

# Pressure-induced metallization/ superconductivity of hydrogen-dominant materials





Wenner-Gren Stiftelserna Wenner-Gren Foundations

2010-04-21 (ESDG Cavendish)

Wednesday, April 21, 2010

### Methods

- DFT calculations
- \* Quasiparticle calculations (G<sub>0</sub>W<sub>0</sub>)
- \* Energetic + dynamical stability (phonon)
- Electron-phonon coupling
- \* Superconducting Tc is estimated with Allen-Dynes equation (Modified McMillan equation)

# Pressure-induced superconductor



It seems that pressure induces metallization of most elements in the periodic table

## Superconductor: Yttrium



D. Y. Kim APL 96 022510 (2010)

Quantitatively reliable !

For Tc estimation at higher pressure, we need crystal structures which are dynamically stabilized.

#### PRESSURE vs H

- Hydrogen is a strong insulator
- Pressure induces metallization of materials

Hydrogen-dominant materials under pressure allow a proxy-study of metallic/superconducting hydrogen via pre-compression (chemical pressure) N. W. Ashcroft PRL 92 187002 (2004)

In 1990s, in the middle of the euphoric times of high-temperature superconductivity, we decided to search for other **superconductors with a potentially high Tc**..... As starting material we chose yttrium, which is able to absorb 300% hydrogen up to the composition YH<sub>3</sub>.

R. Grissen, switchable mirror, europhysicsnews, march (2001)



#### Superconductivity in Hydrogen Dominant Materials: Silane

M. I. Eremets, *et al. Science* **319**, 1506 (2008); DOI: 10.1126/science.1153282



#### High pressure experiments (YH<sub>3</sub>)





#### fcc(I) - fcc(M) transition

A. Ohmura et al PRB 73 104105 (2006)

#### Another intermediate state

A. Machida et al *PRB* **76** 052101 (2007)

fcc YH3 was reported above 20 ~ 23 GPa

Wednesday, April 21, 2010

### fcc YH<sub>3</sub>



Space group: No 225 (fcc) Y at fcc site H(1) at tetragonal site H(2) at octahedral site

Y-H(1) (YH<sub>2</sub>) forms a cage structure for H(2)

×

#### Enthalpy & Band dispersion (GW)



J. S. de Almeida APL 94, 251913 (2009)

# Phonon dispersions



D. Y. Kim PRL 103 077002 (2009)

#### Tc of YH3 under pressure



D. Y. Kim PRL 103 077002 (2009)

# Spectral function



@ 17.7 GPa Y and Y-H(2) contribution are significant for EPC

@ 36 GPa, normal metallic

@ 73 GPa, Y-H(2) is the dominant for EPC

#### Predicted superconducting T<sub>c</sub> of Hydrogendense Materials



GeH4: G. Gao *PRL 101*, 107002 (2008) SiH4: X.-J. Chen *PRL 101*, 077002 (2008) AlH3: I. Goncharenko *PRL 100*, 045504 (2008), SnH4: J. S. Tse *PRL 98* 117004 (2007) YH3 D. Y. Kim *PRL 103* 077002 (2009)

### General trend of tri-hydrides



D. Y. Kim Proc. Natl. Acad. Sci. USA 107 2793 (2010)

#### More



#### CONCLUSIONS

- \* MH3 transforms into fcc phase near 10-20 GPa
- % fcc YH3 is metallic with GW calculations
- \* Near the structural transition, one can observe strong electron-phonon coupling
- \* Phonon-mediated superconductivity in fcc MH3
- The secondary superconductivity region only for YH3

# Thank you for your attention

25-29 July 2010 - Uppsala, Sweden



European High Pressure Research Group Conference

