First Principles NMR study for Ge-O-Ge angle in vitreous GeO₂

Mikhail Kibalchenko, TCM Group, Cambridge University

with Jonathan Yates, Department of Materials, University of Oxford and Alfredo Pasquarello, IRRMA, EPFL, Lausanne

Results published: Kibalchenko, M.; Yates, J. R.; Pasquarello, A. First-principles investigation of the relation between structural and NMR parameters in vitreous GeO₂. J Phys-Condens Mat 2010, 22, 5.

Introduction

- Optics
- Microelectronics
- Radioactive waste storage

Introduction

• Short range order is well characterised using diffraction probes

Introduction Medium range order? - difficult for diffraction probes Described by distribution of Ge - O - Ge angles

Introduction

- Solid State NMR experiment is sensitive to medium range length scales
- We need to establish correlation between measured NMR parameters and structure

Calculation

- Preparing models of vitreous GeO₂:
- subject to periodic boundary conditions
- cubic simulation cells
- experimental density

- 1. classical molecular dynamics starting with SiO₂
- 2. rescaling of simulation cell by Ge-O / Si-O bond length ratio
- 3. damped first principles molecular dynamics

Models of vitreous GeO₂

	Size (atoms)	Ge-O-Ge
Model A	168	135.0° (10.6°)
Model B	36	130.2° (10.9°)

- models showed good agreement with available experimental data for
- diffraction structure factors
- vibrational spectra

NMR Calculations

- GIPAW in CASTEP
- ultrasoft pseudopotentials
- PBE exchange-correlation functional
- cut off energy of 500 eV
- Brillouin zone sampled using a MP grid with a maximum spacing of 0.055 A⁻¹
- Accuracy: 2 ppm for ¹⁷O and ⁷³Ge shieldings and within 0.1 Mhz for ¹⁷O and ⁷³Ge quadrupole coupling constants

NMR parameters of interest

- isotropic shifts
 - measures chemical shielding effect due to induced electric currents
- quadrupole coupling constants C_Q
- electric-field-gradient asymmetry parameter η
 - measure electronic density around the nucleus

Correlations with Ge-O-Ge angle

Correlations with Ge-O-Ge mean angle

Correlations for ⁷³Ge EFG parameters

Correlations with Ge-O-Ge angle

Correlations with Ge-O-Ge angle

¹⁷O quadrupole coupling constant

So what is the mean Ge-O-Ge angle?

 and we showed that typical Ge-O-Ge angles in vitreous GeO₂ lie between 124° and 139°

Conclusion

- 2 vitreous GeO₂ models
- CASTEP NMR calculations
- experimental Cq measurements
- mean Ge-O-Ge angle of 135°

Acknowledgements

- Jonathan Yates
- Alfredo Pasquarello
- Mike Payne

ICM

Thank you for listening

back up slides

FIG. 4. Distribution of the Ge-O-Ge intertetrahedral angle for our four models of v-GeO₂: model I 'solid , model II 'dot-dashed , model III 'dotted , and model IV 'dashed . A Gaussian broadening of 2.5° is used.

Giacomazzi L, Umari P and Pasquarello A 2006 Phys. Rev. B 74 155208