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INTRODUCTION 
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Electronic structure problem 
What	  atoms,	  molecules,	  and	  solids	  exist,	  and	  

what	  are	  their	  properOes?	  
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Kohn-Sham equations (1965) 
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He atom in Kohn-Sham DFT 
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Commonly-used functionals` 
•  Local	  density	  approximaOon	  (LDA)	  
–  Uses	  only	  ρ(r)	  at	  a	  point.	  

•  Generalized	  gradient	  approx	  (GGA)	  	  
–  Uses	  both	  ρ(r)	  and	  |∇ρ(r)|	  
–  Should	  be	  more	  accurate,	  corrects	  overbinding	  of	  LDA	  
–  Examples	  are	  PBE	  and	  BLYP	  and	  AM05	  

•  Hybrid:	  
– Mixes	  some	  fracOon	  of	  HF	  
–  Examples	  are	  B3LYP	  and	  PBE0	  	  
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Errors in standard DFT 
approximations 

Nov	  12,	  2013	   Cambridge	  13	   7	  



DMRG 

•  Extremely	  efficient	  exact	  solver	  for	  1d	  
problems	  

•  TradiOonally	  applied	  to	  model	  Hamiltonians,	  
e.g.,	  2000	  site	  Hubbard	  chain	  

•  Works	  well	  when	  correlaOon	  is	  so	  strong	  that	  
nothing	  starOng	  from	  HF	  can	  work.	  
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Problems with DFT 

Density functional theory (DFT) is an 
efficient method that works extremely 
well for molecules and materials....
                      ...except when it doesn’t

Strong Correlation

Predicting GapsDerivative 
Discontinuity

Transport
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Basic ingredients 

Ideas for correcting these issues,
but how to test them?

HSE

GGA+U
DMFT+DFT
S-DFA

To check if they work, and for the right 
reasons, must give something up:

• Continuum
• Long-range interactions
• Three Dimensions
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Using	  an	  exact	  
numerical	  
solver	  for	  1d	  
systems	  (known	  
as	  DMRG),	  we	  
can	  learn	  more	  
about	  density	  
funcOonal	  
theory	  (DFT)	  
and	  find	  ways	  to	  
make	  it	  beHer	  	  
	  



From Miles 

Method 2: (this talk) 
Discretize real space
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Dolfi, Bauer, et al., PRL 109 020604 (2012)

Stoudenmire, Wagner, White, Burke, PRL 109 056402 (2012)
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Three levels of activity 

Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional
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SET UP 
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How to do this 

One-Dimensional Continuum Electronic Structure with the Density-Matrix Renormalization
Group and Its Implications for Density-Functional Theory

E.M. Stoudenmire, Lucas O. Wagner, Steven R. White, and Kieron Burke*

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Received 12 July 2011; revised manuscript received 5 January 2012; published 1 August 2012)

We extend the density matrix renormalization group to compute exact ground states of continuum

many-electron systems in one dimension with long-range interactions. We find the exact ground state of a

chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold

atom systems and to study density-functional theory in an exact setting. To illustrate, we find an

interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.

DOI: 10.1103/PhysRevLett.109.056402 PACS numbers: 71.15.Dx, 05.10.Cc, 31.15.E!, 71.15.Mb

For electronic structure calculations, these are the best of
times and the worst of times. When correlations are weak,
density-functional theory (DFT) makes it possible to tackle
extremely realistic Hamiltonians and large system sizes
with reasonable accuracy [1]. For strongly correlated sys-
tems, there exist powerful and controllable numerical
methods [2] for simulating lattice Hamiltonians, such as
the Hubbard model. However, few numerical tools can
treat the combination of strongly correlated electronic
systems and realistic microscopic Hamiltonians. In the
strongly correlated regime, DFT approximations are nei-
ther systematic nor controllable, often leading to unre-
strained parameter multiplication and empiricism. Model
Hamiltonians rely on the arbitrary truncation of terms that
may be crucial in tipping the balance between competing
phases. Attempts to bridge the gap between realistic
Hamiltonians and strong correlation techniques, such as
dynamical mean field theory coupled to DFT [3,4], may
contain both arbitrary truncations and a less than ideal
treatment of correlations.

Therefore we would like to study DFT in an exact setting
to see how density functional approximations break
down and whether new approximations contain the right
physics. But very few continuum, three-dimensional, long-
range interacting systems can be easily treated exactly.
Here, we show that by studying one-dimensional (1D)
systems instead, we can treat realistic Hamiltonians and
strong electron correlations essentially exactly, even for a
very large number of atoms. Because they preserve the
continuum, our 1D models mimic key features of three-
dimensional reality surprisingly well [5].

Our approach is based on the density matrix renormal-
ization group (DMRG) [6], the most powerful of the
strongly correlated techniques for 1D lattice models. Here
we extend DMRG to treat continuum electron systems
with long-range interactions. This new approach retains
DMRG’s exponential convergence and near linear scaling
with system size. As an example, we present a near exact
calculation of a system with 100 strongly interacting pseu-
dohydrogen atoms (Fig. 1).

A key motivation for this method is to study DFT in an
exact setting, both when correlations are strong and near
the thermodynamic limit. Generically, 1D systems have
strong quantum fluctuations, making them an especially
rigorous test of DFT approximations; they can also be
pushed to large size with less effort. As in Fig. 1, we can
easily compare various DFT approximations with exact
results for extended systems. We can also compute exact
quantities appearing in the DFT formalism; for example,
we show below that a gapped interacting system can
nevertheless have a Kohn-Sham gap which is exactly
zero (a Mott insulator [7]). DMRG also offers new ways
to characterize electronic structure models using quantum
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FIG. 1 (color online). The exact ground state density of a
chain of 100 widely separated (strongly correlated) artificial
atoms. The total length of the system is L ¼ 420 in atomic units
(4200 grid sites with a spacing of 0.1). The upper panel shows
the electron density of a central region superimposed with
the density at the left edge (the dashed blue curve with corres
ponding x above). The lower panel compares the exact electron
density to DFT predictions within the local spin density
approximation.
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Example of long chains 
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Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional

Tuesday, February 28, 12



Densities of long chains 

One-Dimensional Continuum Electronic Structure with the Density-Matrix Renormalization
Group and Its Implications for Density-Functional Theory

E.M. Stoudenmire, Lucas O. Wagner, Steven R. White, and Kieron Burke*

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Received 12 July 2011; revised manuscript received 5 January 2012; published 1 August 2012)

We extend the density matrix renormalization group to compute exact ground states of continuum

many-electron systems in one dimension with long-range interactions. We find the exact ground state of a

chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold

atom systems and to study density-functional theory in an exact setting. To illustrate, we find an

interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.

DOI: 10.1103/PhysRevLett.109.056402 PACS numbers: 71.15.Dx, 05.10.Cc, 31.15.E!, 71.15.Mb

For electronic structure calculations, these are the best of
times and the worst of times. When correlations are weak,
density-functional theory (DFT) makes it possible to tackle
extremely realistic Hamiltonians and large system sizes
with reasonable accuracy [1]. For strongly correlated sys-
tems, there exist powerful and controllable numerical
methods [2] for simulating lattice Hamiltonians, such as
the Hubbard model. However, few numerical tools can
treat the combination of strongly correlated electronic
systems and realistic microscopic Hamiltonians. In the
strongly correlated regime, DFT approximations are nei-
ther systematic nor controllable, often leading to unre-
strained parameter multiplication and empiricism. Model
Hamiltonians rely on the arbitrary truncation of terms that
may be crucial in tipping the balance between competing
phases. Attempts to bridge the gap between realistic
Hamiltonians and strong correlation techniques, such as
dynamical mean field theory coupled to DFT [3,4], may
contain both arbitrary truncations and a less than ideal
treatment of correlations.

Therefore we would like to study DFT in an exact setting
to see how density functional approximations break
down and whether new approximations contain the right
physics. But very few continuum, three-dimensional, long-
range interacting systems can be easily treated exactly.
Here, we show that by studying one-dimensional (1D)
systems instead, we can treat realistic Hamiltonians and
strong electron correlations essentially exactly, even for a
very large number of atoms. Because they preserve the
continuum, our 1D models mimic key features of three-
dimensional reality surprisingly well [5].

Our approach is based on the density matrix renormal-
ization group (DMRG) [6], the most powerful of the
strongly correlated techniques for 1D lattice models. Here
we extend DMRG to treat continuum electron systems
with long-range interactions. This new approach retains
DMRG’s exponential convergence and near linear scaling
with system size. As an example, we present a near exact
calculation of a system with 100 strongly interacting pseu-
dohydrogen atoms (Fig. 1).

A key motivation for this method is to study DFT in an
exact setting, both when correlations are strong and near
the thermodynamic limit. Generically, 1D systems have
strong quantum fluctuations, making them an especially
rigorous test of DFT approximations; they can also be
pushed to large size with less effort. As in Fig. 1, we can
easily compare various DFT approximations with exact
results for extended systems. We can also compute exact
quantities appearing in the DFT formalism; for example,
we show below that a gapped interacting system can
nevertheless have a Kohn-Sham gap which is exactly
zero (a Mott insulator [7]). DMRG also offers new ways
to characterize electronic structure models using quantum
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FIG. 1 (color online). The exact ground state density of a
chain of 100 widely separated (strongly correlated) artificial
atoms. The total length of the system is L ¼ 420 in atomic units
(4200 grid sites with a spacing of 0.1). The upper panel shows
the electron density of a central region superimposed with
the density at the left edge (the dashed blue curve with corres
ponding x above). The lower panel compares the exact electron
density to DFT predictions within the local spin density
approximation.
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Spontaneous dimerization 

systems and, in the future, explore dynamical and finite-
temperature effects.

To demonstrate the power of our approach, we display in
Fig. 1 the exact ground state density of a chain of one
hundred artificial atoms with long-range interactions,
which took a few days of computer time on a single work-
station. Representing the ground state accurately required
keeping about m ¼ 200 states. The relative energy error in
the many-body solution from DMRG is of the order of
10"6. The relative errors due to the finite grid spacing and
finite number of exponentials NMPO used to fit vee are
larger, of the order of 10"4, but are well understood and
easily reduced if necessary. Also shown in Fig. 1 are DFT
calculations within both the restricted and unrestricted
LSDA [17]. For this system, both DFT approaches make
substantial errors. In terms of lattice models, one would
represent this system with either a half-filled Hubbard
chain or an antiferromagnetic Heisenberg chain. Both
models are critical with power law decaying spin-spin
correlations; a noncritical system would have been easier
for DMRG. It is not surprising that the local DFT approx-
imations cannot capture the quasi-long-range spin correla-
tions, with the unrestricted LSDA predicting long-range
antiferromagnetism (similar to Fig. 2). It is somewhat
surprising that even the total density from LSDA deviates
strongly from the exact DMRG results. The total energy
from each LSDA calculation is off by about 1%.

