

Graphene electronics and optoelectronics

Antonio Lombardo

11 June 2014

al515@cam.ac.uk

Graphene: what is that?

"Sheet" of carbon atoms arranged in an hexagonal lattice, one atom thick!

"Building block" for carbons of other dimensionalities:

- graphite
- carbon nanotubes
- fullerenes

Nature Materials 6, 183

Graphene: the groundbreaking experiment

Individual graphene layers can be extracted from 3-dimensional graphite

Stable under ambient conditions

Remarkable electronic properties: ambipolar transport, mobility ~10³ cm²/Vs

Graphene: properties & technology

Properties:

- Charge carriers mobility: >10⁵ cm²/Vs (room T), >10⁶ cm²/Vs (low T) high speed
- Saturation velocity: > 10⁷ cm/s (even for fields up to 50 KV/cm) scalability
- Thermal conductivity: > 3,000 WmK⁻¹ heat dissipation
- Current-carrying capacity: >10⁸ A/cm² interconnects
- Young modulus ~ 1TPa
- Stretchable up to 20% flexible, wearable electronics
- Broadband optical absorption optoelectronics
- Possibility of chemical functionalization

Technology:

- fully compatible with silicon-based planar fabrication technology
- can be integrated with practically every substrate (e.g. Si, plastic, etc.)

Graphene: production

Mechanical cleavage

- Highest quality
- Low yield

- Research
- Prototyping

Liquid phase exfoliation

- Exfoliation by ultrasounds
- Cheap and scalable

- Inks, printed electronics
- Coatings
- Composites

Chemical vapour deposition

Large area

- Growth on Cu, scalable
- Transfer

Integrated circuits

Growth on SiC

- Thermal decomposition
- High T

 High-frequency electronics

Graphene: a "family" of materials, very different properties

Graphene production and processing review: Bonaccorso, Lombardo et al., Materials Today 15, 564

Graphene: applications

Electronics:

- High-frequency transistors
- Printed electronics

Optoelectronics

- Photodetectors
- THz detectors

Photonics

- Optical modulators
- Mode-locked lasers

Composites & coatings

- Reinforcements
- Barriers

Energy:

Supercapacitors

Batteries

Sensors & metrology:

- Strain gauges
- Resistance standards
 (QHE)

Bioapplications:

- Drug delivery
- Support for TEM
- Biosensing (e.g. DNA)

"Graphene does not just have one application, It is not even one material. It is a huge range of materials. A good comparison would be to how plastics are used"

BBC News, May 2011

CAMBRIDGE GRAPHENE CENTRE

Graphene field effect transistors (GFETs)

SiO₂ n'Si

[Novoselov et al., Science 306]

- Back gating (heavily doped Si substrate): optical visibility, easy fabrication
- Ambipolar field effect: charge carriers can be continuously "tuned" between electron and holes.
- Graphene FETs do not switch off completely, I_{ON/OFF} ratio ~10
- In analog RF, switch off not essential (e.g. signal amplifiers always ON state)

Graphene RF transistors

- Robustness against short channel effect
- High saturation velocity (>3x10⁷ cm/s) even at high field
- Dual channel configuration

 Already scalable, operating frequencies above 300GHz both on CVD and epitaxial graphene

[Wu et al., Nano Lett. 12, 3062]

GFETs as frequency multipliers

Ambipolar field effect, symmetric transfer characteristics

Peak @16GHz = 11dB higher than peak @8GHz \rightarrow 93% of the output power is at the doubled frequency

Single transistor, no filtering element!

[Wang et al., IEEE Microw. Mag. 13]

Graphene photodetectors

- Strong interaction with light (2.3% absoption)
- Broadband absorption
- Working principle: internal fields occurring at metal-graphene interface

Improvement of responsivity

[Mueller at al., PRB 79, 245430]

Plasmonic-enhanced photodetectors

- Combination of graphene with plasmonic nanostructures
- Wavelength and polarization selectivity

[Echtermeyer, Britnell, Jasnos, Lombardo at al., Nature Comm. 2, 458]

Microcavity-controlled graphene transistor

- Microcavity-induced optical confinement
- Spectrally selective light detector
- Enhanced photoresponse
- Electrically excited, narrow band thermal light emitter

[Engel, Steiner, Lombardo at al., Nature Comm. 3, 906]

FET as THz detectors

- FET (Dyakanov-Shur) detection mediated by generation of plasma waves in the channel \rightarrow high sensitivity, fast response
- THz radiation coupled between gate and source (antenna coupling)
- THz field induces plasma waves propagating in the FET channel
- **Resonant** detection: only at specific radiation frequency
- Non resonant detection (plasma waves overdamped): broadband

