Pseudopotentials for cold atoms

Pascal Bugnion, Gareth Conduit and Richard Needs

ESDG, 27^{th} November 2013

Simulate complex many body systems that are often difficult to observe in the solid state.

$$|F = 1/2, m_F = 1/2\rangle \longrightarrow$$
Li
$$|F = 1/2, m_F = -1/2\rangle \longrightarrow$$

The inter-atom interactions can be tuned by changing an external magnetic field.

Pseudopotential requirements

N. Trouiller and J.L Martins, *Efficient pseudopotentials for plane wave calculations*, PRB **43**, 1993 (1991)

Pseudopotential requirements

$$\frac{\partial \tan(\delta_{PP})}{\partial E}\Big|_{r=c} = \frac{\partial \tan(\delta_{\text{true}})}{\partial E}\Big|_{r=c}$$

Norm conservation

r

• Norm conservation

 The pseudo-wavefunction must join smoothly onto the wavefunction at the cutoff: at least two derivatives must match.

Norm conservation

 The pseudo-wavefunction must join smoothly onto the wavefunction at the cutoff: at least two derivatives must match.

Functional form of the pseudo-wavefunction

$$\psi_{PP} = \begin{cases} e^{p(r)} & r \leq c\\ \psi_{\text{true}} & r > c \end{cases}$$
$$p(r) = a_0 + a_2 r^2 + a_4 r^4 + \sum_{i=6} a_i r^2 + a_6 r^4 +$$

1

Invert the Schrödinger equation

$$V(r) = E + \frac{1}{2} \cdot \frac{\nabla^2 \psi}{\psi}$$

Building the pseudopotential

Breaking the pseudopotential: $E = 2E_F$

r

Phase shifts

Phase shifts

Ferromagnetism

We expect itinerant ferromagnetism to appear at sufficiently strong interactions.

Ferromagnetism

We expect itinerant ferromagnetism to appear at sufficiently strong interactions.

p-wave superconductivity

It is postulated that same-spin atoms feel a weak effective attraction.

Like-spin atoms may therefore form Cooper pairs.

• A good repulsive pseudopotential is necessary to model ultracold atomic gases at positive scattering length.

• A good repulsive pseudopotential is necessary to model ultracold atomic gases at positive scattering length.

• There is a lot of useful pseudopotential lore in the electronic structure literature.

• A good repulsive pseudopotential is necessary to model ultracold atomic gases at positive scattering length.

• There is a lot of useful pseudopotential lore in the electronic structure literature.

• New pseudopotentials offer unprecedented opportunities to model exotic phenomena.