
Minimal parameter implicit solvent model 
for electronic structure calculations

Hatem H. Helal
Electronic structure discussion group

October 8, 2008



Helal 2

What is implicit solvent?

Introduce a dielectric medium which captures the 
physics of a system embedded in water so that the 
computational effort is focused on the system we are 
interested in.
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Just add water...

3Helal 
Ubiquitin with water



Electrostatics in periodic 
systems
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Simple example
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What is the work required to build this periodic 
array of point charges?

a

+q
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A cause for worry?
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E =
1
2

N∑

i=1,i !=j

N∑

j=1

q2

|xi − xj |

Notice that the electrostatic energy is proportional to 
the number of pairs of charges. 

E ∝ N(N − 1)
2

Normalizing to find the energy of a single “unit cell” will 
give an energy which diverges as N.
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How about this array?

7

+q

−q∆
a

The total energy is a sum of three distinct 
contributions which taken on their own will diverge
E = E(+q, +q) + E(−q,−q) + E(+q,−q)

" N

(
q2∆
a

) N∑

j=1

1
j2

The key to getting a nice well behaved energy 
per cell is ensuring charge neutrality.

E = E(+q, +q) + E(−q,−q) + E(+q,−q)

" N

(
q2∆
a

) N∑

j=1

1
j2
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Electrostatics in the Kohn-Sham functional

• All three contributions taken independently yield a 
divergent energy for an infinitely periodic system.

• Taken together though the total electrostatic energy 
converges to a well defined energy per unit cell so 
long as the cell is charge neutral.

• Making use of a uniform compensating background 
charge allows us to rearrange the functional so that 
we avoid trying to compute diverging energies.
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Ees[ρ] = Ee-e[ρ] + Ee-I[ρ] + EI-I
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The truth about the Hartree term

• Define the neutral charge density:

• The “Hartree energy” is then self-interaction energy 
of the neutralized charge density

• Where the potential is found by solving the Poisson 
equation under periodic boundary conditions
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ρ0(r) ≡ ρ(r)− 〈ρ(r)〉

EH [ρ] =
1
2

∫
ρ0(r)φ[ρ0] dr

−∇2φ = 4πρ0
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Fourier series solution to the Poisson equation

−∇2φ = 4πρ0

ρ0(r) =
∑

G

ρ0(G)eiG·rφ(r) =
∑

G

φ(G)eiG·r

φ(r) =
∑

G

4π

G2
ρ0(G)eiG·r
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G=0 difficulty

• From the preceding solution we see that the Fourier 
coefficients are related to each other by

• At first inspection, the G=0 coefficient of the 
potential would appear to diverge.

• Formally we need to evaluate the limit as G 
approaches zero:

φ(G) =
4π

G2
ρ0(G)

φ(G = 0) = lim
G→0

4π

G2
ρ0(G)
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Evaluate the G=0 term

• The G=0 Fourier coefficient of the neutral density 
corresponds to its average value, which is of course 
zero:

• Likewise, the G=0 Fourier coefficient of the Hartree 
potential corresponds to the average value over the 
cell:

ρ0(G = 0) =
1
Ω

∫

Ω
ρ0(r) dr = 0

φ(G = 0) =
1
Ω

∫

Ω
φ(r) dr = 〈φ(r)〉
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Potential reference

• For our infinitely periodic system both the charge 
and the potential extend out to infinity.

• There is always a sense of arbitrariness when dealing 
with potential since we have to decide on a 
‘reference point’ from which we measure the 
potential.

• For our infinitely periodic system, the most natural 
choice for a reference is to require that the average 
value of the potential is zero over a unit cell.  

• This choice for the potential reference amounts to 
fixing the G=0 component to zero.

13



Helal 

• Notice that we never need to compute the 
compensating background charge:

Useful result

ρ0(G) =
1
Ω

∫

Ω
(ρ(r) − 〈ρ(r)〉) e−ıG·r dr

=
1
Ω

∫

Ω
ρ(r)e−ıG·r dr− 1

Ω

∫

Ω
〈ρ(r)〉e−ıG·r dr

= ρ(G) + 0
= ρ(G)

14



Helal 

• Combining all this leads to the Hartree potential as 
it is evaluated in any plane-wave DFT code

• Skipping the G=0 term is justified since we have 
seen that it is fixed at zero.

Hartree potential evaluation

φ(r) =
∑

G!=0

4π

G2
ρ(G)eıG·r
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Dielectric medium
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• Uses the electron density to define the solvent cavity

• The dielectric functional is expressed as:

• This results in an implicit solvent model which only 
depends on two parameters

ρ0

β

Density threshold which modulates 
the size of the solvation cavity

Smoothes the transition in the function 
from vacuum to the bulk permittivity

ε[ρ(r)] = 1 +
ε∞ − 1

2

(
1 +

1− (ρ/ρ0)2β

1 + (ρ/ρ0)2β

)
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Solvent cavity

• Smooth surface of solvation 
cavity results from natural 
definition through the charge 
density

• Dielectric parameters chosen 
such that the solvation effect 
on the total energy matches 
the cohesion energy of liquid 
water

17

β = 1.3 ρ0 = 0.0004
ε[ρ(r)] = 1.01 J. L. Fattebert and F. Gygi, J. Comput. Chem. 23 (6), 662 (2002).
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Dielectric functional for self-consistent solvent cavity