- Key requirement: high mobility \rightarrow graphene AT ROOM TEMPERATURE
- Graphene supports **plasma waves** weakly damped

Graphene FET as THz detectors

- Graphene on high-resistivity silicon
- Source (antenna lobe); drain "standard" contact
- ALD deposition of HfO2
- Gate (antenna lobe) fabrication

[Vicarelli, Vitiello, Coquillat, Lombardo et al., Nature Materials 11]

Graphene FET as THz detectors

Noise equivalent power (NEP) ~ 2 x 10⁻⁹ W/Hz^{1/2}

[Vicarelli, Vitiello, Coquillat, Lombardo et al., Nature Materials 11] [Spirito, Coquillat, De Bonis, Lombardo et al., Appl.Phys. Lett. 104]

THz imaging using graphene detectors

- Transmission image
- Focalized THz, spot size ~1mm
- Sample on motorized stage
- Integration time 20ms

Cardboard box (closed)

 2.20×10^{-4} THz image

Beyond graphene: layered materials

Layered materials: solids with strong in-plane chemical bonds but weak out-of-plane Van der Waals bonds.

- Hexagonal boron nitride (h-BN)
- Transition metal dichalcogenides (TMDC): MoS₂, WSe₂, …
- Transition metal trichalcogenides (TMTC): TiS₃, TaSe₃, …
- Metal halides: Pbl2, MgBr₂, …
- Metal oxides: MnO₂, LaNb₂O₇, …
- III-VI semiconductors: GaS, InSe,...
- Double hydroxides (LDHs):
- Clays (layered silicates)

Beyond graphene: layered materials

Layered materials: solids with strong in-plane chemical bonds but weak out-of-plane Van der Waals bonds.

- Hexagonal boron nitride (h-BN)
- Transition metal dichalcogenides (TMDC): MoS₂, WSe₂, ...
- Transition metal trichalcogenides (TMTC): TiS₃, TaSe₃, …
- Metal halides: Pbl2, MgBr₂, …
- Metal oxides: MnO₂, LaNb₂O₇, …
- III-VI semiconductors: GaS, InSe,...
- Double hydroxides (LDHs):
- Clays (layered silicates)

Hexagonal boron nitride

- Isomorph of graphite
- Insulator, bandgap: 5.97 eV
- Dielectric constant ~ 3.9, breakdown field ~ 0.7V/nm⁻¹
- Inert, free of dandling bonds and surface charge traps

 Support and/or encapsulate graphene: room-temperature, micrometric scale ballistic transport, mobility > 10⁵ cm²/Vs

[Nicolosi et al., Science 340, 1420]

[Mayorov et al., Nano Lett. 11, 2396]

Transition metal dichacogenides

- Compound formed by a transition metal element (M) and a chalcogen (X), generalized formula MX₂
- Layered structure, planes of the form XMX coupled by Van der Walls forces
- Very different electronic properties: insulators (HfS₂), semiconductors (e.g. MoS₂), metals (NbS₂)
- Bandstructure changes significantly with the number of layers: MoX2 and WX2 indirect as bulk, direct (and larger) as single layer

[Wang et al., Nature Nanotech. 7, 699]

Heterostructures

- Stacks of two-dimensional materials
- Not only combination of individual properties, but result of interaction between layers
- Tailored properties

Materials "on demand"

[Novoselov et al., Phys. Scripta T146, 14006]

RF and microwave measurements at the nanoscale

- Spatially-resolved high-frequency measurements
- there is *still* room at the bottom: scanning microwave microscopy

Atomic Force Microscope (AFM)

High spatial resolution (nm)

Vector Network Analyser (VNA)

Quantitative broadband measurement at RF and microwave frequencies

Scanning Microwave microscopy (SMM)

Metallic tip

Changes in S₁₁ parameter (reflected signal)

Tip+network: resonator

Conclusions

- Graphene exhibits unique combination of properties
- Graphene: "family" on materials, very different properties according to production method
- Applications: high frequency electronics and optoelectronics
- Not simple "replacement" for other materials, but novel material with specific properties (and also specific challenges)
- Two-dimensional materials, similar structure but very different properties
- Heterostructrures, materials "on demand"
- Scanning microwave microscopy: investigation of high-frequency properties at the nanoscale

Acknowledgements

CGC

- A.C. Ferrari
- S.A. Awan
- R.S. Sundaram
- M. Bruna
- U. Sassi
- M. Barbone

Agilent Technologies

- A. Katsunaros
- F. Kienberger
- K. Narain

Johannes Kepler University of Linz

George Gramse

CNR

- V. Pellegrini
- A. Tredicucci
- M. Vitiello

Nokia

Alan Colli

IBM

- P. Avouris
- M. Engel
- M. Steiner