In Fig. 2 we show a system which reveals weaknesses
of both approximate DFT and of model Hamiltonian ap-
proaches. The figure shows the exact ground state density
of ten atoms with interatomic spacing b ¼ 4. The edges
induce a staggered pattern of strong and weak bonds
which decays slowly into the bulk, and is therefore signifi-
cant throughout this small system. We can understand
the staggered behavior from a 10 site Hubbard model (at
half- filling with U=t ¼ 4 chosen arbitrarily) or a 10 site
Heisenberg model. The Heisenberg ground state has reso-
nating valence bond character; in a perfect near-neighbor
resonating-valence-bond state, the edges would suppress
all resonance and drive the weak bonds to zero. The actual
Heisenberg ground state has longer range resonances
which reduce these effects. In the Hubbard model, the
strong exchange bonds show up as bonds with lower
kinetic energy. However, neither lattice model reveals the
increased electron density on the strong bonds, stemming
from the strong hopping. These models might be improved
by bond-dependent interactions t and J. The LSDA calcu-
lations capture even fewer properties of the true ground
state. Unrestricted LSD predicts an energy"11:364 which
is close to the exact energy "11:496, but no staggered
bond density and breaks spin symmetry, producing a long-
ranged antiferromagnetic state as shown in the lower panel
of Fig. 2. Restricted LSDA captures the staggered density
pattern qualitatively, but gives a slightly higher energy
"11:323 and fails to reproduce the correct local spin

correlations since its wave function is a Slater determinant
of extended orbitals. The artificial symmetry breaking of
LSDA can be understood as a frozen spin fluctuation [19],
but the exact functional yields a singlet ground state.
Not only can we compare our exact results to DFT

approximations, we can also use them to investigate fun-
damental questions about DFT itself. The fundamental
(charge) gap is Eg ¼ ðI " AÞ where I is the ionization
potential and A the electron affinity. In Fig. 3, we compute
Eg for chains of soft hydrogen atoms with spacing b ¼ 4
for large systems up to N ¼ 60 atoms (% 2500 grid sites).
Extrapolation shows the N ! 1 system to be an insulator.
We also compute the exact Kohn-Sham (KS) gap for each
N by inverting the density of the neutral system to obtain
the KS potential and its single particle energies. (Given an
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FIG. 2 (color online). Spontaneous dimerization of the density
for a chain of 10 soft hydrogen atoms with interatomic spacing
b ¼ 4 (dashed lines are a guide to the eye). The upper panel
compares the densities predicted by DFT within the LSDA; the
lower panel shows the spin densities for unrestricted LSDA. Also
shown is the expectation value of the kinetic energy hcyj cjþ1 þ
cyjþ1cji for a Hubbard model with U=t ¼ 4 and the exchange

energy hSj ' Sjþ1i for the Heisenberg model on 10 lattice sites.
The thickness of the lines indicates the magnitude of these
quantities on each bond.
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damental questions about DFT itself. The fundamental
(charge) gap is Eg ¼ ðI " AÞ where I is the ionization
potential and A the electron affinity. In Fig. 3, we compute
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for a chain of 10 soft hydrogen atoms with interatomic spacing
b ¼ 4 (dashed lines are a guide to the eye). The upper panel
compares the densities predicted by DFT within the LSDA; the
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Mott-Hubbard gap 

interacting system, the KS system is the unique noninter-
acting system with the same density [20].) In the thermo-
dynamic limit, the KS gaps extrapolate to zero, so that
the exact N ! 1 KS system is a metal. This is consistent
with the fact that each finite KS system in Fig. 3 has one
electron per unit cell and thus a half-filled band (in contrast
to the unrestricted LSDAwhich breaks spin symmetry for
this system).

The discrepancy between the KS and exact gap was long
ago identified [21] with the exchange-correlation deriva-
tive discontinuity in DFT: Eg ¼ !s þ !XC, where !s is
the KS gap, that is, the energy difference between the
lowest unoccupied and highest occupied orbitals of the
neutral KS system. Approximate functionals such as
LSDA that are continuous in particle number miss this
effect entirely. The LSDA KS gaps are almost identical
to the exact ones shown in Fig. 3, but the LSDA funda-
mental gap drops from close to Eg for small N to near zero
at large N (details reported elsewhere).

Previous calculations have found !XC for semiconduc-
tors [22,23] with finite KS gaps !s, but our system’s gap is
entirely due to !XC, underscoring its importance for strong
correlation physics. Our results rely on no uncontrolled
approximations and so demonstrate unambiguously the
behavior of Mott insulators in DFT. Present DFT research
on this issue focuses on extracting accurate Eg from semi-
local functional calculations [24,25].

The onset of strong correlation with increasing bond
length is often identified with the Coulson-Fischer point
[26], where an unrestricted Hartree-Fock calculation spon-
taneously breaks spin symmetry. A different way to dis-
tinguish strong from weak correlation is through the
entanglement spectrum, readily accessible in DMRG.

Defining the left reduced density matrix !L¼TrRj"ih"j,
where the trace is over all grid sites in the right half of the
system, the entanglement spectrum consists of the energies
of the entanglement Hamiltonian HE ¼ # ln!L [27]. The
most probable density matrix eigenstates are those in the
low ‘‘energy’’ part of the spectrum. By classifying these
states according to their particle numberNL, we can under-
stand the dominant quantum fluctuations of the ground
state. Figure 4 shows the entanglement spectrum at the
center of a series of four-atom chains with increasing
interatomic separation. A sharp crossover at b ’ 5:5, where
the probability for charge fluctuations drops below that
of pure spin fluctuations, signals the onset of strongly
correlated behavior.
Many oxide materials of current interest are too strongly

correlated for present DFT methods, but crucial properties
must be calculated to an accuracy far beyond that of simple
model Hamiltonians. The method described here provides
a new, alternative route to studying strongly correlated
systems. All existing approximations, from heuristic cor-
rections to standard functionals, such as LDAþ U [28], to
methods developed for lattice models, such as dynamical
mean field theory [29], can be applied and tested more
easily, thoroughly, and accurately in the present setting.
Because our 1D world captures a feature crucial to density
functional approximations, namely, the continuum instead
of a lattice, such studies should provide the insight needed
to construct more accurate density functionals for real
strongly correlated materials.
We gratefully acknowledge DOE Grant No. DE-FG02-

08ER46496 (K. B., L. O.W., and S. R.W.) and NSF Grant
No. DMR-0907500 (E.M. S. and S. R.W.) for supporting
this work.
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Entanglement spectrum 

interacting system, the KS system is the unique noninter-
acting system with the same density [20].) In the thermo-
dynamic limit, the KS gaps extrapolate to zero, so that
the exact N ! 1 KS system is a metal. This is consistent
with the fact that each finite KS system in Fig. 3 has one
electron per unit cell and thus a half-filled band (in contrast
to the unrestricted LSDAwhich breaks spin symmetry for
this system).

The discrepancy between the KS and exact gap was long
ago identified [21] with the exchange-correlation deriva-
tive discontinuity in DFT: Eg ¼ !s þ !XC, where !s is
the KS gap, that is, the energy difference between the
lowest unoccupied and highest occupied orbitals of the
neutral KS system. Approximate functionals such as
LSDA that are continuous in particle number miss this
effect entirely. The LSDA KS gaps are almost identical
to the exact ones shown in Fig. 3, but the LSDA funda-
mental gap drops from close to Eg for small N to near zero
at large N (details reported elsewhere).

Previous calculations have found !XC for semiconduc-
tors [22,23] with finite KS gaps !s, but our system’s gap is
entirely due to !XC, underscoring its importance for strong
correlation physics. Our results rely on no uncontrolled
approximations and so demonstrate unambiguously the
behavior of Mott insulators in DFT. Present DFT research
on this issue focuses on extracting accurate Eg from semi-
local functional calculations [24,25].

The onset of strong correlation with increasing bond
length is often identified with the Coulson-Fischer point
[26], where an unrestricted Hartree-Fock calculation spon-
taneously breaks spin symmetry. A different way to dis-
tinguish strong from weak correlation is through the
entanglement spectrum, readily accessible in DMRG.

Defining the left reduced density matrix !L¼TrRj"ih"j,
where the trace is over all grid sites in the right half of the
system, the entanglement spectrum consists of the energies
of the entanglement Hamiltonian HE ¼ # ln!L [27]. The
most probable density matrix eigenstates are those in the
low ‘‘energy’’ part of the spectrum. By classifying these
states according to their particle numberNL, we can under-
stand the dominant quantum fluctuations of the ground
state. Figure 4 shows the entanglement spectrum at the
center of a series of four-atom chains with increasing
interatomic separation. A sharp crossover at b ’ 5:5, where
the probability for charge fluctuations drops below that
of pure spin fluctuations, signals the onset of strongly
correlated behavior.
Many oxide materials of current interest are too strongly

correlated for present DFT methods, but crucial properties
must be calculated to an accuracy far beyond that of simple
model Hamiltonians. The method described here provides
a new, alternative route to studying strongly correlated
systems. All existing approximations, from heuristic cor-
rections to standard functionals, such as LDAþ U [28], to
methods developed for lattice models, such as dynamical
mean field theory [29], can be applied and tested more
easily, thoroughly, and accurately in the present setting.
Because our 1D world captures a feature crucial to density
functional approximations, namely, the continuum instead
of a lattice, such studies should provide the insight needed
to construct more accurate density functionals for real
strongly correlated materials.
We gratefully acknowledge DOE Grant No. DE-FG02-

08ER46496 (K. B., L. O.W., and S. R.W.) and NSF Grant
No. DMR-0907500 (E.M. S. and S. R.W.) for supporting
this work.

0 0.05 0.1 0.15 0.2

1/N

0

0.1

0.2

0.3

0.4

E
ne

rg
y 

G
ap

 (a
.u

.)

Exact I-A

Exact KS Gap
∆XC

FIG. 3 (color online). Exact gaps for chains of N soft hydrogen
atoms with atomic separation b ¼ 4 (error bars are less than
symbol sizes). The upper curve is a quadratic fit of exact gaps of
the largest six systems and extrapolates to a finite value Eg ’
0:33. The exact Kohn-Sham gaps, in contrast, extrapolate to zero
showing that for N ! 1 the true KS system is metallic (lower
curve is a linear fit of exat KS gaps of the largest six systems).

2 3 4 5 6 7 8
Interatomic Separation b

0

1

2

3

4

5

6

E
nt

an
gl

em
en

t "
E

ne
rg

y"

N = 2,2
N = 3,1
N = 1,3
N = 2,2

FIG. 4 (color online). Entanglement spectrum at the center of
interacting 4-atom chains with various interatomic separations b.
N ¼ ðNL;NRÞ refers to the number of electrons to the left and
right of the cut for each density matrix eigenstate. The states
with NL ¼ 3, 1 primarily correspond to charge fluctuations
while those with NL ¼ 2 to spin fluctuations.

PRL 109, 056402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 AUGUST 2012

056402-4

Nov	  12,	  2013	   Cambridge	  13	   19	  



BENCHMARKS 

Nov	  12,	  2013	   Cambridge	  13	   20	  

Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional

Tuesday, February 28, 12

Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional

Tuesday, February 28, 12

Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional

Tuesday, February 28, 12



Benchmark DFT calculations 

This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 8581–8590 8581

Cite this: Phys. Chem. Chem. Phys., 2012, 14, 8581–8590

Reference electronic structure calculations in one dimensionw

Lucas O. Wagner,*a E. M. Stoudenmire,a Kieron Burkeab and Steven R. Whitea

Received 24th December 2011, Accepted 1st May 2012

DOI: 10.1039/c2cp24118h

Large strongly correlated systems provide a challenge to modern electronic structure methods,

because standard density functionals usually fail and traditional quantum chemical approaches

are too demanding. The density-matrix renormalization group method, an extremely powerful

tool for solving such systems, has recently been extended to handle long-range interactions on

real-space grids, but is most efficient in one dimension where it can provide essentially arbitrary

accuracy. Such 1d systems therefore provide a theoretical laboratory for studying strong

correlation and developing density functional approximations to handle strong correlation, if they

mimic three-dimensional reality sufficiently closely. We demonstrate that this is the case, and

provide reference data for exact and standard approximate methods, for future use in this area.

1 Introduction and philosophy

Electronic structure methods such as density functional theory
(DFT) are excellent tools for investigating the properties of
solids and molecules—except when they are not. Standard
density functional approximations in the Kohn–Sham (KS)
framework1 work well in the weakly correlated regime,2–4

but these same approximations can fail miserably when the
electrons become strongly correlated.5 A burning issue in
practical materials science today is the desire to develop
approximate density functionals that work well, even for strong
correlation. This has been emphasized in the work of Cohen
et al.,5,6 where even the simplest molecules, H2 and H2

+, exhibit
features essential to strong correlation when stretched.

Many approximate methods, both within and beyond DFT,
are currently being developed for tackling these problems,
such as the HSE06 functional7 or the dynamical mean-field
theory.8 Their efficacy is usually judged by comparison with
experiment over a range of materials, especially in calculating
gaps and predicting correct magnetic phases. But such com-
parisons are statistical and often mired in controversy, due to
the complexity of extended systems.

