Always non-zero at short range where charge-densities overlap.
- Dominant contributor to many-body effects.
- Also exists at 3rd and higher-orders of perturbation theory. Can be significantly large (10% for the water dimer).

The Problem	Methods	The two-body energy ●●○○○○○	Dispersion	SAPT(DFT) o	Applications	People
SAPT I						

A few points:

• Of course, we do not know E_m^A and $|m_A\rangle$. So we need a different partitioning of the Hamiltonian. For example:

 $\mathcal{H} = \mathcal{F}^{A} + \mathcal{F}^{B} + \xi^{A} (\mathcal{H}^{A} - \mathcal{F}^{A}) + \xi^{B} (\mathcal{H}^{B} - \mathcal{F}^{B}) + \lambda \mathcal{V}$

This leads to a triple perturbation theory.

• Exchange: Antisymmetrize. Many ways of doing this.

The combination leads to: Symmetry-Adapted Perturbation Theory (SAPT).

The Problem	Methods	The two-body energy ●●○○○○○	Dispersion	SAPT(DFT) o	Applications	People
SAPT II						

SAPT

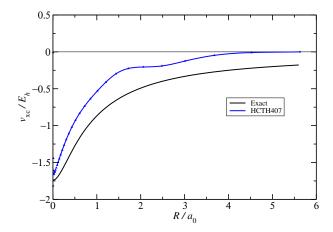
Jeziorski, Szalewicz & Moszynski (1994).

- Interpretative power!
- Very accurate. Lots of applications. Often spectroscopic accuracy.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Very poor scaling with system size: $\mathcal{O}(N^7)$.
- Worst scaling for dispersion.
- Very hard to extend to higher orders in PT.

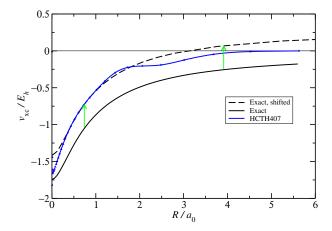
The Problem	Methods	The two-body energy ○○●●●●●	Dispersion	SAPT(DFT) o	Applications	People
SAPT(ł	<s) i<="" th=""><th></th><td></td><td></td><td></td><td></td></s)>					


Chabalowski & Williams (2001).

$$\mathcal{H}^{\mathrm{KS}} = \mathcal{K}^{\mathcal{A}} + \mathcal{K}^{\mathcal{B}} + \lambda \mathcal{V}$$

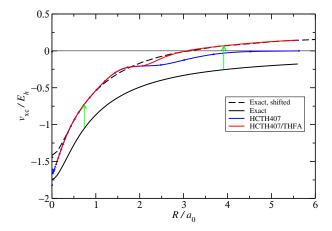
- Formally justified only for $E_{elst}^{(1)}$ as this depends on the unperturbed densities of the interacting molecules.
- In practice, even this fails miserably if the exchange-correlation potential is not asymptotically correct...

The Problem	Methods	The two-body energy ○○●●●●●	Dispersion	SAPT(DFT) o	Applications	People
SAPT(ł	≺S) II					


He: eXchange-Correlation potential

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Problem	Methods	The two-body energy ○○●●●●●	Dispersion	SAPT(DFT) o	Applications	People
SAPT(ł	≺S) III					


He: eXchange-Correlation potential

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

The Problem	Methods	The two-body energy ○○●●●●●	Dispersion	SAPT(DFT) o	Applications	People
SAPT(ł	<s) iv<="" th=""><th></th><td></td><td></td><td></td><td></td></s)>					

He: eXchange-Correlation potential

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The Problem	Methods	The two-body energy ○○●●●●●	Dispersion	SAPT(DFT) o	Applications	People
SAPT(≺S) V					

Misquitta & Szalewicz (2001).

- This fixed $E_{\text{elst}}^{(1)}$.
- And, amazingly, $E_{\text{ind}}^{(2)}(A)$ and $E_{\text{ind}}^{(2)}(B)$.
- Even the exchange energies came out correct.

However, the dispersion was still wrong!.

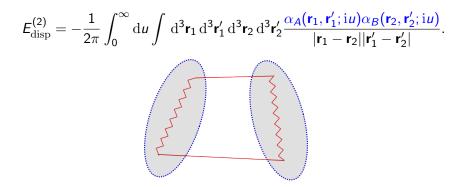
By the way, standard DFT doesn't even get $E_{elst}^{(1)}$ correct!

