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Overview

• Why does solvation matter?

• Implicit solvent model for density functional theory 
calculations

• Real space method for solving the Poisson equation 
in a dielectric medium
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So you want to study solvated systems?
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Ubiquitin
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Just add water...
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Ubiquitin with water
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DNA packaging in nature
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Hernan G. Garcia, Paul Grayson, Lin Han et al., 
Biopolymers 85 (2), 115 (2007).

10 nm
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Defining the free energy of solvation

• Free energy cost of building up a molecule inside a 
solvent 
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• The ideal solvent model

• Provides accurate solvation energies without a ridiculous number of 
parameters

• Uses a natural and straightforward definition of the solvent cavity

∆Gsol = ∆Gel + ∆Gcav

• D. A. Scherlis, J. L. Fattebert, F. Gygi et al., J. Chem. Phys. 124 (7), 
074103 (2006).

• J. L. Fattebert and F. Gygi, Int. J. Quantum Chem 93 (2), 139 (2003).
• J. L. Fattebert and F. Gygi, J. Comput. Chem. 23 (6), 662 (2002).
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The standard DFT approach

• Given the electron density we compute the 
corresponding electrostatic potential via the Poisson 
equation:
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Electrostatic term

E[ρ] = T [ρ] + Exc[ρ] +
∫

ρ(r)vion(r)dr +
1
2

∫
ρ(r)φ[ρ]dr

∇2φ = −4πρ

• Under periodic boundary conditions we compute the 
solution in reciprocal space as:

φ(G) =
∑

G

−4π

G2
ρ(G)eıG·r
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DFT with implicit solvent

• Replace the explicit solvent molecules with a dielectric 
continuum that implicitly replicates the electrostatic 
interaction between solvent and solute
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ε[ρ(r)]
Dielectric functional Poisson equation in the presence of a dielectric

∇ · (ε[ρ]∇φ) = −4πρ

• From this generalized Poisson equation the 
electrostatic energy can then be computed as:

Ees[ρ] =
1
8π

∫

Ω
ε[ρ]|∇φ|2dr
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DFT with implicit solvent

• The electrostatic contribution to the Kohn-Sham 
potential is found from the functional derivative:
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Vε(r) ≡ −
1
8π

|∇φ(r)|2 δε

δρ

δEes[ρ]
δρ

= φ(r) + Vε(r)

• The additional term arises from the dependence of 
the dielectric functional on the charge density

• This results in a tunable solvent cavity as self-
consistency is achieved
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Properties of the dielectric functional
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• Uses the electron density to define the solvent cavity

• The dielectric functional is expressed as:

• This results in an implicit solvent model which only 
depends on two parameters

ρ0

β

Density threshold which modulates 
the size of the solvation cavity

Smoothes the transition in the function 
from vacuum to the bulk permittivity

ε[ρ(r)] = 1 +
ε∞ − 1

2

(
1 +

1− (ρ/ρ0)2β

1 + (ρ/ρ0)2β

)
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Dielectric functional for self-consistent solvent cavity

J. L. Fattebert and F. Gygi, J. Comput. Chem. 23 (6), 662 (2002).

ε[ρ(r)] = 1 +
ε∞ − 1

2

(
1 +

1− (ρ/ρ0)2β

1 + (ρ/ρ0)2β

)



Helal 

Solvent cavity

• Smooth surface of solvation 
cavity results from natural 
definition through the charge 
density

• Dielectric parameters chosen 
such that the solvation effect 
on the total energy matches 
the cohesion energy of liquid 
water
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β = 1.3 ρ0 = 0.0004
ε[ρ(r)] = 1.01 J. L. Fattebert and F. Gygi, J. Comput. Chem. 23 (6), 662 (2002).
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Solving the generalized Poisson equation

•  Solved in real space by multigrid method 

• Multigrid properties

• Finite difference method but makes use of multiple meshes to gain accuracy 
and speed convergence 

• Scales linearly with the number of grid points

• Interfaced multigrid solver from ‘The Finite Element ToolKit’ (http://
www.fetk.org/) with CASTEP
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∇ · (ε[ρ]∇φ) = −4πρ

φ(r) = 0 on cell boundary

http://www.fetk.org
http://www.fetk.org
http://www.fetk.org
http://www.fetk.org
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Cavitation energy

• Simply the amount of work necessary to create the 
solvent cavity and can be estimated as
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∆Gcav = γS(ρ0)

• The cavity surface area for a given density threshold 
(ρ0) and surface thickness (Δ)

S(ρ0) =
∫ |∇ρ(r)|

∆

(
ϑρ0−∆/2[ρ(r)]− ϑρ0+∆/2[ρ(r)]

)
dr

• The functional derivative gives an additional potential 
to include in the Kohn-Sham potential
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Surface area of a Gaussian charge density
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Summary and a look ahead

• Introduced a general solvation model which 
effectively relies on only two parameters 

• Implementation in CASTEP and eventually ONETEP

• Interfaced with multigrid solver from ‘The Finite Element ToolKit’ (http://
www.fetk.org/) for calculating electrostatic contribution to solvation energy

• Implementing cavitation contribution to solvation energy

• Eventually using this model to study the bending and 
packaging of DNA
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