In molecular systems, there is now a large variety of tradi-
tional (ab initio) methods for solving the Schrödinger equation
with high accuracy, so approximate methods can be bench-
marked against highly-accurate results, at least for small
molecules.9Most suchmethods have not yet been reliably adopted
for extended systems, where quantum Monte Carlo (QMC)10 has

become one of the few ways to provide theoretical benchmarks.11

But QMC is largely limited to the ground state and is still
relatively expensive. Much more powerful and efficient is the
density-matrix renormalization group (DMRG),12–14 which has
scored some impressive successes in extended systems,15 but
whose efficiency is greatest in one-dimensional systems.
A possible way forward is therefore to study simpler systems,

defined only in one dimension, as a theoretical laboratory for
understanding strong correlation. In fact, there is a long history
of doing just this, but using lattice Hamiltonians such as the
Hubbard model.16 While such methods do yield insight into
strong correlation, such lattice models differ too strongly from
real-space models to learn much that can be directly applied to
DFT of real systems. However, DMRG has recently been
extended to treat long-range interactions in real space.17 This
then begs the question: are one-dimensional analogs sufficiently
similar to their three-dimensional counterparts to allow us to
learn anything about real DFT for real systems?
In this paper, we show that the answer is definitively yes by

carefully and precisely calculating many exact and approxi-
mate properties of small systems. We use DMRG for the exact
calculations and the one-dimensional local-density approxi-
mation for the DFT calculations.18 In passing, we establish
many precise reference values for future calculations. Of
course, the exact calculations could be performed with any
traditional method for such small systems, but DMRG is
ideally suited to this problem, and will in the future be used
to handle 1d systems too correlated for even the gold-standard
of ab initio quantum chemistry, CCSD(T).
Thus our purpose here is not to understand real chemistry,

which is intrinsically three dimensional, but rather to check
that our 1d theoretical laboratory is qualitatively close enough
to teach us lessons about handling strong correlation with
electronic structure theories, especially density functional
theory.

aDepartment of Physics and Astronomy, University of California,
Irvine, CA 92697, USA. E-mail: lwagner@uci.edu

bDepartment of Chemistry, University of California, Irvine,
CA 92697, USA

w This article was submitted as part of a Themed Issue on fragment and
localized orbital methods in electronic structure theory. Other papers on
this topic can be found in issue 21 of vol. 14 (2012). This issue can be
found from the PCCP homepage [http://www.rsc.org/pccp].
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Our results are illustrated in Fig. 1, which shows 1d H2 with
soft-Coulomb interactions, plotted in atomic units. The exact
density was found by DMRG and inverted to find the
corresponding exact KS potential, vS(x). The bond has been
stretched beyond the Coulson–Fischer point, where Hartree–
Fock and DFT approximations do poorly, as discussed
further in Section 4.5. We comment here that a strong XC
contribution to the KS potential is needed to reproduce the
exact density in the bond region.19 Calculations to obtain the
KS potential have often been performed for few-electron
systems in 3d in the past,20,21 but our method allows exact
treatment of systems with many electrons. In another paper,17

we show how powerful our DMRG method is, by solving a
chain of 100 1d H atoms. All such calculations were previously
unthinkable for systems of this size, and unreachable by any
other method. We have applied these techniques to perform
the first ever Kohn–Sham calculations using the exact XC
functional, essentially implementing the exact Levy–Lieb
constrained search definition of the functional, which we will
present in yet another paper.

2 Background in DMRG

The density matrix renormalization group (DMRG) is a
powerful numerical method for computing essentially exact
many-body ground-state wavefunctions.12,13 Traditionally,
DMRG has been applied to 1d and quasi-2d finite-range
lattice models for strongly correlated electrons.14 DMRG has
also been applied to systems in quantum chemistry, where the
long-range Coulomb interaction is distinctive. The Hamiltonians
which have been studied in this context include the Pariser–
Parr–Pople model22 and the second-quantized form of the
Hartree–Fock equations, where lattice sites represent electronic
orbitals.15,23,24

DMRG works by truncating the exponentially large basis of
the full Hilbert space down to a much smaller one which is
nevertheless able to represent the ground-state wavefunction
accurately. Such a truncation would be highly inefficient in a
real-space, momentum-space, or orbital basis; rather, the most
efficient basis consists of the eigenstates of the reduced density

matrix computed across bipartitions of the system.12 A DMRG
calculation proceeds back and forth through a 1d system in a
sweeping pattern, first optimizing the ground-state in the
current basis then computing an improved basis for the next
step. By increasing the number of basis states m that are kept,
DMRG can find the wavefunction to arbitrary accuracy.
The computational cost of DMRG scales as Nsm

3 where Ns

is the number of lattice sites. For gapped systems in 1d, the
number of states m required to compute the ground-state to a
specified accuracy is independent of system size, allowing
DMRG to scale linearly with Ns. For gapless or critical
systems, the m needed grows logarithmically with system size,
making the scaling only slightly worse. The systems considered
here have a relatively low total number of electrons such that
the number of states m required is small, often less than 100.
This in turn enables us to work with the very large numbers of
sites (Ns B 1000–5000) needed to reach the continuum, as
described in more detail below.

3 Methodology

To apply DFT in its natural context—in the continuum—we
shall consider a model of soft-Coulomb interacting matter,25–27

where the electron repulsion has the form

veeðuÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p ; ð1Þ

and the interaction between an electron and a nucleus with
charge Z and location X is

v(x) = %Zvee(x % X). (2)

The soft-Coulomb interaction is chosen to avoid divergences
when particles are close to one another, and has been used to
study molecules in intense laser fields.25,26 The wavefunctions
and densities within this model lack the cusps present in 3d
Coulomb systems. However, the challenge presented by the
long-range interactions in 3d Coulomb systems remains for
these 1d model systems.
Although many methods could be used to solve these 1d

systems, DMRG allows us to work efficiently with any arbitrary
1d real-space system, without the need to develop a basis for
every 1d element. We enable DMRG to operate in the con-
tinuum by discretizing over a fine real-space grid. With a
lattice spacing of a, the real-space Hamiltonian for a 1d system
becomes in second quantized notation,

H ¼
X

j;s

%1
2a2
ðcyjscjþ1;s þ cyjþ1;scjsÞ % ~mnjs

þ
X

j

vjnj þ
1

2

X

ij

vijeeniðnj % dijÞ;
ð3Þ

where ~m= m % 1/a2, vj = v(ja) and vijee = vee(|i % j|a). The dij in
the last term cancels self interactions. The operator cyjs creates

(and cjs annihilates) an electron of spin s on site j, nj= njm+ njk,

and njs ¼ cyjscjs. The hopping terms cyjscjþ1;s (and complex

conjugate) come about from a finite-difference approximation
to the second derivative. Like the second-quantized Hamiltonians
considered in quantum chemistry, this Hamiltonian corresponds

Fig. 1 The KS potential for a stretched hydrogen molecule found

from interacting electrons in 1d.
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spin-density approximation. For exchange, there is a simple
spin scaling relation that tells us33

eunifX ðn"; n#Þ ¼ $n
X

s¼%1
ð1þ szÞ2fðkFð1þ szÞÞ=4; ð9Þ

where z = (nm $ nk)/n is the polarization. This is less trivial
than for simple Coulomb repulsion. At high densities, there is
no increase in exchange energy due to spin polarization, while
there is a huge increase (tending to a factor of 2) at low
density, as shown by the solid black line in Fig. 2. In fact,
eunifX (rs, z = 1) = eunifX (rs/2, z = 0).

To complete LDA, we need the correlation energy density of
the uniform gas at various densities and polarizations. We are
very fortunate to be able to make use of the pioneering work
of ref. 18, which performs just such a QMC calculation and
parametrizes the results, yielding accurate values for eunifC (rs, z),
which are also plotted for the unpolarized and fully polarized
cases in Fig. 2. These curves are not qualitatively similar to the
3d eunifXC (rs, z). For these 1d model systems, the fully polarized
electrons almost completely avoid one another at the exchange
level, so that correlation barely decreases their energy for any

value of rs. For unpolarized electrons, the effect of correlation
is to make them avoid each other entirely for low densities
(rs 4 5) and the XC energy per electron becomes independent
of polarization. However, for unpolarized electrons at high
density, correlation vanishes with rs, and exchange dominates,
as in the usual 3d case. For moderate rs values, the correlation
contribution grows with rs, as shown by the red dashed line of
Fig. 2. To give an idea of what range of rs is important, for the
hydrogen atom of Fig. 3, 95% of the density has rs(x) =
(2n(x))$1 between 1 and 8.
Armed with these parametrizations and tools, we are ready

to discover 1d electronic structure.

4 Results

DMRG gives us an excellent tool for finding exact answers
within a model 1d world. Our 1d world is designed to mimic
qualitatively the 3d world, not match it exactly. Below we
explain some important differences between our model 1d systems
and real 3d systems, starting with the simplest element.

4.1 One-electron atoms and ions

As we already mentioned, we find that the energy of the soft-
Coulomb hydrogen atom is E(H) = $0.66977714, accurate to
1 microhartree. Its ground-state energy is similar to the 3d
hydrogen atom energy of $0.5 a.u. Because the potential and
wavefunction is much smoother, the kinetic energy is only
0.11 a.u., as opposed to 0.5 a.u. in 3d. Since the potential does
not scale homogeneously, the virial theorem in 1d does not yield
a simple relation among energy components, unlike in 3d.
Again because of the lack of simple scaling, hydrogenic

energies do not scale quadratically for our system. A simple fit
of energies for Z Z 1 yields:

EZ ' $Zþ
ffiffiffiffi
Z
p

=2$ 2=9þ a1=
ffiffiffiffi
Z
p

; ðN ¼ 1Þ ð10Þ

where a1 = 0.0524 is chosen to make the result accurate for
Z = 1. The first two coefficients are exact in the large-Z limit,
where the wavefunction is a Gaussian centered on the nucleus.
A well-known deficiency of approximate density functionals

is their self-interaction error. Because EX is approximated,
usually in some local or semilocal form, it fails to cancel the
Hartree energy for all one-electron systems. Thus, within LSD,
the electron incorrectly repels itself. This error can be quanti-
fied by looking at how close ELSD

X is to the true EX. As can be
seen in Table 2, ELSD

X is about 10% too small. For hydrogen,
the self-interaction error is about 30 millihartrees. By adding
in correlation, this error is slightly reduced, but remains finite.
This is an example of the typical cancellation of errors between
exchange and correlation in LSD.
As a result of self-interaction error, the LSD electron

density spreads out too much, as shown in Fig. 3. In this

Fig. 2 Parametrization of the LDA exchange and exchange–correla-

tion energy densities per electron for polarized z = 1 and unpolarized

z = 0 densities.18

Fig. 3 The hydrogen atom with both exact and LSD densities, as well

as the LSD KS potential.

Table 2 Exact and LSD results for 1d one-electron systems

System T E ELSD EX ELSD
X ELSD

C

H 0.111 $0.670 $0.647 $0.346 $0.311 $0.007
He+ 0.192 $1.483 $1.455 $0.380 $0.343 $0.006
Li++ 0.258 $2.336 $2.304 $0.397 $0.359 $0.005
Be3+ 0.316 $3.209 $3.176 $0.408 $0.369 $0.005
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Comparing 1d and 3d 
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figure we can also see how the LSD KS potential fails to
replicate the true KS potential, which for hydrogen is the same
as the external v(x). And although the LSD KS potential is
almost parallel to v(x) where there is a large amount of density,
it decays too rapidly as |x|-N. What this adds up to, both in
1d and in 3d, is that LSD will not bind another electron easily,
if at all. We will return to this point when considering anions.

4.2 Two-electron atoms and ions

For two or more electrons, the HF approximation is not exact.
The traditional quantum chemistry definition of correlation is
the error made by HF:

EQC
C = E ! EHF. (11)

In Table 3, we give accurate energy components for two-
electron systems; recall that the components do not satisfy a
virial theorem in our 1d systems. The total energy can be fit
just as for one-electron systems, but now:

EZ " !2Zþ
ffiffiffiffi
Z
p
þ c0 ! a2=

ffiffiffiffi
Z
p

; ðN ¼ 2Þ ð12Þ

where c0 = 0.507 and a2 = 0.235. The HF energies may be fit
with cHF

0 = 0.476 and aHF
2 = 0.167. These fits are not accurate

enough to give the large Z behavior of EQC
C , which seems to

vanish as Z - N. For 3d two-electron systems, the correla-
tion energy scales to a constant at large Z.34 Overall, |EQC

C | is
much smaller in 1d than in 3d. Rather than the dimensionality,
it is the soft nature of our Coulomb interactions that causes
the reduction in correlation energy compared to 3d. The exact
wavefunctions in 3d have cusps whenever two electrons of
opposite spin come together, caused by the divergence of the
electron–electron interaction. This cusp-related correlation is
sometimes called dynamic correlation; any other correlation,
involving larger separations of electrons, is called static.35

(Note that the distinction between static and dynamic correlation
is not precise.) Our soft-Coulomb potential has no divergence
and induces no cusps, so dynamical correlation is minimal. There
is little static correlation in tightly bound closed shell systems,
such as our 1d Li+ and Be++, so |EQC

C | { |E|. In contrast, for
H!, where one electron is loosely bound, one expects most of the
correlation to be static even in 3d, and one sees large and similar
EC values in 1d and 3d. In Section 4.5, we discuss some
quantitative measures of strong correlation.

