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The ideal 1d model

The model is simply 1d electrons on a uniform positive background

Many previous studies used regularized interactions

Here we consider the Coulomb interaction, diverging as 1/r at
coalescence points
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where C includes background terms.



In 1d, particles cannot avoid each other

The interesting physics comes from the reduced dimensionality and
the strong correlation that is a consequence of the dimensionality.

Experimentalists look for power law behaviour in various quantities
and spin-charge separation as a signature of 1d behaviour...









Strong correlation
Non-Fermi liquid behaviour is characterized by

lim
N→∞

Z = 0 ,

where

Zσ,kF
=
∣∣∣〈0,N + 1 | â†σ,k | 0,N〉

∣∣∣2
|k|=kF

is the renormalization constant.

You may recognize Z as the size of the step at kF in the
momentum distribution - this is a result of Z also being the weight
under the quasiparticle peak in the spectral function.



Nanowires of atoms

(left) Pt atoms on Ge., Oncel et al. PRL 95, 116801 (2005)
(right) Au atoms on Ge., Schäfer et al. PRL 101, 236802 (2008)



Carbon nanotubes

Single-walled CNTs in particular seem to exhibit behaviour
characteristic of electrons in 1d.

(images: http://www.ipt.arc.nasa.gov/carbonnano.html)



(left) charge-transfer salts (e.g. (BEDT-TTF)2X)
(right) semiconductor devices

Atoms in anisotropic traps, transition metal oxides, quantum Hall
edge states, etc.



QMC calculations on the ideal 1d electron liquid

I The g.s. nodes are known - no fermion sign problem

I The geometry makes twist averaging simple

I We can get very good wavefunctions - expectation values
hardly differ at all between VMC and DMC



The wavefunction

ψ(R) = exp [J(R)]
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where φn(x) = exp(iknx) and x ′ is related to x by a backflow
transformation. The Jastrow factor is
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where xij = |xi − xj |.



Wavefunction quality

Method % Ecorrelation

DMC 100
VMC-SJ3BF 100.000(6)
VMC-SJ3 99.999(6)
VMC-SJ2BF 99.99996(6)
VMC-SJ2 99.9752(6)
HF 0

(this is for rs = 15 au, N = 15 - the numbers above are typical)



Momentum density

ρ(k) =

〈
1

2π

∫
Ψ(r , x2, x3, ..., xN)

Ψ(x1, x2, x3, ..., xN)
exp[ik(x1 − r)] dr

〉
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Pair correlation function

g(|x1 − x2|) =
n(x1, x2)

n(x1)n(x2)
, gnon−int(x) = 1−

∣∣∣∣sin(kF x)

kF x
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Harmonic wire
A more sophisticated model has a wire of finite width - the
confinement comes from a harmonic potential

If the confinement is strong enough, we can factorise the
wavefunction

Ψ(R) = φ(x) θ(r⊥)

...and we know that θ(r⊥) is a Gaussian



We can work out the interaction as a function of x by integrating
over the transverse part of Ψ,

V (x) =

∫ |θ(r′⊥)|2|θ(r⊥)|2[
x2 + (r′⊥ − r⊥)2

]1/2
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putting in a Gaussian form for θ(r) yields
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Data kindly provided by Michele Casula



Summary

I Calculating the energy, PCF, SF and MD of the 1d HEG for
both infinitely-thin and harmonic wire models

I Doing some fitting to the observables to compare with
experimental literature

I Reliable calculations of the momentum density have not been
seen before...
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Step in the momentum distribution

The spectral function A(α, ω) is the probability density for
increasing or decreasing the energy by an amount between ~ω and
~(ω + dω) upon adding or removing a single particle in the state
| ψα〉

α can describe spin, momentum, etc.

Forget spin for the moment and look at momentum states. The
T = 0 momentum density is given by

nk =

∫ µ/~

−∞
A(k, ω)dω



In 2 and 3d, A(α, ω) has a (Lorentzian) quasiparticle peak, the
width of which vanishes in the limit k → kF as |k − kF |2.

When k > kF , the quasiparticle peak is at a frequency ω > µ/~
and so does not fall within the limits of the integral, whereas for
k < kF its contribution is its weight, Z .

Since it is a δ-function at the Fermi surface, the passing of the
quasiparticle peak through ω = µ/~ at k = kF results in the value
of nk having a discontinuity.

In 1d, there are no quasiparticles and the system is
strongly-correlated (Z = 0), so there is no step in nk.
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