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Electronic structure problem

What atoms, molecules, and solids exist, and
what are their properties?
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Kohn-Sham equations (1965)
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He atom in Kohn-Sham DFT
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Everything
has (at
most) one
KS potential

Dashed-line:
EXACT KS potential
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Commonly-used functionals

* Local density approximation (LDA) E4n) = A [ @ n3(r)
— Uses only p(r) at a point. A — (303 — 0738
* Generalized gradient approx (GGA)
— Uses both p(r) and | Vp(r)|
— Should be more accurate, corrects overbinding of LDA
— Examples are PBE and BLYP and AMO5

e Hybrid:

— Mixes some fraction of HF
— Examples are B3LYP and PBEO
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Errors in standard DFT
approximations
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DMRG

* Extremely efficient exact solver for 1d
problems

* Traditionally applied to model Hamiltonians,
e.g., 2000 site Hubbard chain

 Works well when correlation is so strong that
nothing starting from HF can work.
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Problems with DFT

Density functional theory (DFT) is an

efficient method that works extremely

well for molecules and materials....
...except when it doesn't

Derivative - >
Discontinuity
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Basic ingredients

Ideas for correcting these issues,
but how to test them? S_DFA

HSE pMFTHDET
GGA+U

To check if they work, and for the right
reasons, must give something up:

 Continuum
* Long- range lnteractlons

Cambridge 13

Using an exact
numerical
solver for 1d
systems (known
as DMRG), we
can learn more
about density
functional
theory (DFT)
and find ways to
make it better
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From Miles

Vs

Method 2: (this talk)
Discretize real space
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“Grid sites” instead of lattice sites

Dolfi, Bauer, et al., PRL 109 020604 (2012)
Stoudenmire, Wagner, White, Burke, PRL 109 056402 (2012)

Cambridge 13

11



Nov 12, 2013

Three levels of activity

Three levels of application to DFT: %\Q

Level I: compare exact results to

@
DFT approximations
Level Il: study the exact O
Kohn-Sham system
Level lll: self-consistent KS PR
calculation with the S

exact functional

Cambridge 13
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SET UP
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How to do this

week ending

PRL 109, 056402 (2012) PHYSICAL REVIEW LETTERS 3 AUGUST 2012

One-Dimensional Continuum Electronic Structure with the Density-Matrix Renormalization
Group and Its Implications for Density-Functional Theory

E. M. Stoudenmire, Lucas O. Wagner, Steven R. White, and Kieron Burke™

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Received 12 July 2011; revised manuscript received 5 January 2012; published 1 August 2012)

We extend the density matrix renormalization group to compute exact ground states of continuum
many-electron systems in one dimension with long-range interactions. We find the exact ground state of a
chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold
atom systems and to study density-functional theory in an exact setting. To illustrate, we find an
interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.
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Example of long chains

DMRG powerful enough to solve a chain
of 100 stretched soft Hydrogen atoms

EEEEEE
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Densities of long chains
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FIG. 1 (color online). The exact ground state density of a
chain of 100 widely separated (strongly correlated) artificial
atoms. The total length of the system is L = 420 in atomic units
(4200 grid sites with a spacing of 0.1). The upper panel shows
the electron density of a central region superimposed with
the density at the left edge (the dashed blue curve with corres
ponding x above). The lower panel compares the exact electron
density to DFT predictions within the local spin density

approximation.
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Spontaneous dimerization

— Exact(DMRG) — ULSDA  —RLSDA
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FIG. 2 (color online). Spontaneous dimerization of the density 20 10 0 10 20
for a chain of 10 soft hydrogen atoms with interatomic spacing CEme G Gmm)—Gmme) GO
b = 4 (dashed lines are a guide to the eye). The upper panel — 07
.- ; L Hubbard Model (U/t =4
compares the densities predicted by DFT within the LSDA; the ubbard Model ( ) | (— 1.3
lower panel shows the spin densities for unrestricted LSDA. Also {ejei1 + ¢j1acs)
shown is the expectation value of the kinetic energy (c;.r cjv1 + Y
c;.r +1¢;) for a Hubbard model with U/t = 4 and the exchange Heisenberg Model (J = 1) — (())%
energy (S; - S j+1> for the Heisenberg model on 10 lattice sites. (S;-S;11)
The thickness of the lines indicates the magnitude of these 04 T Unresticied LSDA B
quantities on each bond.
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Mott-Hubbard gap

