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Two-Dimensional Homogeneous Electron Gas (I)

• 2D HEG: set of electrons moving in 2D in a uniform, inert, neutralising background.

• Hamiltonian (for finite system):

Ĥ =
∑

i

−1
2
∇2

i +
∑

j>i

vE(rij) +
NvM

2
.

Infinite-system GS energy per particle depends only on the density (specified by
radius rs of circle containing one electron on average) and spin polarisation [ζ =
(N↑ −N↓)/N ].

• Physical realisations:

– Electrons on metal surfaces. E.g. Cu [111].
– Electrons on droplets of liquid He. Held in place by image charges
– Inversion layers in MOS devices. Can easily tune density. Electrons far from

dopants; fewer complications due to disorder; technologically important.



Two-Dimensional Homogeneous Electron Gas (II)

• HEG is simplest fully interacting quantum many-body system.

• QMC is the only accurate method available for studying its ground-state properties.

• We have carried out QMC studies of the 2D HEG:

1. We have calculated the zero-temperature phase diagram.1

2. We have calculated the PCF, structure factor and momentum distribution.2

• Our data will be of interest to

– Experimentalists looking for ferromagnetism and Wigner crystallisation in low-
density 2D HEGs.

– Theorists interested in constructing 2D XC functionals for DFT calculations.

• Our calculations are more accurate than previous ones because of (i) a better
treatment of finite-size errors; (ii) a more accurate nodal surface; (iii) Darwin.

1 N. D. Drummond and R. J. Needs, submitted to Phys. Rev. Lett. (2008).
2 N. D. Drummond and R. J. Needs, to be submitted to Phys. Rev. B (2008).



Wigner Crystallisation in 2D (I)

• Kinetic energy dominates at high density: form Fermi fluid to minimise it.

• Potential energy dominates at low density: form Wigner crystal to minimise it.

• Wigner crystals have been observed on the surface of liquid helium3 and in inversion
layers in MOSFET devices4.

• 2D Wigner crystals could be of use in quantum computing devices.5

• Previous QMC studies6 indicate that fluid–crystal transition occurs somewhere
between rs = 25 and 40 a.u.

• Can we be more precise?

3 C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
4 E. Y. Andrei et al., Phys. Rev. Lett. 60, 2765 (1988); R. L. Willett et al., Phys. Rev. B 38, 7881 (1988).
5 P. M. Platzman & M. I. Dykman, Science 284, 1967 (1999); P. Glasson et al., Phys. Rev. Lett. 87, 176802 (2001).
6 B. Tanatar & D. M. Ceperley, Phys. Rev. B 39, 5005 (1989); F. Rapisarda & G. Senatore, Aust. J. Phys. 49, 161 (1996).



Hartree–Fock Theory of 2D Wigner Crystals (I)

• Full Hartree-Fock calculations using a PW basis have been performed.7 Here we
derive an approximate analytic theory.

• At low densities Wigner crystal orbitals are of form

φR(r) = exp(−C|r−R|2)

where R is a lattice site and C is an optimisable parameter.

• (This is like the Einstein approximation to the ZPE of a crystal.)

• Exchange effects are negligible in low-density limit. Approximate Slater determinant
by a Hartree product.

7 J. R. Trail et al., Phys. Rev. B 68, 045107 (2003).



Hartree–Fock Theory of 2D Wigner Crystals (II)

• Total energy per electron is sum of kinetic energy and Hartree energy (electrostatic
energy of a periodic array of Gaussian charge distributions) minus the self energy of
each Gaussian charge distribution:

E = C −
√
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2
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1
r2
s
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4C

)
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• Demand that energy is minimised with respect to C:
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Hartree–Fock Theory of 2D Wigner Crystals (III)

• Hence the optimal C is C = r
−3/2
s /

√
3.

• Integrate (∂E/∂C)rs w.r.t. C. At low densities E must tend to Madelung energy
M/rs, so integration constant is M/rs. Insert optimal value of C:

E ≈ 2√
3r

3/2
s

+
M

rs
.

Kinetic energy (10−4 a.u.)
rs (a.u.)

Analytic Approx. Simple model Full UHF
10 182.5741858 169.5220370 165.9043241
20 64.54972244 56.79743741 56.19776102
30 35.13641845 30.03820383 29.87538105
40 22.82177323 19.18376842 19.11263264
50 16.32993162 13.57764993 13.53238132
75 8.888888889 7.275719420 7.245278062
100 5.773502692 4.685191601 4.633373199



Hartree–Fock Theory of 2D Wigner Crystals (IV)
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Magnetic Behaviour of the Fermi Fluid

• Bloch transition: para. fluid favoured at high density (want to minimise KE); ferro.
fluid favoured at low density (keep electrons apart to minimise XC energy).

• Hartree–Fock theory: Bloch transition at rs = 2.01 a.u. No region of stability for
ferromagnetic fluid.

