
Cold Atoms:

A quantum test bed for magnetism?

Pascal Bugnion and Gareth Conduit



Why cold atoms?

They are useful to simulate complex many-body systems.



Simulating electronic systems

Prepare a mixture of 6Li atoms, such that the total angular
momentum for each atom is F = 1/2.
This gives two hyperfine states: mF = +1/2 and mF = −1/2.

The interaction between different atoms can be tuned by
changing the underlying magnetic field.
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Experimental setup
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Low-barrier limit
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Increasing barrier height

3 2 1 0 1 2 3
z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
En

er
gy



Increasing barrier height
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High barrier
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High barrier
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Simulating magnetism

Ashcroft and Mermin on magnetism:

“
The development of a tractable model of a magnetic
material, capable of describing both the
characteristic electron spin correlations as well as the
electronic transport properties [. . . ] remains one of
the major unsolved problems of modern solid state
theory. ”



Diamagnetic-Ferromagnetic transition
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Ferromagnetic-Antiferromagnetic transition
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Full Configuration Interaction

We want to find the stationary states of the time-independent
Schrödinger equation, that is, all E, |Ψ〉 pairs such that

Ĥ |Ψ〉 = E |Ψ〉

where
Ĥ =

∑
i

ĥ(ri) +
∑
i>j

V̂ (ri, rj)
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Full Configuration Interaction (2)

The Hamiltonian eigenvalue equation Ĥ |Ψ〉 = E |Ψ〉 can
always be solved by expanding |Ψ〉 in a basis with the correct
symmetry.

Let the basis functions be called {|i〉}. The method proceeds
as follows:

1 Write the Hamiltonian matrix in the {|i〉} basis:
〈
i
∣∣∣Ĥ∣∣∣j〉.

2 Diagonalise this matrix. The eigenvalues are the energies
and the eigenvectors are the stationary states |Ψ〉
expressed in the {|i〉} basis.



Full Configuration Interaction (3)

1 Define a set of one-electron orbitals {φi}.
2 Build all n-electron Slater determinants:

|Dα〉 = |φα1φα2 . . . φαn〉

that you can in this basis.

3 Construct all matrix elements
〈
Dα

∣∣∣Ĥ∣∣∣Dβ

〉
.

4 Diagonalise the resultant matrix.



Full Configuration Interaction (4)

Pros

Arbitrarily improvable. Gives the right answer in the limit
of complete basis set.

Variational.

Gives excited states.

Conceptually simple (and easy enough to implement).

Cons

Very expensive: for N orbitals and n electrons, there are NCn
Slater determinants. This gives a cost of O(n!3).
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Phase diagram



Thank you for your attention!