Next we study the exact Kohn–Sham DFT energy compo-
nents of these two-electron systems. Here we need the DFT

definition of correlation, which differs slightly from the tradi-
tional quantum chemistry version:

EC = E ! (TS + V + U + EX) = TC + UC, (13)

where EX is the exchange energy of the exact KS orbitals, TS is
their kinetic energy, U is the Hartree energy, TC = T ! TS is
the kinetic correlation energy, and UC = Vee ! U ! EX is the
potential correlation energy. All these functionals are evaluated
on the exact ground-state density, with numerical results
found in Table 4. The difference between the quantum chem-
istry EQC

C and the DFT EC is never negative and typically
much smaller than |EC|.

38 For the two-electron systems of
Tables 3 and 4, the difference is zero to the given accuracy for
all atoms and ions besides 1d H!. For our systems, just as in
3d, EQC

C ! EC vanishes as Z - N. All the large DFT
components (TS, U, EXC) are typically smaller than their 3d
counterparts and scale much more weakly with Z. However,
our numerical results suggest TC-!EC asZ-N, just as in 3d.
To obtain the KS energies for a given problem, we require

the KS potential, which is found by inverting the KS equation.
For one- or two-electron systems, this yields:

vSðxÞ ¼
1

2
ffiffiffiffiffiffiffiffiffi
nðxÞ

p d2

dx2
ffiffiffiffiffiffiffiffiffi
nðxÞ

p
; ðN ' 2Þ ð14Þ

For illustration, consider the exact KS potential of 1d helium
in Fig. 4. Inverting a density to find the KS potential has also

Table 3 Exact and HF two-electron atoms and ions, in 1- and 3-d
(exact data from ref. 20, Li+ is fit quadratically to surrounding
elements, and HF data from ref. 36 and 37)

System T V Vee E EHF EQC
C

H! 0.115 !1.326 0.481 !0.731 !0.692 !0.039
He 0.290 !3.219 0.691 !2.238 !2.224 !0.014
Li+ 0.433 !5.084 0.755 !3.896 !3.888 !0.008
Be++ 0.556 !6.961 0.790 !5.615 !5.609 !0.006

3d H! 0.528 !1.367 0.311 !0.528 !0.488 !0.042
3d He 2.904 !6.753 0.946 !2.904 !2.862 !0.042
3d Li+ 7.280 !16.13 1.573 !7.280 !7.236 !0.043
3d Be++ 13.66 !29.50 2.191 !13.66 !13.61 !0.044

Table 4 Energies of the exact KS system for two-electron atoms and
ions. 3d data (Li+ fitted) from ref. 20

System TS U EXC EX EC TC

H! 0.087 1.103 !0.595 !0.552 !0.043 0.028
He 0.277 1.436 !0.733 !0.718 !0.014 0.013
Li+ 0.425 1.542 !0.779 !0.771 !0.008 0.008
Be++ 0.551 1.601 !0.806 !0.801 !0.006 0.005

3d H! 0.500 0.762 !0.423 !0.381 !0.042 0.028
3d He 2.867 2.049 !1.067 !1.025 !0.042 0.037
3d Li+ 7.238 3.313 !1.699 !1.656 !0.043 0.041
3d Be++ 13.61 4.553 !2.321 !2.277 !0.044 0.041

Fig. 4 The exact KS potential for a model helium density found from

interacting electrons in 1d, as well as the LDA density and LDA KS

potential found self-consistently.
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figure we can also see how the LSD KS potential fails to
replicate the true KS potential, which for hydrogen is the same
as the external v(x). And although the LSD KS potential is
almost parallel to v(x) where there is a large amount of density,
it decays too rapidly as |x|-N. What this adds up to, both in
1d and in 3d, is that LSD will not bind another electron easily,
if at all. We will return to this point when considering anions.

4.2 Two-electron atoms and ions

For two or more electrons, the HF approximation is not exact.
The traditional quantum chemistry definition of correlation is
the error made by HF:

EQC
C = E ! EHF. (11)

In Table 3, we give accurate energy components for two-
electron systems; recall that the components do not satisfy a
virial theorem in our 1d systems. The total energy can be fit
just as for one-electron systems, but now:

EZ " !2Zþ
ffiffiffiffi
Z
p
þ c0 ! a2=

ffiffiffiffi
Z
p

; ðN ¼ 2Þ ð12Þ

where c0 = 0.507 and a2 = 0.235. The HF energies may be fit
with cHF

0 = 0.476 and aHF
2 = 0.167. These fits are not accurate

enough to give the large Z behavior of EQC
C , which seems to

vanish as Z - N. For 3d two-electron systems, the correla-
tion energy scales to a constant at large Z.34 Overall, |EQC

C | is
much smaller in 1d than in 3d. Rather than the dimensionality,
it is the soft nature of our Coulomb interactions that causes
the reduction in correlation energy compared to 3d. The exact
wavefunctions in 3d have cusps whenever two electrons of
opposite spin come together, caused by the divergence of the
electron–electron interaction. This cusp-related correlation is
sometimes called dynamic correlation; any other correlation,
involving larger separations of electrons, is called static.35

(Note that the distinction between static and dynamic correlation
is not precise.) Our soft-Coulomb potential has no divergence
and induces no cusps, so dynamical correlation is minimal. There
is little static correlation in tightly bound closed shell systems,
such as our 1d Li+ and Be++, so |EQC

C | { |E|. In contrast, for
H!, where one electron is loosely bound, one expects most of the
correlation to be static even in 3d, and one sees large and similar
EC values in 1d and 3d. In Section 4.5, we discuss some
quantitative measures of strong correlation.

Next we study the exact Kohn–Sham DFT energy compo-
nents of these two-electron systems. Here we need the DFT

definition of correlation, which differs slightly from the tradi-
tional quantum chemistry version:

EC = E ! (TS + V + U + EX) = TC + UC, (13)

where EX is the exchange energy of the exact KS orbitals, TS is
their kinetic energy, U is the Hartree energy, TC = T ! TS is
the kinetic correlation energy, and UC = Vee ! U ! EX is the
potential correlation energy. All these functionals are evaluated
on the exact ground-state density, with numerical results
found in Table 4. The difference between the quantum chem-
istry EQC

C and the DFT EC is never negative and typically
much smaller than |EC|.

38 For the two-electron systems of
Tables 3 and 4, the difference is zero to the given accuracy for
all atoms and ions besides 1d H!. For our systems, just as in
3d, EQC

C ! EC vanishes as Z - N. All the large DFT
components (TS, U, EXC) are typically smaller than their 3d
counterparts and scale much more weakly with Z. However,
our numerical results suggest TC-!EC asZ-N, just as in 3d.
To obtain the KS energies for a given problem, we require

the KS potential, which is found by inverting the KS equation.
For one- or two-electron systems, this yields:

vSðxÞ ¼
1

2
ffiffiffiffiffiffiffiffiffi
nðxÞ

p d2

dx2
ffiffiffiffiffiffiffiffiffi
nðxÞ

p
; ðN ' 2Þ ð14Þ

For illustration, consider the exact KS potential of 1d helium
in Fig. 4. Inverting a density to find the KS potential has also

Table 3 Exact and HF two-electron atoms and ions, in 1- and 3-d
(exact data from ref. 20, Li+ is fit quadratically to surrounding
elements, and HF data from ref. 36 and 37)

System T V Vee E EHF EQC
C

H! 0.115 !1.326 0.481 !0.731 !0.692 !0.039
He 0.290 !3.219 0.691 !2.238 !2.224 !0.014
Li+ 0.433 !5.084 0.755 !3.896 !3.888 !0.008
Be++ 0.556 !6.961 0.790 !5.615 !5.609 !0.006

3d H! 0.528 !1.367 0.311 !0.528 !0.488 !0.042
3d He 2.904 !6.753 0.946 !2.904 !2.862 !0.042
3d Li+ 7.280 !16.13 1.573 !7.280 !7.236 !0.043
3d Be++ 13.66 !29.50 2.191 !13.66 !13.61 !0.044

Table 4 Energies of the exact KS system for two-electron atoms and
ions. 3d data (Li+ fitted) from ref. 20

System TS U EXC EX EC TC

H! 0.087 1.103 !0.595 !0.552 !0.043 0.028
He 0.277 1.436 !0.733 !0.718 !0.014 0.013
Li+ 0.425 1.542 !0.779 !0.771 !0.008 0.008
Be++ 0.551 1.601 !0.806 !0.801 !0.006 0.005

3d H! 0.500 0.762 !0.423 !0.381 !0.042 0.028
3d He 2.867 2.049 !1.067 !1.025 !0.042 0.037
3d Li+ 7.238 3.313 !1.699 !1.656 !0.043 0.041
3d Be++ 13.61 4.553 !2.321 !2.277 !0.044 0.041

Fig. 4 The exact KS potential for a model helium density found from

interacting electrons in 1d, as well as the LDA density and LDA KS

potential found self-consistently.
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interaction, the large Z limit of the energy is non-trivial,
making a semiclassical treatment difficult. A plot of the neutral
atom energies as a function of N appears in Fig. 7. On this
scale, both the LDA and HF results lie nearly on top of the
exact curve.

4.4 Equilibrium properties of small molecules

We now briefly discuss small molecules near their equilibrium
separation. In order to find the equilibrium bond length for
our 1d systems, we take the nuclei to be interacting via the
soft-Coulomb interaction, just like the electrons. Given this
interaction, consider the simplest of all molecules: the H2

+

cation. HF yields the exact answer, and LSD suffers from self-
interaction (more generally, a delocalization error5). A plot of
the binding energy is found in Fig. 8. Because the nuclear–
nuclear repulsion is softened, the binding energy does not
diverge as the internuclear separation R goes to zero. As seen
in Table 11, LSD overbinds slightly and produces bonds that
are too long between H atoms, which is also the case in 3d.

The curvature of the LSD binding energy is too small near
equilibrium, which makes for inaccurate vibrational energies,
especially in 3d. This can also be seen in Table 11. Finally, we
note that the energy of stretched H2

+ does not tend to that of
H within LSD, due to delocalization error.5

Next we consider H2. A plot of the binding energy is found
in Fig. 9; the large R behavior will be discussed in the
following section. Just as in 3d, HF underbinds while LDA
overbinds; HF bonds are too short, and LDA bonds are too
long. Further, HF yields vibrational frequencies which are too
high, and LDA are a little small, which is the case both in 1d
and 3d. All of these properties can be seen in Table 11.

4.5 Quantifying correlation

It is often said that DFT works well for weakly correlated
systems, but fails when correlation is too strong. Strong static
correlation, which occurs when molecules are pulled apart, is also
identified with strong correlation in solids.5 Functionals that can
accurately deal with strong static correlation in stretched mole-
cules can also accurately yield the band gap of a solid.50,51 Most
DFT methods, however, fail in these situations. To see these
effects in 1d, we shall now examine three descriptors of strong
correlation, which will be 0 when no correlation is present and
close to 1 when strong correlation is present.
A simple descriptor of strong correlation is simply to

calculate the ratio of correlation to exchange:

a ¼ EC

EX
: ð15Þ

In the limit of weak electron–electron repulsion, a goes to zero
for closed-shell systems, and HF becomes exact. For example,

Fig. 8 The binding energy curve for our 1d model H2
+, shown with

an absolute energy scale, and with nuclear separation R; horizontal

dashed lines indicate the energy of a single H atom.

Table 11 Electronic well depth De, equilibrium bond radius R0, and
vibrational frequency o for the H2

+ and H2 molecules, with percen-
tage error in parentheses. Exact 3d H2 results taken from ref. 48; the
remaining 3d values are from ref. 36 using the aug-cc-pVDZ basis set49

HF LSD Exact

System De/eV
$1

H2
+ 3.88 (0%) 4.00 (3%) 3.88

3d H2
+ 2.77 (0%) 2.89 (4%) 2.77

H2 2.36 ($23%) 3.53 (15%) 3.07
3d H2 3.54 ($25%) 4.80 (1%) 4.75

System R0

H2
+ 2.18 (0%) 2.28 (4%) 2.18

3d H2
+ 2.00 (0%) 2.18 (9%) 2.00

H2 1.50 ($6%) 1.63 (2%) 1.60
3d H2 1.41 (1%) 1.47 (5%) 1.40

System o(%103 cm$1)
H2

+ 2.2 (0%) 2.0 ($9%) 2.2
3d H2

+ 2.4 (0%) 1.9 ($21%) 2.4
H2 3.3 (6%) 3.0 ($3%) 3.1
3d H2 4.6 (5%) 4.2 ($5%) 4.4

Fig. 9 The binding energy curve for our 1d model H2, shown on an

absolute energy scale, with nuclear separation R. Dashed curves

represent unrestricted calculations.