More
Difficult
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FIG. 3 (color online). Exact gaps for chains of N soft hydrogen
atoms with atomic separation b = 4 (error bars are less than
symbol sizes). The upper curve is a quadratic fit of exact gaps of
the largest six systems and extrapolates to a finite value E, =
0.33. The exact Kohn-Sham gaps, in contrast, extrapolate to zero
showing that for N — oo the true KS system is metallic (lower
curve is a linear fit of exat KS gaps of the largest six systems).
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Entanglement spectrum
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FIG. 4 (color online). Entanglement spectrum at the center of
interacting 4-atom chains with various interatomic separations b.
N = (N;, Ng) refers to the number of electrons to the left and
right of the cut for each density matrix eigenstate. The states
with N; = 3, 1 primarily correspond to charge fluctuations
while those with N; = 2 to spin fluctuations.
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BENCHMARKS

\

Easier

Cambridge 13

More
_ Difficult
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Benchmark DFT calculations

Cite this: Phys. Chem. Chem. Phys., 2012, 14,8581-8590

WWW.I'SC.org/pccp PAPE R

Reference electronic structure calculations in one dimensionf

Lucas O. Wagner,** E. M. Stoudenmire,” Kieron Burke®® and Steven R. White”

Received 24th December 2011, Accepted 1st May 2012
DOI: 10.1039/c2cp24118h

Large strongly correlated systems provide a challenge to modern electronic structure methods,
because standard density functionals usually fail and traditional quantum chemical approaches
are too demanding. The density-matrix renormalization group method, an extremely powerful
tool for solving such systems, has recently been extended to handle long-range interactions on
real-space grids, but is most efficient in one dimension where it can provide essentially arbitrary
accuracy. Such 1d systems therefore provide a theoretical laboratory for studying strong
correlation and developing density functional approximations to handle strong correlation, if they
mimic three-dimensional reality sufficiently closely. We demonstrate that this is the case, and
provide reference data for exact and standard approximate methods, for future use in this area.
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* Extract KS potential
from exact density

* A non-interacting
Inversion
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1d stretched H»
: \ ‘

Fig. 1 The KS potential for a stretched hydrogen molecule found
from interacting electrons in 1d.
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LDA for soft Coulomb

* Get uniform gas inputs

from QMC for 1d soft- o
. - Uniform gas energy per electron I
Coulomb gas, by Nicole o1 2
HE|bIg et al 502r /’:"/‘__,.—4—-"':_"‘_'—' B
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Fig. 2 Parametrization of the LDA exchange and exchange—correla-
tion energy densities per electron for polarized { = 1 and unpolarized
¢ = 0 densities.'®
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Comparing 1d and 3d

Table 3 Exact and HF two-electron atoms and ions, in 1- and 3-d
(exact data from ref. 20, Li" is fit quadratically to surrounding
elements, and HF data from ref. 36 and 37)

System T 14 Vee E EHF E2€
H™ 0.115 —-1.326 0.481 —-0.731 —-0.692 —0.039
He 0.290 —-3.219 0.691 —2.238 —-2.224 -0.014
Li" 0.433 —5.084 0.755 —3.896 —3.888 —0.008
Be" " 0.556 —6.961 0.790 —5.615 —5.609 —0.006
3d H™ 0.528 —1.367 0.311 —0.528 —0.488 —0.042
3d He 2904 —6.753 0946 2904 —2.862 —0.042
3d Li* 7.280 —16.13 1.573 —-7.280 —-7.236 —0.043
-4 2 0 2 4 3dBe" " 13.66 —29.50 2.191 —13.66 —13.61  —0.044
X

Fig. 4 The exact KS potential for a model helium density found from

interacting electrons in 1d, as well as the LDA density and LDA KS

potential found self-consistently.
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Classic DFT errors

Ey(R)

Fig. 8 The binding energy curve for our 1d model H, ", shown with
an absolute energy scale, and with nuclear separation R; horizontal
dashed lines indicate the energy of a single H atom.

