Cold Atoms:

A quantum test bed for magnetism?
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Why cold atoms?

They are useful to simulate complex many-body systems.



Simulating electronic systems

Prepare a mixture of °Li atoms, such that the total angular
momentum for each atom is F' = 1/2.
This gives two hyperfine states: mp = +1/2 and mp = —1/2.




Simulating electronic systems

Prepare a mixture of °Li atoms, such that the total angular
momentum for each atom is F' = 1/2.
This gives two hyperfine states: mp = +1/2 and mp = —1/2.

The interaction between different atoms can be tuned by
changing the underlying magnetic field. J
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Low-barrier limit




Increasing barrier height
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Simulating magnetism

Ashcroft and Mermin on magnetism:

( ( The development of a tractable model of a magnetic
material, capable of describing both the
characteristic electron spin correlations as well as the
electronic transport properties [.. .| remains one of
the major unsolved problems of modern solid state 7 7
theory.



Diamagnetic-Ferromagnetic transition
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Ferromagnetic-Antiferromagnetic transition
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Full Configuration Interaction

We want to find the stationary states of the time-independent
Schrodinger equation, that is, all E,|¥) pairs such that

H|U) = E|U)



Full Configuration Interaction

We want to find the stationary states of the time-independent
Schrodinger equation, that is, all E,|¥) pairs such that

H|V) = E|T)
where

]:I = Z }AZ(I'Z> + Z V(I‘i, I'j)

i>j



Full Configuration Interaction (2)

The Hamiltonian eigenvalue equation H |¥) = E |¥) can
always be solved by expanding |¥) in a basis with the correct
symmetry.

Let the basis functions be called {|i)}. The method proceeds
as follows:

© Write the Hamiltonian matrix in the {|i)} basis: <Z‘ﬁ’j>

@ Diagonalise this matrix. The eigenvalues are the energies
and the eigenvectors are the stationary states | )
expressed in the {|i)} basis.



Full Configuration Interaction (3)

@ Define a set of one-electron orbitals {¢; }.

@ Build all n-electron Slater determinants:

|Da> = |¢a1¢a2 SR ¢an>

that you can in this basis.

© Construct all matrix elements <Da

F[’Dﬁ>.

© Diagonalise the resultant matrix.



Full Configuration Interaction (4)

Pros

@ Arbitrarily improvable. Gives the right answer in the limit
of complete basis set.

@ Variational.

@ Gives excited states.

@ Conceptually simple (and easy enough to implement).




Full Configuration Interaction (4)

Pros

@ Arbitrarily improvable. Gives the right answer in the limit
of complete basis set.

@ Variational.

@ Gives excited states.

@ Conceptually simple (and easy enough to implement).

Very expensive: for N orbitals and n electrons, there are V),
Slater determinants. This gives a cost of O(n!?).
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