Table 12 Table of correlation descriptors a and b (eqn (15) and (16))
for H2 at an equilibrium and a stretched bond length R. 3d data from
ref. 56

R

1d 3d

1.6 3.4 5.0 1.4 5.0

Exact a 0.04 0.21 0.46 0.06 0.45
b 0.21 0.58 0.87 0.18 0.89

LDA a 0.09 0.16 0.21

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 - 
Irv

in
e 

on
 1

1 
Ju

ne
 2

01
2

Pu
bl

ish
ed

 o
n 

17
 M

ay
 2

01
2 

on
 h

ttp
://

pu
bs

.rs
c.

or
g 

| d
oi

:1
0.

10
39

/C
2C

P2
41

18
H

View Online

8588 Phys. Chem. Chem. Phys., 2012, 14, 8581–8590 This journal is c the Owner Societies 2012

interaction, the large Z limit of the energy is non-trivial,
making a semiclassical treatment difficult. A plot of the neutral
atom energies as a function of N appears in Fig. 7. On this
scale, both the LDA and HF results lie nearly on top of the
exact curve.

4.4 Equilibrium properties of small molecules

We now briefly discuss small molecules near their equilibrium
separation. In order to find the equilibrium bond length for
our 1d systems, we take the nuclei to be interacting via the
soft-Coulomb interaction, just like the electrons. Given this
interaction, consider the simplest of all molecules: the H2

+

cation. HF yields the exact answer, and LSD suffers from self-
interaction (more generally, a delocalization error5). A plot of
the binding energy is found in Fig. 8. Because the nuclear–
nuclear repulsion is softened, the binding energy does not
diverge as the internuclear separation R goes to zero. As seen
in Table 11, LSD overbinds slightly and produces bonds that
are too long between H atoms, which is also the case in 3d.

The curvature of the LSD binding energy is too small near
equilibrium, which makes for inaccurate vibrational energies,
especially in 3d. This can also be seen in Table 11. Finally, we
note that the energy of stretched H2

+ does not tend to that of
H within LSD, due to delocalization error.5

Next we consider H2. A plot of the binding energy is found
in Fig. 9; the large R behavior will be discussed in the
following section. Just as in 3d, HF underbinds while LDA
overbinds; HF bonds are too short, and LDA bonds are too
long. Further, HF yields vibrational frequencies which are too
high, and LDA are a little small, which is the case both in 1d
and 3d. All of these properties can be seen in Table 11.

4.5 Quantifying correlation

It is often said that DFT works well for weakly correlated
systems, but fails when correlation is too strong. Strong static
correlation, which occurs when molecules are pulled apart, is also
identified with strong correlation in solids.5 Functionals that can
accurately deal with strong static correlation in stretched mole-
cules can also accurately yield the band gap of a solid.50,51 Most
DFT methods, however, fail in these situations. To see these
effects in 1d, we shall now examine three descriptors of strong
correlation, which will be 0 when no correlation is present and
close to 1 when strong correlation is present.
A simple descriptor of strong correlation is simply to

calculate the ratio of correlation to exchange:

a ¼ EC

EX
: ð15Þ

In the limit of weak electron–electron repulsion, a goes to zero
for closed-shell systems, and HF becomes exact. For example,

Fig. 8 The binding energy curve for our 1d model H2
+, shown with

an absolute energy scale, and with nuclear separation R; horizontal

dashed lines indicate the energy of a single H atom.

Table 11 Electronic well depth De, equilibrium bond radius R0, and
vibrational frequency o for the H2

+ and H2 molecules, with percen-
tage error in parentheses. Exact 3d H2 results taken from ref. 48; the
remaining 3d values are from ref. 36 using the aug-cc-pVDZ basis set49

HF LSD Exact

System De/eV
$1

H2
+ 3.88 (0%) 4.00 (3%) 3.88

3d H2
+ 2.77 (0%) 2.89 (4%) 2.77

H2 2.36 ($23%) 3.53 (15%) 3.07
3d H2 3.54 ($25%) 4.80 (1%) 4.75

System R0

H2
+ 2.18 (0%) 2.28 (4%) 2.18

3d H2
+ 2.00 (0%) 2.18 (9%) 2.00

H2 1.50 ($6%) 1.63 (2%) 1.60
3d H2 1.41 (1%) 1.47 (5%) 1.40

System o(%103 cm$1)
H2

+ 2.2 (0%) 2.0 ($9%) 2.2
3d H2

+ 2.4 (0%) 1.9 ($21%) 2.4
H2 3.3 (6%) 3.0 ($3%) 3.1
3d H2 4.6 (5%) 4.2 ($5%) 4.4

Fig. 9 The binding energy curve for our 1d model H2, shown on an

absolute energy scale, with nuclear separation R. Dashed curves

represent unrestricted calculations.

Table 12 Table of correlation descriptors a and b (eqn (15) and (16))
for H2 at an equilibrium and a stretched bond length R. 3d data from
ref. 56

R

1d 3d

1.6 3.4 5.0 1.4 5.0

Exact a 0.04 0.21 0.46 0.06 0.45
b 0.21 0.58 0.87 0.18 0.89

LDA a 0.09 0.16 0.21
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Convergence of KS equations 

Guaranteed Convergence of the Kohn-Sham Equations
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A sufficiently damped iteration of the Kohn-Sham (KS) equations with the exact functional is proven to

always converge to the true ground-state density, regardless of the initial density or the strength of electron

correlation, for finite Coulomb systems.We numerically implement the exact functional for one-dimensional

continuum systems and demonstrate convergence of the damped KS algorithm. More strongly correlated

systems converge more slowly.

DOI: 10.1103/PhysRevLett.111.093003 PACS numbers: 31.15.E!, 05.10.Cc, 71.15.Mb

Kohn-Sham density functional theory (KS-DFT) [1]
is a widely applied electronic structure method. Standard
approximate functionals yield accurate ground-state energies
and electron densities for many systems of interest [2], but
often failwhen electrons are strongly correlated.Ground-state
properties can be qualitatively incorrect [3], and convergence
can be very slow [4,5]. To remedy this, several popular
schemes augment Kohn-Sham theory, such as LDAþ U
[6]. Others seek to improve approximate functionals [7]
within the original formulation. But what if the exact func-
tional does not exist for strongly correlated systems? Even
if it does, what if the method fails to converge? Either plight
would render KS-DFT useless for strongly correlated sys-
tems, and render fruitless the vast efforts currently underway
to treat, e.g., oxide materials [8], with KS-DFT.

The Kohn-Sham (KS) approach employs a fictitious
system of noninteracting electrons, defined to have the
same density as the interacting system of interest. The
potential characterizing this KS system is unique if it exists
[9]. Because the KS potential is a functional of the density,
in practice one must search for the density and KS potential
together using an iterative, self-consistent scheme [10].
The converged density is in principle the ground-state
density of the original, interacting system, whose ground-
state energy is a functional of this density.

Motivated by concerns of convergence and existence,
we have been performing KS calculations with the exact
functional for one-dimensional (1D) continuum systems
[11,12]. Even when correlations are strong, we never find
a density whose KS potential does not exist, consistent
with the results of Ref. [13]. Nor do we find any system
where the KS scheme does not converge, although con-
vergence can slow by orders of magnitude as correlation is
increased, just as in approximate calculations [4,5].

Exact statements about the unknown density functional
inform the construction of all successful density functional
theory (DFT) approximations [14–17]. More importantly,
they distinguish between what a KS-DFT calculation can
possibly do, and what it cannot. Themost notorious example
is the demonstration that theKS band gap of a semiconductor

does not equal the true charge gap, even when the exact
functional is used [11,18]. Our key result is an analytic proof
that a simple algorithm guarantees convergence of the
KS equations for all systems, weakly or strongly correlated,
independent of the starting point. Thus multiple stationary
points and failures to converge are artifacts of approximate
functionals. Studies of convergence are well known in
applied mathematics, but almost all concern simple approx-
imations, such as LDA [19], Hartree-Fock [20], etc., and not
those in current use in many calculations.
The basic idea lies in a single step of the KS scheme,

which proceeds from an input density to produce an output
density. For a strongly correlated system as in Fig. 1(a),
the output density can differ strongly from the input
density, and be further from the true ground-state density.
Nevertheless, by proving that the initial slope is always
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FIG. 1 (color online). (a) The input and output densities for a
single step of the Kohn-Sham scheme, as well as the exact
density, of a one-dimensional, strongly correlated four atom,
four electron system. (b) The energy of the system which
interpolates between the input and output densities Ev½n!$,
measured from the ground-state energy Egs

v . Also shown is the
linear-response approximation with slope given by Eq. (12).
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FIG. 2. Arbitrary density inversion for non-interacting and
interacting potentials.

vS[n](r) and orbitals �
j

(r), we can evaluate functionals
such as TS[n] using Eq. (8).

Interacting inversions are rarely done, since they are
far more expensive than non-interacting inversions, and
require solving the many-body problem many times.
Only two-electron problems have been studied, in one
case to understand the adiabatic approximation within
TDDFT [24, 25] and in another to study the self-
interaction error within LDA [4]; though we have recently
studied four-electron systems [29]. The potential v[n](r),
which corresponds to the interacting system of electrons
with density n(r), can be found using the same algorithm
as for vS[n](r), though in step 1 we must solve an in-
teracting problem for the many-body wavefunction  (i)

rather than the non-interacting Schrödinger equation for

orbitals �
(i)

j

(r). At the end of the inversion we obtain
 [n], the wavefunction which minimizes F [n] in Eq. (4),
allowing us to compute F [n] for that specific density.

To illustrate the theory behind KS-DFT, we solve in-
teracting systems using the density matrix renormaliza-
tion group (DMRG) [26, 27], which is the most e�-
cient wavefunction solver in 1d, capable of handling both
strong and weak correlation. We apply DMRG to model
1d continuum systems by discretizing space into N

g

grid
points with a small grid spacing � [23, 45]. With this
method, we can invert 1d systems with over 100 elec-
trons [45]. For our model systems we employ a softened
Coulomb interaction between electrons [23, 24, 45–47]:

v
ee

(u) = 1/
p

u2 + 1. (14)

Figure 2 shows a four-electron example of an interact-
ing inversion [48]. For some arbitrary density like this
one (meaning a density we would not find in nature), we
want to find the associated KS and interacting poten-
tials. This is the problem we encounter during the self-
consistent calculation of the KS equations. Since we ulti-

mately find  [n] at the end of the inversion, we can evalu-
ate F [n] (given soft-Coulomb interactions); likewise with
�
j

(r) we can obtain TS[n]. For the example density of
Fig. 2 we find F [n] = 3.07, TS[n] = 0.843, U [n] = 3.628,
so EXC[n] = �1.397. The XC energy is thus calculated
using simple energy di↵erences; and we obtain the XC
potential in the same way. We further describe these
matters in the next section.
To close this section, we describe our recipe for step

3 of the inversion algorithm. The idea is to build an
approximation for the density-density response matrix,
�, which determines how a small change in the potential
will change the density:

Z
d3r0 �(r, r0) �v(r0) = �n(r). (15)

Restricting our attention to 1d, we recast this equation
as the matrix equation � �v = �n, where � is an (un-
known) N

g

⇥ N
g

matrix, and �v, �n are vectors with
N

g

components, where N
g

is the number of grid-sites
in the system. A constant change in the potential (i.e.
�v = c

1

) will give zero change in the density (�n = 0),
and a constant change in the density (�n = c

2

) is impossi-
ble, since N is fixed. Therefore we consider orthonormal
basis functions for changes in the potential and density
which integrate to zero, encoded as columns in the ma-
trices W and M , respectively [49]. Within this basis, the
density-density response matrix can be approximated by
a smaller matrix, A:

� ⇡ MAWT . (16)

This factorization of the matrix � looks very much like
(and is inspired by) the singular value decomposition
(SVD) of �, which would give an exact breakdown of
� into optimal bases M and W , with A being diagonal.
We do not know � a priori, but an approximation to �
(or A) can be iteratively improved using a quasi-Newton
method (we use Broyden’s method [50]). We construct
appropriate basis vectors for M and W using orthonor-
malized di↵erences of trial densities from the target den-
sity. As A is refined, the bases M and W can be opti-
mized (if desired) by computing the SVD of A, a pro-
cedure which is also useful to compute A�1, and thus
��1. The next trial potential for step 3 is determined
by: v(i+1) = v(i) + ��1(n � n(i)). Typically around 20
basis vectors in M and W are required to obtain a trial
density indistinguishable from the target density on the
scale of Fig. 2.