Fig. 9 The binding energy curve for our 1d model H,, shown on an
absolute energy scale, with nuclear separation R. Dashed curves
represent unrestricted calculations.
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CONVERGENCE

Py

O

Most Difficult:
Use Extra Caution

Cambridge 13
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Convergence of KS equations

week endin

PRL 111, 093003 (2013) PHYSICAL REVIEW LETTERS 30 AUGUST 2013

S

Guaranteed Convergence of the Kohn-Sham Equations

Lucas O. Wagnelr,l’2 E.M. Stoudenmire,1 Kieron Bulrke,l’2 and Steven R. White'

'Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
*Department of Chemistry, University of California, Irvine, California 92697, USA
(Received 13 May 2013; revised manuscript received 31 July 2013; published 28 August 2013)

A sufficiently damped iteration of the Kohn-Sham (KS) equations with the exact functional is proven to
always converge to the true ground-state density, regardless of the initial density or the strength of electron
correlation, for finite Coulomb systems. We numerically implement the exact functional for one-dimensional
continuum systems and demonstrate convergence of the damped KS algorithm. More strongly correlated
systems converge more slowly.

Nov 12, 2013 Cambridge 13
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Interacting inversion

Trial electron density

Inverted potentials

FIG. 2. Arbitrary density inversion for non-interacting and
interacting potentials.

Cambridge 13
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KS with exact XC

Buxcln] = (¥[n]l{T + Vee} [ ¥[n]) — Tx[n]

vnxc[n](r) = vs[n](r) — v[n](r)

Guess initial potential Guess initial potential
i Us(r) i o(r)
Find ¢;(r) from os(r) Obtain ¥ from o(r)
17 \7
Get n(r) from @;(r) Get 7(r) from ¥

Alter s(r)| [vs[n](r)=0s(r) || | Alter o(r) v[n](r)=1(r)
¢;(r) = $;(r) WUln) = U

FIG. 3. To determine the Euxc[n| and vaxc[n](r): Our exact
calculation requires a computationally demanding inversion
algorithm to find the one-body potential v[n](r) of the inter-
acting system whose density is n(r), in addition to a non-
interacting inversion to find vs[n](r). In case of degeneracy,
mixed-states should be used instead of pure-state wavefunc-
tions in both non-interacting and interacting inversions [5, 51].

Cambridge 13
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Definitions

* n(r) is some given density

* n’(r) is output from one KS step

e Ais amixing parameter

* M is ameasure of closeness of 2 densities

* AE is energy above true ground-state

ny(r) = (1 — A)n(r) + An'(r),
y = % f & (') — n(r)?.

Nov 12, 2013 Cambridge 13
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One KS step

0.6

Q 0.4
FIG. 1 (color online). (a) The input and output densities for a =
single step of the Kohn-Sham scheme, as well as the exact

density, of a one-dimensional, strongly correlated four atom,

0.2

four electron system. (b) The energy of the system which 0 1
interpolates between the input and output densities E,[n,], : : : : , : : : ,
measured from the ground-state energy E5'. Also shown is the %. 05 (b)
. _ . . . . m
linear-response approximation with slope given by Eq. (12). " | —— energy of interpolated density
= — — linear response .
= _
0 L - \|§ = il | L | L | L
0 0.2 0.4 0.6 0.8 1
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Convergence of chain
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R = 3),
showing the first few iterations. Using a fixed A = 0.30, we
converge to n < 107% using Eq. (4) within 13 iterations.
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Rate of convergence

n = % f & (' (x) — n(r)>

ny(r) =00 — A)n(r) + An'(r),

Nov 12, 2013

Convergence of the KS algorithm
H, molecule starting from H on one atom
. — . — .

