

A few-fermion BCS superconductor

J. Lofthouse & G.J. Conduit

Theory of Condensed Matter Group, Department of Physics, Cambridge

Superconductivity and Scale in Quantum Systems

Experimental Realization of a Cold Atom Gas

$$|F = 1/2, m_F = 1/2\rangle \implies \oint \qquad \text{Up spin electron}$$
⁶Li atom
$$|F = 1/2, m_F = -1/2\rangle \implies \oint \qquad \text{Down spin electron}$$

⁶Li

A Model of a Cold Atom Gas

Optical trap modeled by 3-D QHO

$$\hat{H}^{(0)} = \frac{-\hbar^2}{2m} \nabla^2 + \frac{1}{2} m (\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2)$$

$$E = \hbar\omega \left(n + 3/2\right)$$
$$n = n_x + n_y + n_z$$

Quantum Monte-Carlo

Non-interacting system orbitals suitable basis for weak interactions

$$\psi_{n_x n_y n_z}(\mathbf{r}) = H_{n_x}\left(\sqrt{\omega_x}x\right) e^{-\frac{1}{2}\left(\sqrt{\omega_x}x\right)^2} \times H_{n_y}\left(\sqrt{\omega_y}y\right) e^{-\frac{1}{2}\left(\sqrt{\omega_y}y\right)^2} \times H_{n_z}\left(\sqrt{\omega_z}z\right) e^{-\frac{1}{2}\left(\sqrt{\omega_z}z\right)^2}$$

• G.S. Energy Monte-Carlo integration

$$E^{\text{est}} = \frac{\int d^{3N} \mathbf{r} \Psi_{\text{trial}}^*(\mathbf{r_1}, ..., \mathbf{r_N}) \hat{H} \Psi_{\text{trial}}(\mathbf{r_1}, ..., \mathbf{r_N})}{\int d^{3N} \mathbf{r} \Psi_{\text{trial}}^*(\mathbf{r_1}, ..., \mathbf{r_N}) \Psi_{\text{trial}}(\mathbf{r_1}, ..., \mathbf{r_N})}$$

Superfluid Hamiltonian in External Trap

• Pairwise attractive interactions between up and down spins

$$\hat{H} = \hat{H}^{(0)} + \iint d^3 \mathbf{r} d^3 \mathbf{r}' c^{\dagger}_{\uparrow}(\mathbf{r}) c^{\dagger}_{\downarrow}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') c_{\downarrow}(\mathbf{r}') c_{\uparrow}(\mathbf{r})$$

$$V(\mathbf{r} - \mathbf{r}') = -V_0\delta(\mathbf{r} - \mathbf{r}')$$

Effect of Interactions on Degeneracy

Effect of Interactions on Degeneracy

Effect of Interactions on Degeneracy

Interaction Energy

$$E_{\rm int} = -V_0 \left\langle \int d^3 \mathbf{r} \ c_{\uparrow}^{\dagger} c_{\uparrow} c_{\downarrow}^{\dagger} c_{\downarrow} \right\rangle$$
$$\rightarrow -V_0 \int d^3 \mathbf{r} \ n_{\uparrow} n_{\downarrow}$$

Interaction Energy

$$\begin{split} E_{\rm int} &= -V_0 \left\langle \int d^3 \mathbf{r} \ c_{\uparrow}^{\dagger} c_{\uparrow} c_{\downarrow}^{\dagger} c_{\downarrow} \right\rangle \\ &\to -V_0 \int d^3 \mathbf{r} \ n_{\uparrow} n_{\downarrow} \\ &\simeq -V_0 \frac{N_{\uparrow} N_{\downarrow}}{L^3} \\ &= -V_0 \frac{N^2}{4L^3} \end{split}$$

Interaction Energy

System Geometry

System Geometry

System Geometry

Pairing Effect

Pairing Effect

Asymmetric Trap

$$\hat{H}^{(0)} = \frac{-\hbar^2}{2m} \nabla^2 + \frac{1}{2} m (\omega_{\perp}^2 x^2 + \omega_{\perp}^2 y^2 + \omega_{||}^2 z^2)$$

Non-interacting energy of N = 8 state $E = 6\hbar (2\omega_{\perp} + \omega_{||})$

Kept constant for

$$\omega_{||}(s) = \omega_0(1-2s)$$
$$\omega_{\perp}(s) = \omega_0(1+s)$$

Asymmetric Trap

- Unique opportunity to realize a few body interacting system
- Link between microscopic physics and macroscopic phenomenology
- DMC simulations allowed us to probe attractive interactions

BCS state

BCS state

BCS state

$$\Delta(\mathbf{r}) = \Delta_0$$

$$\Delta(\mathbf{r}) = \Delta_0 e^{i\mathbf{q}\cdot\mathbf{r}}$$

Available states

Available states

$$\Delta(\boldsymbol{r}) = \langle \boldsymbol{\psi} | \boldsymbol{c}_{\uparrow}(\boldsymbol{r}) \boldsymbol{c}_{\downarrow}(\boldsymbol{r}) | \boldsymbol{\psi} \rangle$$

 $\overline{\Delta}(\boldsymbol{r})\Delta(\boldsymbol{0}) = \langle \psi | c_{\star}^{\dagger}(\boldsymbol{r}) c_{\uparrow}^{\dagger}(\boldsymbol{r}) c_{\uparrow}(\boldsymbol{0}) c_{\downarrow}(\boldsymbol{0}) | \psi \rangle$

Where does the extra majority spin reside?