IV. RESULTS

We have now su�cient machinery to calculate the ex-
act exchange-correlation energy and potential for any
trial density, as encountered in the KS scheme. For con-
venience, we write EHXC[n] = U [n] + EXC[n], which can
be evaluated (using Eqs. (4) and (7)) as:

EHXC[n] = h [n]|{T̂ + V̂
ee

}| [n]i � TS[n]. (17)
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5

From Section III, we know how to obtain  [n] and TS[n]
using inversions. Therefore the exact EXC[n] is no obsta-
cle in principle, but extremely computationally expensive
in practice. Similarly, the HXC potential is:

vHXC[n](r) = vS[n](r)� v[n](r), (18)

which are available from interacting and non-interacting
inversions. The construction of the exact functional using
inversions is illustrated in Fig. 3.

To algorithmically implement the KS scheme, we must

choose our input densities n(i)

in

(r) for each iteration i. Al-
though more sophisticated algorithms are used in prac-
tice [52–57], we use the following simple algorithm. The

first input density n
(1)

in

(r) is arbitrarily chosen. The sub-
sequent input densities are calculated via

n
(i+1)

in

(r) = (1� �)n(i)

in

(r) + �n
(i)

out

(r), (19)

where � is a parameter between 0 and 1, which aids con-
vergence. At � = 1, no density mixing is performed, and
the output density of iteration i is used as the input for
iteration i + 1. While this might allow for quick con-
vergence, there is the danger of repeatedly overshooting
the ground-state density and not converging. If this hap-
pens, smaller steps must be taken, i.e. small � (� = 0
not allowed) must be used. These convergence issues are
discussed more thoroughly in Section IVB, where we in-
vestigate how small this density mixing � needs to be in
order to converge the calculation.
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FIG. 3. To determine the EHXC[n] and vHXC[n](r): Our exact
calculation requires a computationally demanding inversion
algorithm to find the one-body potential v[n](r) of the inter-
acting system whose density is n(r), in addition to a non-
interacting inversion to find vS[n](r). In case of degeneracy,
mixed-states should be used instead of pure-state wavefunc-
tions in both non-interacting and interacting inversions [5, 51].
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FIG. 4. KS procedure for a moderately correlated 4-electron
system (four hydrogen atoms separated by an interatomic
spacing of R = 3), using a fixed � = 0.3 and showing the
first few iterations of: (a) di↵erences in the trial output den-
sities from the ground-state density (shown in Fig. 5) and (b)
trial KS potentials. Data from Ref. [29].

A. Illustration

In this section we use the exact functional within the
KS scheme for a model one-dimensional continuum sys-
tem, demonstrating convergence to the true ground-state
density. We also explain why the only stationary point
of the exact functional is the true ground-state density.
In our model one-dimensional system, electrons are at-

tracted to the nuclei via the potential [23]

v
e-nuc

(x) = �1/
p

x2 + 1, (20)

and electrons interact as already mentioned via Eq. (14).
In Fig. 4, we plot the trial densities and KS poten-

tials for a four-electron, four-atom system. The inter-
atomic spacing R is chosen to make correlations mod-
erate. Choosing a density mixing of � = 0.30 a↵ords
fairly rapid convergence. We find that the final density,
calculated within our KS algorithm, is equal to the true
ground-state density of the system. We plot the final
converged KS, Hartree, and XC potentials in Fig. 5.
Regarding stationary points of the exact functional,

we find that, in all the cases we ran, our KS algorithm
converged to the true ground-state density. An ana-
lytic result confirms that, given v-representable densities,
the only stationary point of the exact KS scheme is the
ground-state density of the system [58]. We can see this
by plugging the exact vHXC[n](r) from Eq. (18) into the
KS update (10). The exact scheme then proceeds as

vS(r) := vS[nin

](r) +
�
v(r)� v[n

in

](r)
�
, (21)

with self-consistency reached when v(r) = v[n
in

](r). This
occurs at precisely one density: at the ground-state den-
sity ngs(r), which is unique by the HK theorem. Thus
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Definitions 
•  n(r)	  is	  some	  given	  density	  
•  n’(r)	  is	  output	  from	  one	  KS	  step	  
•  λ	  is	  a	  mixing	  parameter	  
•  η	  is	  a	  measure	  of	  closeness	  of	  2	  densiOes	  
•  ΔE	  is	  energy	  above	  true	  ground-‐state	  
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negative as in Fig. 1(b), we show there is always a linear
combination of the input and output densities that lowers
the energy. By sufficiently damping each KS step, the
energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n$ ¼ TS½n$ þ
Z

d3rnðrÞvðrÞ þ EHXC½n$; (1)

where TS½n$ is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n$ is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,

' 1

2
r2!jðrÞþ ðvðrÞþvHXC½n$ðrÞÞ!jðrÞ ¼ "j!jðrÞ; (2)

where vHXC½n$ðrÞ ¼ #EHXC½n$=#nðrÞ is the HXC poten-
tial, !jðrÞ are the electron orbitals, and "j are their eigen-
values. (In this work, we consider spin-unpolarized systems
for simplicity.) An output density n0ðrÞ is found by doubly
occupying the lowest-energy orbitals

n0ðrÞ ¼ 2
X1

j¼1

fjj!jðrÞj2; (3)

where 0 ( fj ( 1 and
P

jfj ¼ N=2. Fractional occupation
is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference
between nðrÞ and n0ðrÞ [24].

Consider convergence of the following simple algo-
rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

$ ) 1

N2

Z
d3rðn0ðrÞ ' nðrÞÞ2: (4)

Choose some small #> 0, and if $< #, then the calcu-
lation has converged. Otherwise, the next input is

n%ðrÞ ¼ ð1' %ÞnðrÞ þ %n0ðrÞ; (5)

for some %2ð0;1$, and repeat. An ensemble-v-representable
nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n$ðrÞ [26,27]. For NI electrons, this potential is vS½n$ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n%ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with % ¼ 1 does not usually lead to a fixed point.
But taking damped steps with %< 1 ensures the algorithm
converges, as we now prove.

Lemma.—Consider two finite [28] systems of N elec-
trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n$ðrÞ ! v½n0$ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0$ðrÞ ' v½n$ðrÞÞðn0ðrÞ ' nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
principle. Since nðrÞ is the ground-state density of the
potential v½n$ðrÞ, we have Ev½n$½n$< Ev½n$½n0$, or

Z
d3rv½n$ðrÞðnðrÞ ' n0ðrÞÞ<F½n0$ ' F½n$; (7)

where F½n$ ) TS½n$ þ EHXC½n$. It is also true that
Ev½n0$½n0$< Ev½n0$½n$, so we may switch primes with
unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n$ )

dEv½n%$
d%

!!!!!!!!%¼0
( 0; (8)

where n%ðrÞ is defined as in Eq. (5). If equality holds, then
nðrÞ is a stationary point of Ev½n$.
Proof.—Consider !Ev resulting from %!nðrÞ )

%ðn0ðrÞ ' nðrÞÞ ¼ n%ðrÞ ' nðrÞ. Then

E0
v½n$ ¼

Z
d3r

#Ev½n$
#nðrÞ !nðrÞ: (9)

For a physical density, the functional derivative is [27]

#Ev½n$
#nðrÞ ¼ 'vS½n$ðrÞ þ vðrÞ þ vHXC½n$ðrÞ: (10)

Since vðrÞ þ vHXC½n$ðrÞ defines vS½n0$ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have

#Ev½n$
#nðrÞ ¼ vS½n0$ðrÞ ' vS½n$ðrÞ: (11)

Combining Eqs. (11) and (9) gives

E0
v½n$ ¼

Z
d3rðvS½n0$ðrÞ ' vS½n$ðrÞÞðn0ðrÞ ' nðrÞÞ: (12)

Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
applied to NI systems: then E0

v½n$ must be less than zero.
Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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A sufficiently damped iteration of the Kohn-Sham (KS) equations with the exact functional is proven to

always converge to the true ground-state density, regardless of the initial density or the strength of electron

correlation, for finite Coulomb systems.We numerically implement the exact functional for one-dimensional

continuum systems and demonstrate convergence of the damped KS algorithm. More strongly correlated

systems converge more slowly.
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Kohn-Sham density functional theory (KS-DFT) [1]
is a widely applied electronic structure method. Standard
approximate functionals yield accurate ground-state energies
and electron densities for many systems of interest [2], but
often failwhen electrons are strongly correlated.Ground-state
properties can be qualitatively incorrect [3], and convergence
can be very slow [4,5]. To remedy this, several popular
schemes augment Kohn-Sham theory, such as LDAþ U
[6]. Others seek to improve approximate functionals [7]
within the original formulation. But what if the exact func-
tional does not exist for strongly correlated systems? Even
if it does, what if the method fails to converge? Either plight
would render KS-DFT useless for strongly correlated sys-
tems, and render fruitless the vast efforts currently underway
to treat, e.g., oxide materials [8], with KS-DFT.

The Kohn-Sham (KS) approach employs a fictitious
system of noninteracting electrons, defined to have the
same density as the interacting system of interest. The
potential characterizing this KS system is unique if it exists
[9]. Because the KS potential is a functional of the density,
in practice one must search for the density and KS potential
together using an iterative, self-consistent scheme [10].
The converged density is in principle the ground-state
density of the original, interacting system, whose ground-
state energy is a functional of this density.

Motivated by concerns of convergence and existence,
we have been performing KS calculations with the exact
functional for one-dimensional (1D) continuum systems
[11,12]. Even when correlations are strong, we never find
a density whose KS potential does not exist, consistent
with the results of Ref. [13]. Nor do we find any system
where the KS scheme does not converge, although con-
vergence can slow by orders of magnitude as correlation is
increased, just as in approximate calculations [4,5].

Exact statements about the unknown density functional
inform the construction of all successful density functional
theory (DFT) approximations [14–17]. More importantly,
they distinguish between what a KS-DFT calculation can
possibly do, and what it cannot. Themost notorious example
is the demonstration that theKS band gap of a semiconductor

does not equal the true charge gap, even when the exact
functional is used [11,18]. Our key result is an analytic proof
that a simple algorithm guarantees convergence of the
KS equations for all systems, weakly or strongly correlated,
independent of the starting point. Thus multiple stationary
points and failures to converge are artifacts of approximate
functionals. Studies of convergence are well known in
applied mathematics, but almost all concern simple approx-
imations, such as LDA [19], Hartree-Fock [20], etc., and not
those in current use in many calculations.
The basic idea lies in a single step of the KS scheme,

which proceeds from an input density to produce an output
density. For a strongly correlated system as in Fig. 1(a),
the output density can differ strongly from the input
density, and be further from the true ground-state density.
Nevertheless, by proving that the initial slope is always
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FIG. 1 (color online). (a) The input and output densities for a
single step of the Kohn-Sham scheme, as well as the exact
density, of a one-dimensional, strongly correlated four atom,
four electron system. (b) The energy of the system which
interpolates between the input and output densities Ev½n!$,
measured from the ground-state energy Egs

v . Also shown is the
linear-response approximation with slope given by Eq. (12).
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Convergence of chain 

ground-state density, as long as the first input density is a
physical density. This is because we can choose each
subsequent input density as a physical density [31], and
the exact ensemble functional [22,33] is convex. The only
stationary point of the exact functional, when considering
physical densities, is the ground-state density [34].

Numerical implementation.—To find the KS energy
functional exactly when there is no degeneracy, we must
find the many-electron wave function!½n" that minimizes
h!jT̂ þ V̂eej!i (the kinetic and electron-electron repul-
sion energies) with density nðrÞ [22,35]. To perform this
very demanding [36] interacting inversion, start with a
guess for the potential ~vðrÞ. Then solve the many-body
system for the ground-state wave function ~! and density
~nðrÞ. Using a quasi-Newton method [37], modify ~vðrÞ and
repeat, minimizing the difference between ~nðrÞ and the
target density nðrÞ. Once converged, the procedure is
repeated for NI electrons. The HXC energy is then

EHXC½n" ¼ h!½n"jT̂ þ V̂eej!½n"i' TS½n"; (13)

and the HXC potential is

vHXC½n"ðrÞ ¼ vS½n"ðrÞ ' v½n"ðrÞ: (14)

We implement these functionals for 1D continuum systems
[11,12], obtaining highly accurate many-body solutions
with the density matrix renormalization group [38,39].
These are the first such inversions for systems with more
than two electrons [40,41]. Because, in one dimension,
degeneracy (beyond spin) does not occur, we find pure
states !½n". More generally, one should invert using an
ensemble "½n" and take a trace in Eq. (13) [22,33].