• VMC8: Bloch transition at rs = 13(2) a.u.; crystallisation at rs = 33(2) a.u.

• DMC9: Bloch and crystallisation transitions at rs = 37(5) a.u.

• DMC10: Bloch transition at rs = 20(2) a.u. and crystallisation at rs = 34(4) a.u.

• Experiment11: “Possible evidence” of ferromagnetism at rs = 7.6 a.u.

8 D. Ceperley, Phys. Rev. B 18, 3126 (1978).
9 B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).

10 F. Rapisarda and G. Senatore, Aust. J. Phys. 49, 161 (1996).
11 A. Ghosh, C. J. B. Ford, M. Pepper, H. E. Beere and D. A. Ritchie, Phys. Rev. Lett. 92, 116601 (2004).



Fermi Fluid: PBC, TBC and TABC

• Orbitals for Fermi fluid:
φk(r) = exp(ik · r).

• Periodic boundary conditions: {k} are simulation-cell G-vectors.

• Single-particle finite-size effects: Increase N at fixed density; grid of G-vectors gets
finer; energy per electron jumps as shells of G vectors pass through Fermi line.

• Twisted boundary conditions: k are simulation-cell G vectors offset by ks ∈ 1st BZ
of simulation cell.

• Twist averaging: average over all ks. Replaces grid of k by a Fermi area (equal
to area of Fermi circle), greatly reducing single-particle finite-size effects. Shape of
Fermi line isn’t quite right: gives negligibly small positive bias to KE.

• Previous QMC studies of 2D HEG have not used twist averaging.



Static Structure Factors

Static structure factor:

S(r, r′) =
A

N
〈[ρ̂(r)− ρ(r)][ρ̂(r′)− ρ(r′)]〉

where ρ̂(r) =
∑

i δ(r− ri) is the density operator, ρ(r) = 〈ρ̂(r)〉 is the density and A is
the area of the simulation cell.

Translationally averaged structure factor:

S(r) =
1
A

∫

A

S(r′ + r, r′) dr′.

Fourier transform of the translationally averaged structure factor:

S(G) =
1
N

(〈ρ̂(G)ρ̂∗(G)〉 − ρ(G)ρ∗(G)) ,

where ρ̂(G) =
∑

i exp(−iG · ri) is the Fourier transform of the density operator.



Hartree and XC Energies

〈
V̂Ew
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∫ ∫
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∫ ∫
vE(r− r′)ρ(r)ρ(r′) dr dr′
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N

2


∑

G 6=0

2π

A|G| [S(G)− 1] + vM


 +

∑

G6=0

πA

|G|ρ(G)ρ∗(G),

where ρ(r, r′) =
〈∑

i 6=j δ(r− ri)δ(r′ − rj)
〉

is the pair density.

First term: exchange-correlation energy (interaction of electrons with their XC holes).
Second term: Hartree energy (interaction of charge densities). Zero for HEG.



Finite-Size Effects in 2D (I)

Old assumption: finite-size errors are due to slow convergence of vE(r) to 1/r in XC
energy. (This is main cause of finite-size effects at typical densities in 3D.)

Can cure this “problem” by using model periodic Coulomb interaction. But it was found
that MPC doesn’t change energies much in 2D.12

Alternative approach for curing the “problem”: finite-size error is due to summation
rather than integration over G in reciprocal-space expression for interaction energy.13

Poisson summation formula: [1/(2π)3]
∫

f(k) dk = (1/A)
∑

G f(G)−∑
R 6=0 f(R).

So, if XC hole [and hence S(k)] has converged, finite-size correction is zero in 2D
because limk→0 vE(k)S(k) = 0 (unlike 3D).14

New understanding14: 2D finite-size errors are caused by (i) slow convergence of the XC
hole (screening is reduced in 2D) and (ii) neglect of long-ranged correlations in the KE.

12 B. Wood, W. M. C. Foulkes, M. D. Towler and N. D. Drummond, J. Phys.: Condens. Matter 16, 891 (2004).
13 S. Chiesa, D. M. Ceperley, R. M. Martin and M. Holzmann, Phys. Rev. Lett. 97, 076404 (2006).
14 N. D. Drummond, R. J. Needs, A. Sorouri and W. M. C. Foulkes, to be submitted to Phys. Rev. B (2008).



Finite-Size Effects in 2D (II)

• Long-ranged nonoscillatory behaviour of the XC hole is known analytically15: ρxc(r) =
−Λ̃r−7/2.

• Hence the XC charge outside radius r is Q̃ = −4πΛ̃/(3r3/2).

• Infinite-system XC charge outside finite simulation cell is ignored.

• So the error in the total Ewald energy due to the missing tail of the XC hole is

∆VEw ≈ −N

2

∫ ∞

RA

1
A

4πΛ̃
3r5/2

2πr dr = O(N−1/4),

where RA is the radius of a circle of area A.