(a) R=1.6

0.06;

< 0.04
el
=
[a]
m 002 N\ T TR eea L
< 4
0 = Tl—.—l |
1 4 16 64
iteration

0.2

0.1

5
iteration

FIG. 3 (color online). Differences in the density n using
Eq. (4) and the energy with AE = E [n'] — EY’, for an H,
molecule with (a) R = 1.6 and (b) R = 3. In (b), the AE curves
are omitted for clarity, but are like those in (a).

Cambridge 13
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Spin polarization

FIG. 4 (color online). Starting an exact KS calculation of
stretched H, with a spin-polarized density still converges (with
A = 0.5) to the correct spin-singlet density. For the same initial
density, the KS calculation with the local spin-density (LSD)
approximation [47] converges to the broken spin-symmetry
solution shown.
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LONG PAPER (in prep)
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KS steps when weakly correlated

Nov 12, 2013

KS step from NI density KS step from PU density
08— 1 ] T T T

0.03

0.02

AE(ML)

FIG. 6. A single step in the KS scheme for a weakly corre-
lated system (Hy4 with R = 2) away from two different initial
densities: non-interacting electrons in the external potential
(NI) and a pseudouniform electron density (PU). These initial
densities are the dashed curves in (a) and (b), and the solid
curves are the output densities for each KS step; for compar-
ison the dotted curve is the exact density. The lower panel
plots Eq. (22), the energy of the system as it interpolates from
the input to the output density.

Cambridge 13
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Single step for strong correlation

Nov 12, 2013

KS step from NI density KS step from PU density
ST T e

(b)

FIG. 7. A single step in the KS scheme for a strongly corre-
lated system (H4 with R = 4) away from two different initial
densities: non-interacting electrons in the external potential
(NI) and a pseudouniform electron density (PU). These initial
densities are the dashed curves in (a) and (b), and the solid
curves are the output densities for each KS step; for compar-
ison the dotted curve is the exact density. The lower panel
plots Eq. (22), the energy of the system as it interpolates from
the input to the output density.

Cambridge 13
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KS step when close to gs

KS step from near density

n(x)

gl - ~ - - 4
ui] fL T \ -7
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FIG. 8. Taking a second step in the KS scheme for a strongly
correlated system (Hs with R = 4). Panel (a) shows the
input density which is near to the exact density (the A = 42%
density of the NI input density of Fig. 7) and the resulting
output density, which is far from the ground-state. The lower
panel (b) plots Eq. (22), and the inset (c¢) magnifies the small
A region.
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No of iterations vs b
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FIG. 10. The number of iterations required to converge an
LDA calculation to n < 107® (12), as a function of A, for
various bond-lengths R of the Hy molecule, starting with an
initial density of H™ on the left atom. The asymptotic form
for small A can be well-approximated by 7/\ for the data
shown.
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Convergence vs bond length
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Convergence of LDA KS algorithm
0.8 T | T | T | T

_ +  LDA critical A -
— 2.27 exp(-0.606 R )

O LDAKS gap —
— 0.81 exp(-0.570R)
& exact KS gap

o
=)}
I

KS gap and critical A
™
|
!

<
b
[
|

1 | 1 | 1 1
02 3 4 5 6

R (bond length)

FIG. 11.  Plotting the convergence-critical A for an LDA
calculation, as a function of the bond length R of a stretched
hydrogen molecule, starting with the exact H™ density on one
atom, as well as KS gaps for both the LDA and exact systems.
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GAPS FOR SOLIDS
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Summary

Have a new tool for studying KS DFT in 1d,
especially good for strong correlation.

Relies on efficiency of DMRG in 1d.

Have shown KS equations can always be made
to converge

Convergence slows with strength of
correlation

Thanks to US DOE for funding.



