Molecular Dynamics Simulations of Protein-Surface Interactions

Daniel Cole, Mike Payne Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge, U.K.

Lucio Colombi Ciacchi

Institute for Reliability of Systems and Devices, Karlsruhe, Germany Fraunhofer Institute for Mechanics of Materials, Freiburg, Germany

ICM

Institut Werkstoffmechanik

Introduction

That looks like Biology.

Why protein-surface interactions are important in selecting candidate materials for biomedical applications.

Where are the electrons?

Ab-initio study of Si surface structure, native oxide growth and its interactions with water.

What's that got to do with proteins?

Investigate adhesion at the solid/liquid interface, taking into account the molecular nature of the solvent and considering a realistic model for the Si surface.

Materials design

Behaviour of surfaces in physiological environment important for design of materials for biomedical applications.

Ti-based orthopaedic implants

Biosensors for measurement of pH, pressure, analyte conc.

Si-based microelectromechanical systems (MEMS)

- transduce physical/chemical stimuli into electrical signals
- well-established manufacturing techniques
- small size

Device surface mediates response to external environment

Such interactions may be influenced by P/B dopants in the bulk if they segregate to the surface

Under physiological conditions, Si is terminated by a thin native oxide layer

Dopant segregation

Oxide is built up on surface while dopants remain trapped at Si/SiO_x interface

Dopants do not affect interactions with external environment

D. J. Cole, M. C. Payne, L. Colombi Ciacchi Surf. Sci. 601, 4888 (2007)

Water adsorption

In humid environment, water attacks strained Si-O bonds

top view

side view

L. Colombi Ciacchi, D. J. Cole, M. C. Payne, P. Gumbsch, submitted for publication

Extra-cellular matrix

Implanted device should guide cell assembly to promote biocompatibility with surrounding tissue

Helps to anchor device, discourages immune response, minimises bacterial contamination

Cells do not adhere directly to implanted surfaces, but instead bind to proteins in the extracellular matrix (ECM) via integrin receptors

Aside - proteins

Proteins are long-chain polymers formed by the condensation of amino acid residues

ASP	ALA	HIS	LYS	SER	GLII	VAL	ata	HIS	ARG	PHE	LYS	ASP
LEU	GLY	GLU		ASN	PHE	LYS	ALA	LEU		LEU	ILE	ALA
PHE	ALA	GLN	TYR	LEU	GLN	GLN	CYS	PRO	PHE	GLU	ASP	HIS
VAL	LYS		VAL	ASN	GLU	VAL	THR	GLU	PHE	ALA	LYS	THR
CYX	VÂL	ALA	ASP	GLU	SER	ALA	GLU	ASN	CYX		LYS	SER
LEU	HIS	THR	LEU	PHE	GLY	ASP	LYS	LEU	CYX	THR	VAL	ALA
THR	LEU		GLU	THR	TYR	GLY	GLU	MET	ALA	ASP	CYX	CYX
ALA	LYS	GLN	GLU		GLU	ARG		GLU	CYX		LEU	GLN
HIS	LYS	ASP	ASP		PRO	ASN	LEU	PRO		LEU	VAL	ARG
PRO	GLU	VAL	ASP		MET	CYX	THR	ALA		HIS	ASP	ASN
GLU	GLU	THR	PHE		LYS	LYS	TYR	LEU		GLU	ILE	ALA
ARG	ARG	HIS	PRO	TYR	PHE	TYR	ALA	PRO		LEU	LEU	PHE
PHE	ALA	LYS	ARG	TYR	LYS	ALA	ALA	PHE		GLU	CYX	CYX
GLN	ALA	ALA	ASP	LYS	ALA	ALA	CYX	LEU		PRO	LYS	LEU
ASP	GLU	LEU		ASP	GLU	GLY	LYS	ALA		SER	ALA	LYS
GLN	ARG	LEU	LYS		ALA	SER	LEU	GLN		PHE	GLY	GLU
ARG	ALA	PHE	LYS	ALA	TRP	ALA	VAL	ALA		LEU	SER	GLU
ARG	PHE	PRO	LYS	ALA	GLU	PHE	ALA			SER	LYS	LEU
VAL	THR	ASP	LEU	THR	LYS			THR		CYX		HIS
GLY	ASP	LEU	LEU		CYX	ALA	ASP	ASP			ASP	LEU
ALA	LYS	TYR	ILE		GLU	ASN	GLN	ASP		ILE	SER	SER
LYS	LEU	LYS		CYX		GLU	LYS	PRO		LEU	GLU	LYS
SER	HIS	CYX	ILE	ALA	GLU	VAL	GLU			GLU	MET	PRO
ALA	ASP	LEU	PRO	SER	LEU	ALA	ALA	ASP			GLU	SER
LYS	ASP	VAL		LYS	ASN	TYR	ALA			LYS	ASP	VAL
PHE	LEU	GLY	MET	PHE	LEU	TYR	GLU	TYR			ARG	HIS
PRO	ASP	TYR		VAL		LEU	LEU		ARG			LYS
THR	TYR	GLU	THR	THR	LEU	GLU	LYS	CYX			ALA	ALA
ASP	PRO	HIS	GLU	CYX	TYR	ALA	LYS	VAL	PHE	ASP	GLU	PHE
LYS	PRO	LEU	VAL	GLU	GLU	PRO	GLN	ASN		ILE	LYS	GLN
ASN	CYX	GLU	LEU	PHE	GLU	GLN	LEU	GLY	GLU	TYR	LYS	PHE
GLN	ASN	ALA	LEU		VAL	ARG	TYR	THR		LYS	VAL	PRO
GLN	VAL	SER	THR	PRO	THR	LEU	VAL	GLU		SER	ARG	
LEU	GLY	LYS	VAL	GLY	SER	LYS	CYX	CYX	LYS	HIS	PRO	GLU
ALA	LYS	ARG	MET	PRO	CYX	ALA	GLU	ASP		LEU	SER	VAL
VAL	LEU	ASN			CYX	VAL	LEU	HIS		LYS	THR	PRO
VAL	SER	ASP	ARG		THR	LYS	CYX	CYX		GLU	SER	LEU
VAL	ASN		ARG		CYX	PHE		ALA		GLU	VAL	
GLU	THR	TYR	VAL	PRO	LYS	GLU	PHE	ASN	ALA		THR	PHE
THR	PHE	HIS	ALA	ASP	ILE	CYX	THR	LEU	SER		LYS	GLU
ARG	GLN	ILE	LYS	LYS	GLN		ALA	LEU			LEU	VAL
LYS	HIS	LYS	PRO	LYS	ALA	THR	LYS	GLU		LEU	LYS	ALA
VAL	MET	ASP	ASP	PHE	ALA	ALA	PHE	VAL		LYS	CYX	CYX
LYS	ALA	ASP	ASP	LYS	GLU	THR		PHE	ALA		GLU	GLY
LYS	LYS	LEU	VAL		ALA	SER			ALA	LEU	GLY	LEU
210		220				~	~ 214			220	~	220

