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Lattice, reciprocal lattice, and primitive cell

I Bravais lattice basis vectors RP1 , RP2 , and RP3 .

I Reciprocal lattice basis vectors GP1 , GP2 , and GP3 .

I RPi ·GPj = 2π δij .

I Primitive cell has volume |RP1 · (RP2 ×RP3)| .
I First Brillouin Zone (BZ) has volume |GP1 · (GP2 ×GP3)| .
I Change of basis:

rlmn = lRP1 +mRP2 + nRP3

= (l − n)RP1 +mRP2 + n (RP1 + RP3)

= l′R′P1
+m′R′P2

+ n′R′P3

= rl′m′n′

I Same lattice, different basis vectors.
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Superlattice basis vectors

I We construct the basis vectors of a superlattice by taking
linear combinations of the basis vectors of the underlying
parent lattice with integer coefficients.

RS1 = S11RP1 + S12RP2 + S13RP3

RS2 = S21RP1 + S22RP2 + S23RP3

RS3 = S31RP1 + S32RP2 + S33RP3RS1

RS2

RS3

 =

S11 S12 S13
S21 S22 S23
S31 S32 S33

RP1

RP2

RP3


Sij ∈ Z

I The supercell contains |S| parent primitive cells. We refer to
the matrix S as the supercell matrix.
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Supercells in electronic structure calculations

I Used in conjunction with periodic boundary conditions.
I DFT - single-particle method.

I Defects.
I Finite displacement calculations of phonons.

I QMC - many-particle method.
I Need to use a supercell in order to accurately describe

long-range inter-particle correlation.
I Use single particle orbitals generated on a k-point grid that is

commensurate with the supercell to construct the Slater
determinant.

I In QMC calculations the Jastrow factor is cutoff at half the
distance between a particle and its nearest periodic image in
order to prevent the introduction of delta functions into the
local kinetic energy.
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Hermite normal form (HNF)

I Two different supercell matrices S and S′ generate different
bases for the same superlattice if S′ can be reduced to S by
integer row operations.

I The canonical form for such operations is the upper-triangular
HNF: a b d

0 c e
0 0 f

 , 0 ≤ b < c , 0 ≤ d, e < f .

I Therefore we only search over supercell matrices S that are in
HNF.

I Note that most electronic structure calculations using
supercells are currently carried out with b = d = e = 0.
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Let the search begin

I HNF: a b d
0 c e
0 0 f

 , 0 ≤ b < c , 0 ≤ d, e < f .

I The product a× c× f fixes the determinant |S| and therefore
the number of primitive cells contained within the supercell.

I Generating all HNF matrices with a given |S| can be done by
finding each unique triplet acf and then generating all values
of b, d, and e that obey the conditions stated above.

I For each HNF matrix that is generated we calculate the radius
of the largest sphere that can be inscribed in the Wigner-Seitz
cell which is half the distance between a particle and its
nearest periodic image.

I For our purposes, the optimal supercell is the one with the
largest Wigner-Seitz cell radius.
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Examples

I P21/c-24 is a candidate structure for phase II of solid
hydrogen. At 100 GPa the lattice vectors (in Bohr) are:

RP1 = 16.92312 x̂ + 0.004564 ẑ

RP2 = 3.574513 ŷ

RP3 = −11.28396 x̂ + 6.166606 ẑ

|S| Largest diagonal Largest possible % increase
supercell radius supercell radius

2 3.574513 3.574513 0.00
4 4.179816 5.499818 31.58
8 6.783887 7.356347 8.44
16 7.149025 9.425474 31.84
32 8.461560 12.23685 44.62
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More examples

I C2/c-24 is a candidate structure for phase III of solid
hydrogen. At 200 GPa the lattice vectors (in Bohr) are:

RP1 = 2.831959 x̂ + 0.001245 ŷ − 4.896124 ẑ

RP2 = −0.027137 x̂ + 10.05304 ŷ

RP3 = 2.831959 x̂ + 0.001245 ŷ + 4.896124 ẑ

|S| Largest diagonal Largest possible % increase
supercell radius supercell radius

2 2.828075 2.831959 0.14
4 5.026538 5.656149 12.53
8 5.656149 7.016988 24.06
16 5.656149 9.010517 59.30
32 10.05308 11.32784 12.68
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Reciprocal superlattice vectors

GP1

GP2

GP3

 = 2π

RP1

RP2

RP3

−T
GS1

GS2

GS3

 =

S̄11 S̄12 S̄13
S̄21 S̄22 S̄23
S̄31 S̄32 S̄33

GP1

GP2

GP3


S̄ij = S−1ji

I The k-points that are commensurate with the supercell are
those points on the reciprocal superlattice that lie within the
first BZ of the parent reciprocal lattice.

I It is convenient to express these k-points in terms of the
parent reciprocal lattice basis vectors.
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Commensurate k-points

klmn =
(
l m n

)GS1

GS2

GS3


=
(
l m n

)S̄11 S̄12 S̄13
S̄21 S̄22 S̄23
S̄31 S̄32 S̄33

GP1

GP2

GP3


=
(
l′ m′ n′

)GP1

GP2

GP3


= kl′m′n′

I We refer to l′, m′, and n′ as the fractional k-point
coordinates. There are |S| points on the reciprocal superlattice
that lie within the first BZ of the parent reciprocal lattice.
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Summary

I Superlattice vectors are defined by a supercell matrix S.

I Two different supercell matrices S and S′ generate different
bases for the same superlattice if S′ can be reduced to S by
integer row operations.

I Therefore we only search over supercell matrices S that are in
Hermite Normal Form and for each one calculate the radius of
the largest sphere that can be inscribed in the Wigner-Seitz
cell.

I The optimal supercell is the one with the largest Wigner-Seitz
cell radius.

I Open question - how much difference does choosing supercells
in this way actually make?
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