J. L. Fattebert and F. Gygi, J. Comput. Chem. 23 (6), 662 (2002).

ε[ρ(r)] = 1 +
ε∞ − 1

2

(
1 +

1− (ρ/ρ0)2β

1 + (ρ/ρ0)2β

)
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DFT with implicit solvent

• Replace the explicit solvent molecules with a dielectric 
continuum that implicitly replicates the electrostatic 
interaction between solvent and solute
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• The Hartree term in the dielectric medium is

ε[ρ(r)]
Dielectric functional Poisson equation in the presence of a dielectric

−∇ · (ε∇φ) = 4πρ0

E[ρ, ε] =
1
2

∫

Ω
ρ0(r) φ[ρ0, ε] dr =

1
8π

∫

Ω
ε[ρ]|∇φ|2 dr
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DFT with implicit solvent

• The electrostatic contribution to the Kohn-Sham 
potential is found from the functional derivative:

20

Vε(r) ≡ −
1
8π

|∇φ(r)|2 δε

δρ

δEes[ρ]
δρ

= φ(r) + Vε(r)

• The additional term arises from the dependence of 
the dielectric functional on the charge density

• This results in a tunable solvent cavity as self-
consistency is achieved
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Solving the generalized Poisson equation

• No general direct solution is possible so we have to 
rely on iterative methods.

• Currently employ a finite difference based multigrid 
solver.

21

φ(r) = 0 on cell boundary

−∇ · (ε∇φ) = 4πρ0
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Multigrid approach
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Fine grid

Coarse grid

• Using multiple grids improves convergence

• Computational effort scales linearly with the number 
of grid points



Implementation



Local potential calculation

Implicit solvent?

No

ρ(r) ρ(G)FFT

φ(G) =
4π

G2
ρ(G)FFTφ(r)

EH[ρ] = 2πΩ
∑

G !=0

|ρ(G)|2

G2

Standard Hartree evaluation

Yes

ρ(r)

ε[ρ, r]ρ0 = ρ − 〈ρ〉

−∇ · (ε∇φ) = 4πρ0
φ = 0 on ∂Ω

Multigrid

φ(r)

Vε(r) = − 1
8π

|∇φ|2 ∂ε

∂ρ

EH[ρ] =
1
2

∫
ρ0φ dr

Hartree in dielectric evaluation



Helal 

Energy gradient test
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ρ′ ≡ ρ + α
δE

δρ

δE = E[ρ′]− E[ρ] =
∫

δE

δρ
δρ dr

E[ρ′]− E[ρ]
α

=
∫ (

δE

δρ

)2

dr

Numerical gradient Predicted gradient

The ratio of the numerical and predicted 
gradients should converge to one while varying 
the step size when everything is done 
correctly... 
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Hartree in dielectric gradient check
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δE[ρ, ε] = δEρ + δEε

δEρ = E[ρ′, ε]− E[ρ, ε] =
∫

δEρ

δρ
δρ dr

E′
ρ − Eρ

α
=

∫ (
δEρ

δρ

)2

dr

δEε = E[ρ, ε′]− E[ρ, ε] =
∫

δEε

δε
δε dr

E′
ε − Eε

α
=

∫ (
δEρ

δρ

)2

dr

δEρ

δρ
= φ(r) ????
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A suspect result
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Cell size (Bohr)

Number of grid points in each direction

33 65 97

10 0.954 0.952 0.952

20 0.992 0.992 0.992

30 0.996 0.996 0.996

δEρ

δρ
= φ(r)Seems that is mostly correct
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A very careful functional derivative
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This is just the amount of work needed to introduce     
a       into a region with a potential δρ0 φ(r)

E[ρ] =
1
2

∫
ρ0(r)φ(r) dr

δE =
∫

δE

δρ0
δρ0 dr =

∫
φ(r)δρ0 dr

∴ δE

δρ0
= φ(r)
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A very careful functional derivative
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δρ0 =
∫

δρ0

δρ
δρ dr

δρ0

δρ
= δ(r′ − r) − 1

Ω
δE

δρ
=

∫
δE

δρ0

δρ0

δρ
dr′

∴ δE

δρ
= φ(r) − 〈φ(r)〉

This result is of course consistent with the choice of 
the potential reference.
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The correct result
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Cell size (Bohr)

Number of grid points in each direction

33 65 97

10 1.000000157 1.00000107 1.00000106

20 1.000000344 1.00000370 1.00000962

30 1.000000693 1.000000661 1.00000204

is correct!
δEρ

δρ
= φ(r) − 〈φ(r)〉



Applications
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NMR from MD

• Use molecular dynamics 
with implicit solvent to 
generate a set of 
possible conformations.

• Perform DFT 
calculations with implicit 
solvent for each of these 
conformations.

• Average NMR coupling 
constants to obtain 
realistic predictions. 32
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Optical properties

• Use TDDFT(+U) to 
study optical-response 
properties of biological 
metalloproteins.

• Solvation can have 
dramatic effects on the 
optical response.

33
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Enzyme binding

Solvation effects can be 
important in determining 
whether it is energetically 
favorable for an enzyme to 
bind to an active site.

34
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DNA packaging in nature
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Hernan G. Garcia, Paul Grayson, Lin Han et al., 
Biopolymers 85 (2), 115 (2007).

10 nm
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