Aside - proteins

Protein backbone consists of repeating $-N-C_{\alpha}$ -C- motif Pattern of backbone atoms gives secondary structure Strong relationship between protein structure and function

Rational design of MEMS

Integrins recognise specific amino acid sequences on extracellular matrix proteins and so surfaces must be designed to adsorb proteins in the correct orientation for integrin binding

Control over adhesion achieved by manipulation of surface properties – isoelectric point, functional group termination, topography, <u>hydrophobicity</u>

Effect of surface hydrophobicity

Effect of surface hydrophobicity

Atomistic details of the interactions at the surface/protein interface are unclear.

Continuum theories, such as DLVO, treat the surface and protein as macroscopic objects interacting via short-range vdW interactions and longer-range electrostatic double layer forces between charged surfaces.

DLVO works well at large separations, but neglects:

- hydrophobic interaction
- chemical nature of adsorbate
- solvent structure close to surface

Water at a hydrophilic surface

At the native oxide, strong surface-water interactions overcome the decrease in water entropy at the surface.

Water density oscillations explain strength of mutual bonding between pairs of Si wafers.

D. J. Cole, G. Csányi, S. M. Spearing, M. C. Payne, L. Colombi Ciacchi J. Chem. Phys. 127, 204704 (2007)

Water at a hydrophobic surface

Water is repelled from the hydrophobic H-terminated Si surface and formation of the interface is energetically unfavourable.

Summary so far...

For the rational design of materials for biomedical applications, ECM protein adhesion must be guided.

We're interested in studying the atomistic details of the interactions that determine protein binding modes on surfaces of different hydrophobicity.

Given the importance of interfacial water structure in the mutual adhesion between Si surfaces, is it also important in determining the adhesion between the surface and proteins?

...let's use classical molecular dynamics to find out.

Classical MD

System of nuclei and electrons replaced by atom-centred point charges.

Surface-water interactions described by Coulomb and L-J. Parameters tuned to reproduce correct heat of immersion of silica.

Potential adapted to include standard AMBER biomolecular force field.

Mussels achieve long-lasting adhesion to many inorganic and organic surfaces in a wet environment – even teflon.

Mytulis edulis foot proteins contain a high concentration of dopamine.

on Ti surface

NC1 Domain of Collagen XIV

Collagen on a hydrophilic surface

0.00 ns

NVE relaxation in vacuum Fill with water at 1g/cm³ Run at 300K for 2ns Compare to unbound system

Collagen on a hydrophilic surface

NVE relaxation in vacuum Fill with water at 1g/cm³ Run at 300K for 2ns Compare to unbound system

Collagen on a hydrophilic surface

Collagen on a hydrophobic surface

Collagen on a hydrophobic surface

Simulation time / ns

Ramachandran plots

Binding energies and Ramachandran plots are consistent with experimental observations – collagen α -helix is stabilised by adsorption onto hydrophobic surfaces.

Water structure around protein at hydrophobic surface (red) unchanged from structure around unbound protein (black).

Water bound to the protein shows similar density oscillations perpendicular to the surface.

Observe protein structuring to maintain water interactions.

On hydrophilic surface, initially observe no stabilising proteinwater interactions and protein is screened from surface by high density water peak.

Problem with dielectric models

Simple dielectric model for water, which does not account for its molecular nature, predicts strong adhesion on <u>both</u> the hydrophilic and the hydrophobic surface.

This is qualitatively correct for the hydrophobic model, but misses possible protein re-structuring at the interface due to interactions with the solvent.

This is wrong for the hydrophilic surface, where the protein is screened from the surface by a high density water layer and desorbs.

Conclusions I

Collagen XIV adsorbs with large adhesion energy on hydrophobic surfaces, but leaves the surface-bound hydration layer on hydrophilic surfaces intact.

Conclusions II

Adsorption vs. desorption behaviour is determined by interplay between p-s, s-w and p-w interactions.

Solvent interactions at the hydrophobic surface restructure the protein and may contribute to the adhesion energy.

Unfavourable p-w interactions and screening of the p-s interactions lead to desorption from the hydrophilic surface.

Further acknowledgements

Computing time provided by the Cambridge HPC Service

Funding from the EPSRC and the HPC-Europa programme