• Error resulting from distortion of XC hole inside the simulation cell is of the same
order (can estimate by adding “missing” charge Q̃ in sensible fashion).

15 P. Gori-Giorgi et al., Phys. Rev. B 70, 115102 (2004).



Finite-Size Effects in 2D (III)

• RPA: exact long-ranged correlation described by exp[
∑

i>j u(rij)] in Jastrow factor.

• Write “TI” estimator of KE 〈(−1/4)∇2 log(Ψ)〉 in reciprocal space.

• Finite-size error in the TI estimate can be regarded as a difference between a sum
and an integral, à la the Ewald energy.16

• Leading-order KE correction is due to omission of G = 0 term in sum.

• Use analytic RPA expression for u(k) at small k and integrate over area of (2π)/A to
obtain missing contribution to KE.

• Error in total KE goes as O(N−1/4).17

16 S. Chiesa, D. M. Ceperley, R. M. Martin and M. Holzmann, Phys. Rev. Lett. 97, 076404 (2006).
17 N. D. Drummond, R. J. Needs, A. Sorouri and W. M. C. Foulkes, to be submitted to Phys. Rev. B (2008).



Finite-Size Effects in 2D (IV)

• Both sources of finite-size error in the 2D energy per electron go as O(N−5/4). So
we should extrapolate energies to infinite system size using

EN = E∞ − bN−5/4.

• Previous QMC studies have incorrectly used N−3/2 for crystals and N−1 for fluid.
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Backflow Transformation

• Evaluate Slater wave function at quasiparticle coordinates related to actual electron
coordinates by electron–electron backflow functions.18

• Moves nodal surface of wave function; can therefore improve the fixed-node DMC
energy.

• At rs = 30 a.u., BF lowers fluid DMC energy by 36(3) µHa per electron and lowers
crystal DMC energy by 1.0(4) µHa per electron. (DMC energies extrapolated to zero
time step and infinite system size.)

• Backflow is significant for the fluid, but not for the crystal, where electrons are already
kept apart by localisation on lattice sites.

• Antiparallel-spin BF functions are much longer ranged than parallel-spin functions.
Parallel spins are already kept away from each other by wave function antisymmetry.

18 P. López Ŕıos, A. Ma, N. D. Drummond, M. D. Towler and R. J. Needs, Phys. Rev. E 74, 066701 (2006).



Optimisation of Crystal Orbitals

Only parameter affecting crystal nodal surface: Gaussian exponent C. Minimise DMC
energy w.r.t. C to minimise fixed-node error.
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Time-Step and Population-Control Biases

Population-control bias is bad at low density.19

Use about 1600 configurations to make population-control bias negligible.

Time-step bias is linear; extrapolate DMC energies to zero time step.
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19 N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler and R. J. Needs, Phys. Rev. B 69, 085116 (2004).



2D HEG Energy Diagram (I)
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2D HEG Energy Diagram (I)
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2D HEG Energy Diagram (II)

• Fully polarised fluid is never stable.

• Wigner crystallisation occurs at rs = 33± 1 a.u.

• At rs = 35 a.u., the energy of a fluid with ζ = 2/5 agrees with the paramagnetic
and ferromagnetic fluid energies. Very unlikely that a region of stability for a partially
polarised fluid exists.

• Phase transitions in 2D HEG cannot be first order.20

• It’s energetically favourable to form boundaries between macroscopically separated
phases, so a “microemulsion” is formed at crystallisation density.

• Doesn’t affect basic features of phase diagram; just blurs boundaries.

20 B. Spivak and S. A. Kivelson, Phys. Rev. B 70, 155114 (2004); R. Jamei et al., Phys. Rev. Lett. 94, 056805 (2005).



Hybrid Phases

• It’s been alleged that there exist hybrid phases that are neither fluid nor crystal21.

• Orbitals are long-ranged Wannier functions.

• Have tried using orbitals of the form

φR(r) = exp
(−C|r−R|2) +

∑

S

cS

∑

G∈S

cos[G.(r−R)],

where C and the cS are optimisable. S runs over stars of G vectors. This form of
orbital can describe the proposed hybrid phase (and the crystal phase).

• Have looked, but haven’t found the hybrid phase. Does it exist?

• Fact that fluid–crystal transition is from a paramagnetic fluid rather than a
ferromagnetic one makes hybrid phase more unlikely.

21 H. Falakshahi and X. Waintal, Phys. Rev. Lett. 94, 046801 (2005); X. Waintal, Phys. Rev. B 73, 075417 (2006).



Conclusions

• There is no region of stability for a ferromagnetic Fermi fluid in 2D.

• Wigner crystallisation occurs at rs = 33± 1 a.u. in 2D.

• Have looked for a recently proposed “hybrid” phase. Didn’t find it.

• Have calculated structure factors, pair-correlation functions and momentum
distributions. Didn’t talk about them today, but I’ll tell you all about them
next time someone pulls out of their ESDG slot at short notice. . . So don’t do this.
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