

Post-Cotunnite Phase of TeO₂

Phys. Rev. B 72, 092101 (2005) Post- $PbCl_2$ phase transformat ion of TeO_2 .

Tomoko Sato, Nobumasa Funamori, Takehiko Yagi, and Nobuyoshi Miyajima Phys. Rev. B 80, 184115 (2009)

Post-cotunnite phase of TeO₂ obtained from firstprinciples densityfunctional theory methods with random-structure searching.

Gareth I. G. Griffiths, Chris J. Pickard, and R. J. Needs

The Problem / motivation

CAMBRIDGE

Pseudopotentials

All results use the standard CASTEP On The Fly Oxygen and Te pseudopotentials.

Standard Te_OTF.usp treats the 5*s* and 5*p* orbitals explicitly.

Tested (both further relaxation and searching) with an OTF Te pseudopotential that treated the 4d, 5s and 5p orbitals explicitly, for which results were essentially unchanged. **Convergence** <u>Searching:</u> 490 eV plane wave cutoff 2π 0.07 Å⁻¹ MP grid spacing.

 $\frac{\text{Polishing / refinement:}}{800 \text{ eV plane wave cutoff}}$ $2\pi \ 0.03 \text{ Å}^{-1} \text{ MP grid spacing.}$

Enthalpy difference between Cotunnite and Post-cotunnite structures at 130 Gpa changed by less than 0.0001 eV per TeO2 unit upon doubling the plane wave cutoff & no# of kpoints.

Enthalpy vs Pressure

CAMBRIDGE

Bulk Modulus

X-ray diffraction

ICM

Cotunnite volume 'kink'

Band Structure

Band Gaps

 Study supports experimental observation of post-cotunnite phase at pressures accessible to a diamond anvil cell. •Predict transition to $P2_1/m$ phase at 130 Gpa. •New $P2_1/m$ phase does not appear to be a general post-cotunnite phase $(shame...TiO_2!)$ •Cotunnite re-enters at 260 Gpa Higher quality x-ray diffraction data required to confirm.

Acknowledgments

EPSRC

Engineering and Physical Sciences Research Council

This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England.