To illustrate convergence of the damped KS algorithm
using the exact functional, we plot the output densities
and KS potentials for a four-electron, four-atom system
in Fig. 2. We choose the interatomic spacing R ¼ 3 to be

roughly twice the equilibrium spacing of H2 (when the
interaction between nuclei is the same as that between
electrons), making this a moderately correlated system.
Taking ! ¼ 0:30, the algorithm converges to the exact
density (computed separately using DMRG) to "< 10'6

using Eq. (4), within 13 steps.
Consider the KS scheme applied to a simple 1D H2

molecule with bond length R [12]. Initialize the algorithm
with an asymmetric input density, aH' density centered on
the left atom. Of course, no sensible KS calculation starts
with such a density, but we do this to amplify convergence
issues. In Fig. 3, we quantify the convergence of the KS
algorithm using " from Eq. (4) as well as energy differ-
ences from the ground state. For the equilibrium bond
length (R ¼ 1:6), ! may be chosen quite large (( 0:5),
but as the atoms are stretched to R ¼ 3, ! must be & 0:2.
When R ¼ 5, even ! ¼ 0:01 is too large to converge the
calculation (not shown). Thus, as the bond is stretched and
the system develops strong static correlation [12], conver-
gence becomes increasingly difficult. As more atoms are
added to the chain (not shown), such as stretched H4, even
a reasonable initial state converges very slowly.
Consequences for real calculations.—For approximate

XC functionals, the corresponding Ev½n" is not, in general,
convex for every vðrÞ, and our corollaries do not hold.
Consider H2 in the local spin-density approximation.
At and near equilibrium bond lengths, only one stationary
solution exists. The approximate functional may or may
not be convex. But when the bond is stretched beyond the
infamous Coulson-Fischer point [42,43], an unrestricted
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R ¼ 3),
showing the first few iterations. Using a fixed ! ¼ 0:30, we
converge to "< 10'6 using Eq. (4) within 13 iterations.
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Rate of convergence 

ground-state density, as long as the first input density is a
physical density. This is because we can choose each
subsequent input density as a physical density [31], and
the exact ensemble functional [22,33] is convex. The only
stationary point of the exact functional, when considering
physical densities, is the ground-state density [34].

Numerical implementation.—To find the KS energy
functional exactly when there is no degeneracy, we must
find the many-electron wave function!½n" that minimizes
h!jT̂ þ V̂eej!i (the kinetic and electron-electron repul-
sion energies) with density nðrÞ [22,35]. To perform this
very demanding [36] interacting inversion, start with a
guess for the potential ~vðrÞ. Then solve the many-body
system for the ground-state wave function ~! and density
~nðrÞ. Using a quasi-Newton method [37], modify ~vðrÞ and
repeat, minimizing the difference between ~nðrÞ and the
target density nðrÞ. Once converged, the procedure is
repeated for NI electrons. The HXC energy is then

EHXC½n" ¼ h!½n"jT̂ þ V̂eej!½n"i' TS½n"; (13)

and the HXC potential is

vHXC½n"ðrÞ ¼ vS½n"ðrÞ ' v½n"ðrÞ: (14)

We implement these functionals for 1D continuum systems
[11,12], obtaining highly accurate many-body solutions
with the density matrix renormalization group [38,39].
These are the first such inversions for systems with more
than two electrons [40,41]. Because, in one dimension,
degeneracy (beyond spin) does not occur, we find pure
states !½n". More generally, one should invert using an
ensemble "½n" and take a trace in Eq. (13) [22,33].

To illustrate convergence of the damped KS algorithm
using the exact functional, we plot the output densities
and KS potentials for a four-electron, four-atom system
in Fig. 2. We choose the interatomic spacing R ¼ 3 to be

roughly twice the equilibrium spacing of H2 (when the
interaction between nuclei is the same as that between
electrons), making this a moderately correlated system.
Taking ! ¼ 0:30, the algorithm converges to the exact
density (computed separately using DMRG) to "< 10'6

using Eq. (4), within 13 steps.
Consider the KS scheme applied to a simple 1D H2

molecule with bond length R [12]. Initialize the algorithm
with an asymmetric input density, aH' density centered on
the left atom. Of course, no sensible KS calculation starts
with such a density, but we do this to amplify convergence
issues. In Fig. 3, we quantify the convergence of the KS
algorithm using " from Eq. (4) as well as energy differ-
ences from the ground state. For the equilibrium bond
length (R ¼ 1:6), ! may be chosen quite large (( 0:5),
but as the atoms are stretched to R ¼ 3, ! must be & 0:2.
When R ¼ 5, even ! ¼ 0:01 is too large to converge the
calculation (not shown). Thus, as the bond is stretched and
the system develops strong static correlation [12], conver-
gence becomes increasingly difficult. As more atoms are
added to the chain (not shown), such as stretched H4, even
a reasonable initial state converges very slowly.
Consequences for real calculations.—For approximate

XC functionals, the corresponding Ev½n" is not, in general,
convex for every vðrÞ, and our corollaries do not hold.
Consider H2 in the local spin-density approximation.
At and near equilibrium bond lengths, only one stationary
solution exists. The approximate functional may or may
not be convex. But when the bond is stretched beyond the
infamous Coulson-Fischer point [42,43], an unrestricted
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R ¼ 3),
showing the first few iterations. Using a fixed ! ¼ 0:30, we
converge to "< 10'6 using Eq. (4) within 13 iterations.
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negative as in Fig. 1(b), we show there is always a linear
combination of the input and output densities that lowers
the energy. By sufficiently damping each KS step, the
energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n$ ¼ TS½n$ þ
Z

d3rnðrÞvðrÞ þ EHXC½n$; (1)

where TS½n$ is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n$ is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,

' 1

2
r2!jðrÞþ ðvðrÞþvHXC½n$ðrÞÞ!jðrÞ ¼ "j!jðrÞ; (2)

where vHXC½n$ðrÞ ¼ #EHXC½n$=#nðrÞ is the HXC poten-
tial, !jðrÞ are the electron orbitals, and "j are their eigen-
values. (In this work, we consider spin-unpolarized systems
for simplicity.) An output density n0ðrÞ is found by doubly
occupying the lowest-energy orbitals

n0ðrÞ ¼ 2
X1

j¼1

fjj!jðrÞj2; (3)

where 0 ( fj ( 1 and
P

jfj ¼ N=2. Fractional occupation
is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference
between nðrÞ and n0ðrÞ [24].

Consider convergence of the following simple algo-
rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

$ ) 1

N2

Z
d3rðn0ðrÞ ' nðrÞÞ2: (4)

Choose some small #> 0, and if $< #, then the calcu-
lation has converged. Otherwise, the next input is

n%ðrÞ ¼ ð1' %ÞnðrÞ þ %n0ðrÞ; (5)

for some %2ð0;1$, and repeat. An ensemble-v-representable
nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n$ðrÞ [26,27]. For NI electrons, this potential is vS½n$ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n%ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with % ¼ 1 does not usually lead to a fixed point.
But taking damped steps with %< 1 ensures the algorithm
converges, as we now prove.

Lemma.—Consider two finite [28] systems of N elec-
trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n$ðrÞ ! v½n0$ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0$ðrÞ ' v½n$ðrÞÞðn0ðrÞ ' nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
principle. Since nðrÞ is the ground-state density of the
potential v½n$ðrÞ, we have Ev½n$½n$< Ev½n$½n0$, or

Z
d3rv½n$ðrÞðnðrÞ ' n0ðrÞÞ<F½n0$ ' F½n$; (7)

where F½n$ ) TS½n$ þ EHXC½n$. It is also true that
Ev½n0$½n0$< Ev½n0$½n$, so we may switch primes with
unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n$ )

dEv½n%$
d%

!!!!!!!!%¼0
( 0; (8)

where n%ðrÞ is defined as in Eq. (5). If equality holds, then
nðrÞ is a stationary point of Ev½n$.
Proof.—Consider !Ev resulting from %!nðrÞ )

%ðn0ðrÞ ' nðrÞÞ ¼ n%ðrÞ ' nðrÞ. Then

E0
v½n$ ¼

Z
d3r

#Ev½n$
#nðrÞ !nðrÞ: (9)

For a physical density, the functional derivative is [27]

#Ev½n$
#nðrÞ ¼ 'vS½n$ðrÞ þ vðrÞ þ vHXC½n$ðrÞ: (10)

Since vðrÞ þ vHXC½n$ðrÞ defines vS½n0$ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have

#Ev½n$
#nðrÞ ¼ vS½n0$ðrÞ ' vS½n$ðrÞ: (11)

Combining Eqs. (11) and (9) gives

E0
v½n$ ¼

Z
d3rðvS½n0$ðrÞ ' vS½n$ðrÞÞðn0ðrÞ ' nðrÞÞ: (12)

Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
applied to NI systems: then E0

v½n$ must be less than zero.
Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n$ ¼ TS½n$ þ
Z

d3rnðrÞvðrÞ þ EHXC½n$; (1)

where TS½n$ is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n$ is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,
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where 0 ( fj ( 1 and
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jfj ¼ N=2. Fractional occupation
is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference
between nðrÞ and n0ðrÞ [24].
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rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

$ ) 1

N2

Z
d3rðn0ðrÞ ' nðrÞÞ2: (4)

Choose some small #> 0, and if $< #, then the calcu-
lation has converged. Otherwise, the next input is

n%ðrÞ ¼ ð1' %ÞnðrÞ þ %n0ðrÞ; (5)
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nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n$ðrÞ [26,27]. For NI electrons, this potential is vS½n$ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n%ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with % ¼ 1 does not usually lead to a fixed point.
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converges, as we now prove.
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trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n$ðrÞ ! v½n0$ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0$ðrÞ ' v½n$ðrÞÞðn0ðrÞ ' nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
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Z
d3rv½n$ðrÞðnðrÞ ' n0ðrÞÞ<F½n0$ ' F½n$; (7)

where F½n$ ) TS½n$ þ EHXC½n$. It is also true that
Ev½n0$½n0$< Ev½n0$½n$, so we may switch primes with
unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n$ )

dEv½n%$
d%

!!!!!!!!%¼0
( 0; (8)

where n%ðrÞ is defined as in Eq. (5). If equality holds, then
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Proof.—Consider !Ev resulting from %!nðrÞ )

%ðn0ðrÞ ' nðrÞÞ ¼ n%ðrÞ ' nðrÞ. Then

E0
v½n$ ¼

Z
d3r

#Ev½n$
#nðrÞ !nðrÞ: (9)

For a physical density, the functional derivative is [27]

#Ev½n$
#nðrÞ ¼ 'vS½n$ðrÞ þ vðrÞ þ vHXC½n$ðrÞ: (10)

Since vðrÞ þ vHXC½n$ðrÞ defines vS½n0$ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have
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Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
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Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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solution of lower energy appears [12], as in Fig. 4, so the
corresponding Ev½n" is not convex and convergence with
our simple algorithm is not guaranteed. While the re-
stricted solution is a saddle point, the unrestricted solution
is a local minimum. Thus, only the unrestricted solution
behaves locally like the solution with the exact functional,
providing further rationale [43] for preferring such a solu-
tion over any restricted one. On the other hand, slowing
of convergence as correlations become stronger is a real
effect, and not an artifact of approximations.

We chose our simple algorithm to prove convergence,
but many are more sophisticated and efficient (see, e.g.,
Refs. [4,5]). Mixing KS potentials instead of densities [44]
can similarly be proven to converge, with the advantage
that all densities encountered are NI v representable.

