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Time-Dependent DFT 
•  One-to-one correspondence between time- 

dependent one-body densities and time-dependent 
one-body potentials. 

•  Time dependent Kohn-Sham equations 
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TD Linear Response 
•  Response to a harmonic perturbation 

 
•  Coupled Sternheimer equations 
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Direct Calculation of Excitations 

 
 
•  Tamm-Dancoff approximation 

where 

non-Hermitian eigenvalue equation, which gives the excitation energies directly
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In the Tamm-Danco↵ approximation, the B matrices are set to zero, which leads
to a Hermitian eigenvalue problem AX = !X. It is this Hermitian eigenvalue
problem that will be implemented for the “Hutter solver”.

In the context of a plane-wave code, the vectors X and Y are the plane-wave
coe�cients of electronic wavefunctions, i.e. |�(±)

i i from above. In CASTEP,
these are four-dimensional arrays, the dimensions being G-vectors (plane-waves),
k-points, bands and spin. For a TDDFT calculation, one typically has ⇠
105 � 106 G-vectors, ⇠ 100 � 1000 bands, a single k-point and spin of 1 or 2
dpending on whether the system is being treated as spin-degenerate. Of course,
storing and diagonalising a matrix of this size is innapropriate, especially as one
is only interested in the lowest few excited states. Instead we turn to iterative
methods, where only the result of the operator on a vector is required.

Hutter defines this operator in equation 35 of his paper, where he chooses to
separate it into two components, such that A = A + B. The first contribution
is from Kohn-Sham orbital energy di↵erences
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The action of this operator was already implemented for DFPT in CASTEP.
The second contribution is
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where �V
scf

[n(�)] is the self-consistent reponse potential for a change in electron
density
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which is the same as used in DFPT, but for a factor of 2 in the response density.
Given the e↵ect of the A operator on a given wavefunction, an ‘o↵-the-

shelf’ iterative eigensolver with a reverse communication interface can be used.
By using a library routine, we can thoroughly test our implementation of the
operator. We used two di↵erent solvers, namely ARPACK3 and EA19, the latter
being from the HSL (formerly the Harwell Subroutine Library)4. ARPACK is
written in Fortran77 and implements the Arnoldi process. HSL-EA19 is written
in F95 + TR 15581 and implements a Jacobi-conjugate preconditioned gradients
scheme.

3http://www.caam.rice.edu/software/ARPACK/
4http://www.hsl.rl.ac.uk
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TDDFT in CASTEP 
•  Based on Hutter’s formulation 

J. Chem. Phys. 118, 3928 (2003) 

•  Self-consistent response 

•  Response density 
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Hartree-Fock Contribution 
•  Contribution to excitation energy 

•  Require the gradient w.r.t. response wavefunction 
 
 

•  http://www.hector.ac.uk/cse/distributedcse/reports/castep02/ 

!hf = �chf

occX

i

occX

j

ZZ
drdr0

�⇤(1)
i (r)�(1)

j (r)�(0)

j (r0)�(0)

i (r0)

|r� r0|

�!hf

��⇤(1)
i (r)

= �chf

occX

j

�(1)

j (r)

Z
dr0

�(0)

i (r0)�⇤(0)
j (r0)

|r� r0|



Validation Tests 
•  Comparisons with CPMD 

3.1 Results

At the end of section 2, we calculated the first excitation energy of methane to
be 9.10 eV by scanning through frequency. Calculating the lowest eigenvalue
directly on the same system, we get a value of 9.08 eV. Table 2 compares the
eigenvalues for a selection of molecules calculated using CASTEP and CPMD5,
where Hutter’s method was originally implemented.

Molecule State CASTEP CPMD
N

2

1 9.282 9.283
2 9.282 9.283
3 9.692 9.692
4 10.259 10.251
5 10.270 10.269
6 10.270 10.269
7 11.495 11.488
8 11.495 11.488

H
2

1 9.988 9.997
2 10.840 10.831
3 11.024 11.014
4 11.024 11.014
5 11.403 11.392

Table 1: Eigenvalue comparison

4 Implementation of parallel distribution solver
for true HPC use on HECToR

Milestone 3 - Port of code to HECToR. More extensive testing, debugging and
benchmarking against previous calculations. Demo calculations on larger sys-
tems than feasible in stage 2. This work comprises stages 6 and 7 of the work
plan.

While using stock serial eigensolvers was invaluable while developing the
code for the operator, a parallel solver is required. HSL-EA19 currently has no
parallel version available. ARPACK does have a parallel version, but it is not one
that can be used with the existing parallel distribution schemes in CASTEP. We
chose to implement two algorithms, a state-by-state conjugate gradients solver
and a block Davidson solver, with help from Phil Hasnip (University of York
and member of the CASTEP Development Group).

Hutter’s formulation assumes that the special k-point � is used.6 This means
that the real-space representation of the wavefunctions can always be real (as
opposed to complex). CASTEP already has �-point optimisations and we can
take advantage of these also. Using a single k-point restricts our choice of

5http://www.cpmd.org
6It is reasonably straightforward to extend Hutter’s derivation to a single arbitrary k-

point. The complex representation of the response density in equation 6 (above) allows for
this extension. The equations for multiple k-points are not trivial and would require further
research, and is therefore beyond the scope of this dCSE.
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Response Densities 
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Characterisation of States 
•  Singlet or Triplet 
•  Projection onto unoccupied Kohn-Sham bands 

•  “Spurious” states 

–  Heßelmann and Görling PRL 102, 233003 (2009) 
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Parallel Scaling 
•  Performance on HECToR (Phase 2b) 



TD-DFT Forces 
•  Three contributions: 
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Handy-Schaefer Z vector 
•  Need to take into account the how the TDDFT 

response wavefunction changes as the ground state 
is perturbed 

•  Requires the solution of a self-consistent Sternheimer 
equation to obtain the Handy-Schaefer Z vector 

•  http://www.hector.ac.uk/cse/distributedcse/reports/castep03/ 
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State Crossings 



Summary 
•  TDDFT in CASTEP 

–  Electronic excitation energies 
–  Characterisation of TDDFT states as KS orbitals 
–  Optical matrix elements (transition intensities) 
–  Compatible with OptaDOS 
–  For a selected TDDFT state - Forces 

•  Structure optimisation 
•  Molecular dynamics 
•  (Phonons) 

•  Available in CASTEP 7.0 