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People
The Dis	persion	I				

$$E_{
m disp}^{(2)} = -\sum_{m
eq 0} \sum_{n
eq 0} \frac{|\langle 0_A 0_B | \mathcal{V} | m_A n_B
angle|^2}{E_m^A + E_n^B - E_0^A - E_0^B}.$$

Using the identity

$$rac{1}{A+B} = rac{2}{\pi} \int_0^\infty rac{AB}{(A^2+u^2)(B^2+u^2)} \, du.$$


the dispersion can be written in terms of the density response functions

$$\boldsymbol{E}_{\mathrm{disp}}^{(2)} = -\frac{1}{2\pi} \int_0^\infty \mathrm{d}\boldsymbol{u} \int \,\mathrm{d}^3 \mathbf{r}_1 \,\mathrm{d}^3 \mathbf{r}_1' \,\mathrm{d}^3 \mathbf{r}_2 \,\mathrm{d}^3 \mathbf{r}_2' \frac{\alpha_A(\mathbf{r}_1, \mathbf{r}_1'; \mathrm{i}\boldsymbol{u}) \alpha_B(\mathbf{r}_2, \mathbf{r}_2'; \mathrm{i}\boldsymbol{u})}{|\mathbf{r}_1 - \mathbf{r}_2||\mathbf{r}_1' - \mathbf{r}_2'|}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

H. C. Longuet-Higgins (1965).

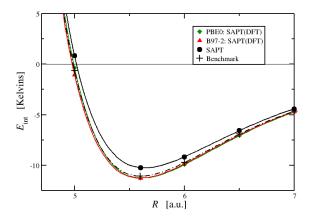
The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
The Dis	persion	П				

- α(r, r'; iu) describes the first-order change in the density at r due to a frequency-dependent poke (delta-function perturbation) at point r'.
- The dispersion arises from correlations in density fluctuations.

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
The Dis	persion	III				

So what went wrong with SAPT(KS)?

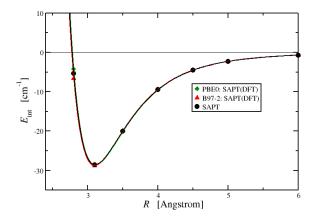
- We had calculated the density response function *without including orbital relaxation*.
- This over-estimated the density response, and therefore, the dispersion.


The proper way to calculate $\alpha(\mathbf{r}, \mathbf{r}'; iu)$ is to use LR-TDDFT. Casida (1995), Gross (1996), Colwell, Handy & Lee (1995).

- Proven to be very accurate on small molecules.
- Use density-fitting to improve scaling of the dispersion which now becomes $\mathcal{O}(M^3)$.
- Also calculate the induction energy using this response function.

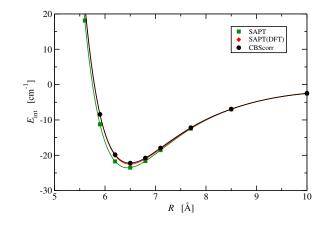
This theory is called SAPT(DFT) or DFT-SAPT (Jansen & Hesselmann).

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People
SAPT(I	OFT) I					


Helium dimer

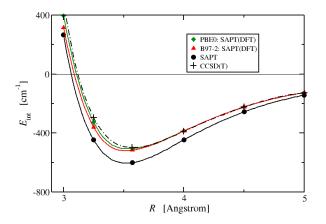
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

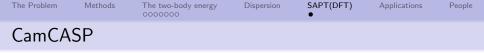
The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
SAPT(I	OFT) II					


Neon dimer

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
SAPT([OFT) III	l				

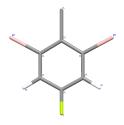

 $\mathsf{He} \cdots \mathsf{CO}$

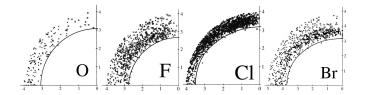


・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
SAPT(I	OFT) I∖	/				

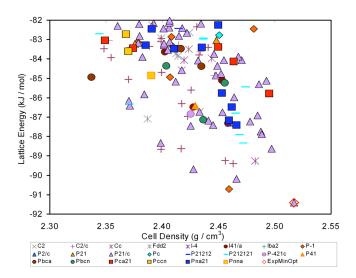
 $CO_2 \ dimer$




The Cambridge package for Calculation of Anisotropic Site Properties or CamCASP

- Interaction energies
- Molecular properties: multipoles, polarizabilities, dispersion coefficients. *All distributed.*
- Tools to assemble it all into an analytic potential of arbitrary complexity.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ


The Problem	Methods	The two-body energy	Dispersion	SAPT(DFT) o	Applications	People
CCDC	Blind Te	est I				

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 … のへの

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People
CCDC	Slind Te	≏st II				

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People
CCDC	Slind Te	est III				

- First ever fully *ab initio* prediction of a crystal structure.
- About 200 stable minima (within 10 kJ mol^{-1} of the minima) on the *ab initio* surface, but *1200 on the empirical surface*.

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People
CCDC I	Blind Te	est IV				

What else have we been up to?

- How important is polarization in organic crystals? (UCL)
- Efficient routes to creating accurate polarizable force fields.
- Investigations in the fundamental theory of van der Waals interactions. (Cambridge,Chem & TCM?)

- Pyridine. (UCL)
- Formation of soot particles in combustion engines. (Cambridge,Chem & ChemEngg)
- Constant improvement of CamCASP.

The Problem	Methods	The two-body energy 0000000	Dispersion	SAPT(DFT) o	Applications	People		
The People behind this work								

The People bennu this work

- SAPT(DFT)
 - Krysztof Szalewicz (U. Del)
 - Bogumil Jeziorski (Warsaw)
- Organic Crystals
 - Sally Price (UCL)
 - Gareth Welch (UCL)
- CamCASP & many developments too numerous to list

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Anthony Stone