Where does the extra majority spin reside?

Few trapped fermions offers chance to observe spatially modulated pairing

Trap ellipticity and central barrier are experimental probes of the pairing state

$$g(n) = (n+1)(n+2)/2$$
$$N \sim \int_0^{n_{max}} dn \ g(n) \simeq n_{max}^3/6$$

$$g(n) = (n+1)(n+2)/2$$

 $N \sim \int_0^{n_{max}} dn \ g(n) \simeq n_{max}^3/6$

Hamiltonian for outermost electron

$$\begin{split} \langle \hat{H}_{n_{max}} \rangle &\simeq \frac{1}{2} m \omega^2 \left\langle \hat{r}^2 \right\rangle \\ \langle \hat{H}_{n_{max}} \rangle &= \hbar \omega \left(n_{max} + \frac{3}{2} \right) \end{split}$$

$$g(n) = (n+1)(n+2)/2$$
$$N \sim \int_0^{n_{max}} dn \ g(n) \simeq n_{max}^3/6$$

Hamiltonian for outermost electron

$$n_{max} \sim \left\langle \hat{r}^2 \right\rangle$$

 $\sqrt{\langle \hat{r}^2 \rangle} \sim N^{1/6}$

$$\sqrt{\langle \hat{r}^2 \rangle} \sim N^{1/6}$$
$$L^3 = \frac{4}{3} \pi \langle \hat{r}^3 \rangle \sim N^{1/2}$$

$$\sqrt{\langle \hat{r}^2 \rangle} \sim N^{1/6}$$
$$L^3 = \frac{4}{3} \pi \langle \hat{r}^3 \rangle \sim N^{1/2}$$

$$\frac{E_{\rm int}}{N^2} = -\frac{V_0}{4L^3} \\ \frac{E_{\rm int}}{N^2} \sim -V_0 N^{-1/2}$$

Appendix: Magnetised Fermionic Gases

Appendix: Magnestised fermionic gases

• N = 14

Appendix: Asymmetric Trap

Trapping potential

$$V = \frac{1}{2} \left[\omega_{\perp}^2 (x^2 + y^2) + \omega_{\parallel}^2 z^2 \right]$$

One trapped atom

Two trapped atoms

 $E = \omega_{\parallel} + 2\omega_{\perp}$

Three trapped atoms

$$E = \frac{3}{2}\omega_{\parallel} + 4\omega_{\perp}$$

Three trapped atoms

$$E = \frac{5}{2} \omega_{\parallel} + 3\omega_{\perp} + \sqrt{\frac{\omega_{\parallel}}{\omega_{\parallel} + \omega_{B}}} V_{B} \left(2 + \frac{\omega_{\parallel}}{\omega_{\parallel} + \omega_{B}} \right)$$
$$E = \frac{3}{2} \omega_{\parallel} + 4\omega_{\perp} + 3\sqrt{\frac{\omega_{\parallel}}{\omega_{\parallel} + \omega_{B}}} V_{B}$$

UNIVERSITY OF CAMBRIDGE
Three trapped atoms

$$E = \frac{5}{2}\omega_{\parallel} + 3\omega_{\perp} + \sqrt{\frac{\omega_{\parallel}}{\omega_{\parallel} + \omega_{B}}} V_{B} \left(2 + \frac{\omega_{\parallel}}{\omega_{\parallel} + \omega_{B}} \right) + \frac{a}{a_{\parallel}} \omega_{\perp} \sqrt{\frac{2}{\pi}} \left(\frac{3}{2} - \frac{4\sqrt{2}}{\pi} \frac{V_{B}}{\omega_{\parallel} + \omega_{B}} \right)$$

$$E = \frac{3}{2}\omega_{\parallel} + 4\omega_{\perp} + 3\sqrt{\frac{\omega_{\parallel}}{\omega_{\parallel} + \omega_{B}}} V_{B} + \frac{a}{a_{\parallel}}\omega_{\perp} \sqrt{\frac{2}{\pi}} \left(\frac{3}{2} - \frac{6\sqrt{2}}{\pi} \frac{V_{B}}{\omega_{\parallel} + \omega_{B}} \right)$$