Finally, we expect that orbital degeneracies in three
dimensions require the ensemble treatment [22,25,26,33].
Further, extending the KS approach to use fractional occu-
pation of electron orbitals (even in the case of nondege-
neracy) may speed convergence [45] and allow KS-DFT to
more naturally handle strong static correlation [46].
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FIG. 6. A single step in the KS scheme for a weakly corre-
lated system (H

4

with R = 2) away from two di↵erent initial
densities: non-interacting electrons in the external potential
(NI) and a pseudouniform electron density (PU). These initial
densities are the dashed curves in (a) and (b), and the solid
curves are the output densities for each KS step; for compar-
ison the dotted curve is the exact density. The lower panel
plots Eq. (22), the energy of the system as it interpolates from
the input to the output density.
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FIG. 7. A single step in the KS scheme for a strongly corre-
lated system (H

4

with R = 4) away from two di↵erent initial
densities: non-interacting electrons in the external potential
(NI) and a pseudouniform electron density (PU). These initial
densities are the dashed curves in (a) and (b), and the solid
curves are the output densities for each KS step; for compar-
ison the dotted curve is the exact density. The lower panel
plots Eq. (22), the energy of the system as it interpolates from
the input to the output density.
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FIG. 8. Taking a second step in the KS scheme for a strongly
correlated system (H

4

with R = 4). Panel (a) shows the
input density which is near to the exact density (the � = 42%
density of the NI input density of Fig. 7) and the resulting
output density, which is far from the ground-state. The lower
panel (b) plots Eq. (22), and the inset (c) magnifies the small
� region.

of � = 42% as input into the KS equations. For the
weakly correlated system of Fig. 6, the second KS step
(not show) looks much like the first step, though with a
much smaller energy scale involved. Thus a fairly large
� may be used when correlations are weak, and conver-
gence is rapid. But it is not the same for the strongly
correlated system. As shown in Fig. 8, the next itera-
tion of the KS procedure will not allow us to make the
same giant stride as in the first iteration. For the new
�-mixed density, we again evaluate �E(�) from Eq. (22)
and find that it reaches a minimum much sooner. Thus
a much smaller �—around 6% as seen in the inset—must
be chosen in order not to go far o↵ track. Furthermore,
choosing even the optimal � does not result in a much
better energy as it did in the first iteration. This makes
convergence a long and di�cult process, since we can
only a↵ord to take small steps.

C. Why convergence is di�cult for strongly
correlated systems

In this this section, we discuss the ultimate reason
why convergence is di�cult for strongly correlated sys-
tems, and mention some algorithms which counteract
the underlying problem. Fundamentally, systems with
strong static correlation possess a small gap [], which
in turn makes convergence di�cult [54]. We can under-
stand this di�culty by considerings the non-interacting
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FIG. 8. Taking a second step in the KS scheme for a strongly
correlated system (H

4

with R = 4). Panel (a) shows the
input density which is near to the exact density (the � = 42%
density of the NI input density of Fig. 7) and the resulting
output density, which is far from the ground-state. The lower
panel (b) plots Eq. (22), and the inset (c) magnifies the small
� region.

of � = 42% as input into the KS equations. For the
weakly correlated system of Fig. 6, the second KS step
(not show) looks much like the first step, though with a
much smaller energy scale involved. Thus a fairly large
� may be used when correlations are weak, and conver-
gence is rapid. But it is not the same for the strongly
correlated system. As shown in Fig. 8, the next itera-
tion of the KS procedure will not allow us to make the
same giant stride as in the first iteration. For the new
�-mixed density, we again evaluate �E(�) from Eq. (22)
and find that it reaches a minimum much sooner. Thus
a much smaller �—around 6% as seen in the inset—must
be chosen in order not to go far o↵ track. Furthermore,
choosing even the optimal � does not result in a much
better energy as it did in the first iteration. This makes
convergence a long and di�cult process, since we can
only a↵ord to take small steps.

C. Why convergence is di�cult for strongly
correlated systems

In this this section, we discuss the ultimate reason
why convergence is di�cult for strongly correlated sys-
tems, and mention some algorithms which counteract
the underlying problem. Fundamentally, systems with
strong static correlation possess a small gap [], which
in turn makes convergence di�cult [54]. We can under-
stand this di�culty by considerings the non-interacting
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densities are the dashed curves in (a) and (b), and the solid
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FIG. 8. Taking a second step in the KS scheme for a strongly
correlated system (H

4

with R = 4). Panel (a) shows the
input density which is near to the exact density (the � = 42%
density of the NI input density of Fig. 7) and the resulting
output density, which is far from the ground-state. The lower
panel (b) plots Eq. (22), and the inset (c) magnifies the small
� region.

of � = 42% as input into the KS equations. For the
weakly correlated system of Fig. 6, the second KS step
(not show) looks much like the first step, though with a
much smaller energy scale involved. Thus a fairly large
� may be used when correlations are weak, and conver-
gence is rapid. But it is not the same for the strongly
correlated system. As shown in Fig. 8, the next itera-
tion of the KS procedure will not allow us to make the
same giant stride as in the first iteration. For the new
�-mixed density, we again evaluate �E(�) from Eq. (22)
and find that it reaches a minimum much sooner. Thus
a much smaller �—around 6% as seen in the inset—must
be chosen in order not to go far o↵ track. Furthermore,
choosing even the optimal � does not result in a much
better energy as it did in the first iteration. This makes
convergence a long and di�cult process, since we can
only a↵ord to take small steps.

C. Why convergence is di�cult for strongly
correlated systems

In this this section, we discuss the ultimate reason
why convergence is di�cult for strongly correlated sys-
tems, and mention some algorithms which counteract
the underlying problem. Fundamentally, systems with
strong static correlation possess a small gap [], which
in turn makes convergence di�cult [54]. We can under-
stand this di�culty by considerings the non-interacting
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FIG. 10. The number of iterations required to converge an
LDA calculation to ⌘ < 10�8 (12), as a function of �, for
various bond-lengths R of the H

2

molecule, starting with an
initial density of H� on the left atom. The asymptotic form
for small � can be well-approximated by 7/� for the data
shown.

plest density functional approximation, the local density
approximation (LDA) [1], in order to understand some
basic limits on convergence as well as its dependence on
the KS gap, i.e. the HOMO-LUMO gap.

A simple expression for the LDA is available for our
model 1d systems [23, 47]. Despite its simplicity, we ex-
pect the LDA to converge in a similar way to the exact
functional, especially when the KS gap of the system is
close for both self-consistent LDA and exact solutions
[66]. We therefore use it to study more broadly the
convergence behavior of the KS scheme applied to H

2

with variable bond length. As before, changing the bond
length allows us to tune the strength of the correlation:
at small bond lengths the system is weakly correlated
and at large bond lengths strong static correlation arises
[23]. To aggravate convergence di�culties, we choose the
initial density to be entirely centered on one atom [29],
and determine the � values for which the KS scheme will
converge, as well as how quickly. Furthermore, we en-
force spin-symmetry, so while the LDA energy is wrong
in the R ! 1 limit [23], we expect to see convergence
behavior similar to the exact functional [29].

In Fig. 10, we plot the number of iterations required to
converge an LDA calculation to ⌘ < 10�8 as a function
of �, for a variety of bond lengths R. Each curve ends
at �

c

(R), the largest � for which the damped KS algo-
rithm converges. For a weakly correlated system (e.g.
R = 2), a very large � will allow for convergence, and
the optimal � to converge in the fewest iterations is also
fairly large (around 0.5 for R = 2). As the bond length
is stretched, both the critical �, �

c

(R), as well as the op-
timal � decrease. Considering the iterations it takes to
converge as a function of �, we see that as � decreases
past the optimal �, it begins to take longer to converge
the calculation. For � ! 0, we approach an asymptote
that appears valid for all values of R, given this initial
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FIG. 11. Plotting the convergence-critical � for an LDA
calculation, as a function of the bond length R of a stretched
hydrogen molecule, starting with the exact H� density on one
atom, as well as KS gaps for both the LDA and exact systems.

starting point in the H
2

system: 7/�. While this is by no
means a universal asymptote for all systems, we recog-
nize there is a fundamental limit to how quickly we can
converge as � ! 0.
In Fig. 11, we plot the convergence-critical � value as

a function of the bond length R, as well as the KS gap
of both the LDA and exact systems. The LDA KS gap
decays at about the same rate as the critical �, an obser-
vation that makes sense given that the KS gap has such
an important role in convergence – the smaller the gap
the more di�cult it is to converge the calculation [66].
For bond lengths R . 4, the LDA KS gap is quite close
to the exact KS gap, so that we expect similar conver-
gence behavior for the exact functional. However, as R
increases the true KS gap decays more quickly than the
LDA KS gap, so that the exact calculation has an even
greater di�culty converging [29]. We also note that there
may be lucky values of �, larger than �

c

, which
To conclude, we want to mathematically investigate

the topogical space of densities which converge. Define
⌘(Niter)[n](�) to be the value of ⌘ (12) afterN

iter

iterations
of the KS equations with a fixed mixing of �, starting
with the input density n(r). Then define the density set:

SNiter
⇣

(�) ⌘
�
n(r) s.t. ⌘(Niter)[n](�) < ⇣

 
. (25)

This set describes the densities n(r) which converge to
⌘ < ⇣ in a finite number of iterations N

iter

, given a
fixed-� iteration of the KS equations. For example,
S1

⇣

⌘ S1

⇣

(� = 1) is the set of input densities n
in

(r) that
are within ⌘ < ⇣ of their output densities. (For one step,
� does not matter.) This set (25) allows us to quantify
the di↵erent levels of convergence hell. S1

⇣

is the low-

est level, and includes the ground-state density. S2

⇣

(1)
is the second level, and also includes the ground-state
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plest density functional approximation, the local density
approximation (LDA) [1], in order to understand some
basic limits on convergence as well as its dependence on
the KS gap, i.e. the HOMO-LUMO gap.

A simple expression for the LDA is available for our
model 1d systems [23, 47]. Despite its simplicity, we ex-
pect the LDA to converge in a similar way to the exact
functional, especially when the KS gap of the system is
close for both self-consistent LDA and exact solutions
[66]. We therefore use it to study more broadly the
convergence behavior of the KS scheme applied to H

2

with variable bond length. As before, changing the bond
length allows us to tune the strength of the correlation:
at small bond lengths the system is weakly correlated
and at large bond lengths strong static correlation arises
[23]. To aggravate convergence di�culties, we choose the
initial density to be entirely centered on one atom [29],
and determine the � values for which the KS scheme will
converge, as well as how quickly. Furthermore, we en-
force spin-symmetry, so while the LDA energy is wrong
in the R ! 1 limit [23], we expect to see convergence
behavior similar to the exact functional [29].

In Fig. 10, we plot the number of iterations required to
converge an LDA calculation to ⌘ < 10�8 as a function
of �, for a variety of bond lengths R. Each curve ends
at �

c

(R), the largest � for which the damped KS algo-
rithm converges. For a weakly correlated system (e.g.
R = 2), a very large � will allow for convergence, and
the optimal � to converge in the fewest iterations is also
fairly large (around 0.5 for R = 2). As the bond length
is stretched, both the critical �, �
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(R), as well as the op-
timal � decrease. Considering the iterations it takes to
converge as a function of �, we see that as � decreases
past the optimal �, it begins to take longer to converge
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that appears valid for all values of R, given this initial
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starting point in the H
2

system: 7/�. While this is by no
means a universal asymptote for all systems, we recog-
nize there is a fundamental limit to how quickly we can
converge as � ! 0.
In Fig. 11, we plot the convergence-critical � value as

a function of the bond length R, as well as the KS gap
of both the LDA and exact systems. The LDA KS gap
decays at about the same rate as the critical �, an obser-
vation that makes sense given that the KS gap has such
an important role in convergence – the smaller the gap
the more di�cult it is to converge the calculation [66].
For bond lengths R . 4, the LDA KS gap is quite close
to the exact KS gap, so that we expect similar conver-
gence behavior for the exact functional. However, as R
increases the true KS gap decays more quickly than the
LDA KS gap, so that the exact calculation has an even
greater di�culty converging [29]. We also note that there
may be lucky values of �, larger than �

c

, which
To conclude, we want to mathematically investigate

the topogical space of densities which converge. Define
⌘(Niter)[n](�) to be the value of ⌘ (12) afterN

iter

iterations
of the KS equations with a fixed mixing of �, starting
with the input density n(r). Then define the density set:

SNiter
⇣

(�) ⌘
�
n(r) s.t. ⌘(Niter)[n](�) < ⇣

 
. (25)

This set describes the densities n(r) which converge to
⌘ < ⇣ in a finite number of iterations N

iter

, given a
fixed-� iteration of the KS equations. For example,
S1

⇣

⌘ S1

⇣

(� = 1) is the set of input densities n
in

(r) that
are within ⌘ < ⇣ of their output densities. (For one step,
� does not matter.) This set (25) allows us to quantify
the di↵erent levels of convergence hell. S1

⇣

is the low-

est level, and includes the ground-state density. S2

⇣

(1)
is the second level, and also includes the ground-state
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Summary 

•  Have	  a	  new	  tool	  for	  studying	  KS	  DFT	  in	  1d,	  
especially	  good	  for	  strong	  correlaOon.	  

•  Relies	  on	  efficiency	  of	  DMRG	  in	  1d.	  
•  Have	  shown	  KS	  equaOons	  can	  always	  be	  made	  
to	  converge	  

•  Convergence	  slows	  with	  strength	  of	  
correlaOon	  

•  Thanks	  to	  US	  DOE	  for	  funding.	  
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