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Variational and diffusion Monte Carlo

VMC and DMC are stochastic methods to solve the Schrödinger
equation.
Aspects in common:

Sample real-space configurations {R} using guiding wave
function ΨT(R)

Evaluate EL(R) = Ψ−1
T (R)Ĥ(R)ΨT(R) to give variational

estimate of ground-state energy E0

Pablo López Ŕıos Orbital-dependent backflow



Introduction
Orbital-dependent backflow

Summary

VMC and DMC
Optimization
Wave functions

Variational and diffusion Monte Carlo

VMC works like this:

{R} distributed according to |ΨT(R)|2

EVMC = 〈ΨT |Ĥ|ΨT〉
Quality of EVMC depends on quality of ΨT

DMC works like this:

Define Φ(R) as the exact solution of Schrödinger equation
subject to: Φ(R) = 0⇔ΨT(R) = 0

{R} distributed according to |Φ(R)ΨT(R)|
EDMC = 〈Φ|Ĥ|Φ〉
Quality of EDMC depends on quality of nodes of ΨT

Pablo López Ŕıos Orbital-dependent backflow



Introduction
Orbital-dependent backflow

Summary

VMC and DMC
Optimization
Wave functions

Wave function optimization

Optimization procedure:

Generate set of VMC configurations {R}(ααα)

Optimize target function with respect to ααα using fixed
configurations

Target function can be:

Energy, since VMC is variational

Measure of spread of local energies (e.g., variance), since
eigenstates of Ĥ yield constant local energies
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Slater-Jastrow wave function

For electronic systems one typically uses Slater determinants with
HF orbitals times a Jastrow correlation factor:

Slater-Jastrow trial wave function

ΨSJ(R) = exp [J(R)]det [φi(rj)]

where J(R) consists of e–e, e–n, e–e–n, . . . terms which contain
optimizable parameters

J typically recovers 70−90% of correlation energy in VMC

J does not change DMC result since it does not affect nodes
of ΨT
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Beyond Slater-Jastrow

One can use:

Multi-determinant expansions

Geminal-/Pfaffian-based wave functions

Multi-Jastrow wave function

Backflow transformation:

Slater-Jastrow-backflow trial wave function

ΨBF(R) = exp [J(R)]det{φi [xj(R)]}

where xj(R) = rj + ξξξ j(R), and ξξξ consists of e–e, e–n, e–e–n,
. . . terms containing optimizable parameters.

Can be thought of as a correlated orbital correction method
In VMC recovers 50% of the correlation energy remaining at SJ
Same accuracy as system size increases (fixed # parameters)
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Definition of ODBF wave function

Could use different backflow transformations for different orbitals:

ODBF trial wave function

ΨODBF(R) = exp [J(R)]det
{

φi

[
xti

j (R)
]}

where xti
j (R) = rj + ξξξ

ti
j (R)

Potentially very good since different orbitals in principle
require different corrections

Questions to answer:

Is it worth it? (it’d better be!)
Does it break size-extensivity?
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54-electron gas

For a paramegnetic HEG consisting of 54 electrons at rs = 2:

ΨT E (a.u.) V (a.u.)

ΨHF 0.01876736
ΨSJ -0.01245(1) 0.148(1)
ΨBF -0.013801(7) 0.0344(5)

ΨOBDF (by k2) -0.013815(6) 0.0346(6)
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Carbon atom

For an all-electron carbon atom (single-determinant):

ΨT E (a.u.) V (a.u.) CE (%)

ΨHF -37.688619 0.0
ΨSJ -37.8086(6) 0.139(1) 76.7(4)
ΨBF -37.8286(4) 0.067(2) 89.5(3)

ΨOBDF (by l) -37.8301(3) 0.0561(8) 90.5(2)
ΨOBDF (by n) -37.8312(3) 0.053(1) 91.2(2)
ΨOBDF (by n, l) -37.8330(3) 0.0451(9) 92.3(2)

Exact -37.8450 100.0
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Neon atom

For an all-electron neon atom (single-determinant):

ΨT E (a.u.) V (a.u.) CE (%)

ΨHF -128.547098 0.0
ΨSJ -128.8975(6) 1.048(9) 89.7(2)
ΨBF -128.9224(4) 0.341(2) 96.1(1)

ΨOBDF (by l) -128.9263(3) 0.247(4) 97.11(8)
ΨOBDF (by n) -128.9269(3) 0.239(3) 97.26(8)
ΨOBDF (by n, l) -128.9278(3) 0.221(2) 97.49(8)

Exact -128.9376 100.0
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The freedom to form linear combinations of orbitals

Replacing the set of orbitals by linear combinations of them leaves
the wave function unchanged up to a multiplicative factor:

Determinant property∣∣∣∣∣∣
φ1(r1) φ2(r1) φ3(r1)
φ1(r2) φ2(r2) φ3(r2)
φ1(r3) φ2(r3) φ3(r3)

∣∣∣∣∣∣ ∝

∣∣∣∣∣∣
{φ1 + kφ2}(r1) φ2(r1) φ3(r1)
{φ1 + kφ2}(r2) φ2(r2) φ3(r2)
{φ1 + kφ2}(r3) φ2(r3) φ3(r3)

∣∣∣∣∣∣
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The freedom to form linear combinations of orbitals

However if one applies orbital-dependent backflow to both sides of
the previous equation the results differ:

Determinant property∣∣∣∣∣∣
φ1(x1

1) φ2(x2
1) φ3(x3

1)
φ1(x1

2) φ2(x2
2) φ3(x3

2)
φ1(x1

3) φ2(x2
3) φ3(x3

3)

∣∣∣∣∣∣ 6∝
∣∣∣∣∣∣
{φ1 + kφ2}(x1

1) φ2(x2
1) φ3(x3

1)
{φ1 + kφ2}(x1

2) φ2(x2
2) φ3(x3

2)
{φ1 + kφ2}(x1

3) φ2(x2
3) φ3(x3

3)

∣∣∣∣∣∣
This means that we have additional variational freedom which
should be exploited.
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Orbital mixing

Orbital mixing destroys properties of original orbitals (eigenvalues,
quantum numbers, etc.), so:

How do we assign different backflow transformations to the
new orbitals?

Can we still use fewer transformations than there are orbitals?

Can the mixing be sensibly restricted? E.g., can we only mix
same-n orbitals and get good results?

I don’t know the answers, but I suspect that orbital mixing is more important in the HEG than in the atoms.
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SIGSEGV
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