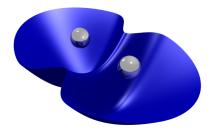
Cold Atoms: A quantum test bed for magnetism?

Pascal Bugnion and Gareth Conduit



∃ ► < ∃ ►</p>

Why cold atoms?

They are useful to simulate complex many-body systems.

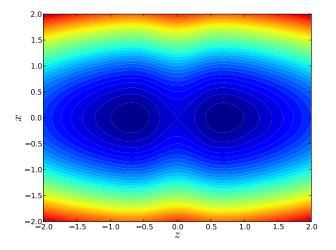
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Prepare a mixture of ⁶Li atoms, such that the total angular momentum for each atom is F = 1/2. This gives two hyperfine states: $m_F = +1/2$ and $m_F = -1/2$.

Prepare a mixture of ⁶Li atoms, such that the total angular momentum for each atom is F = 1/2. This gives two hyperfine states: $m_F = +1/2$ and $m_F = -1/2$.

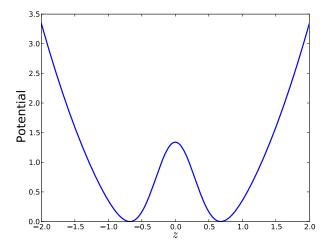
The interaction between different atoms can be tuned by changing the underlying magnetic field.

Experimental setup



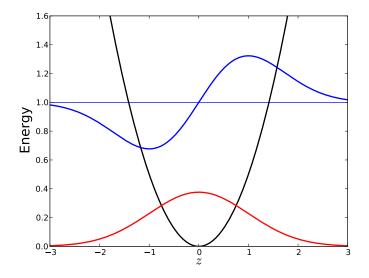
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Experimental setup

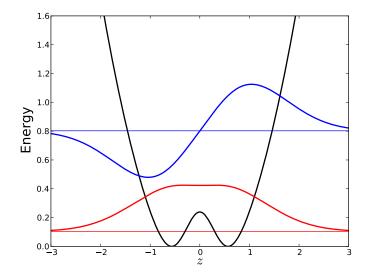


◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 シッペの

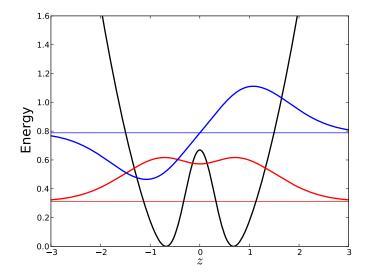
Low-barrier limit



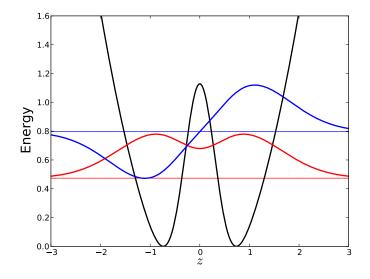
◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶



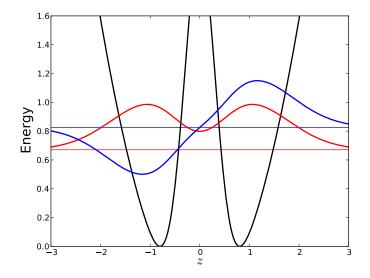
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



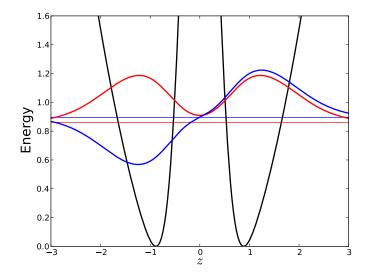
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



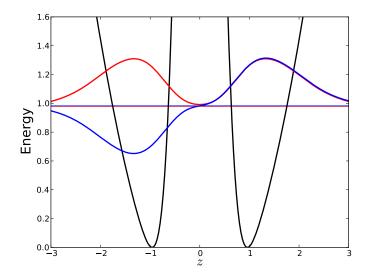
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



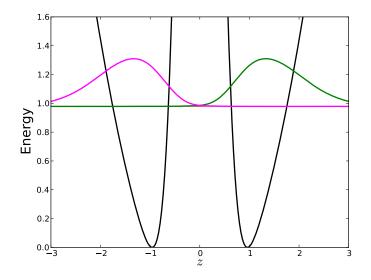
▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わえの



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

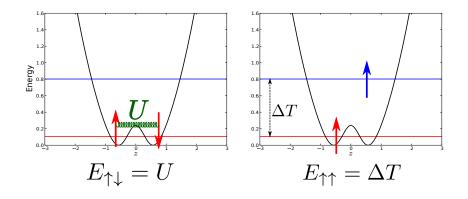


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ashcroft and Mermin on magnetism:

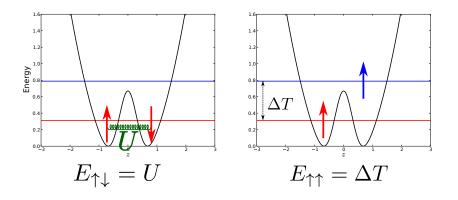
C The development of a tractable model of a magnetic material, capable of describing both the characteristic electron spin correlations as well as the electronic transport properties [...] remains one of the major unsolved problems of modern solid state theory.

Diamagnetic-Ferromagnetic transition



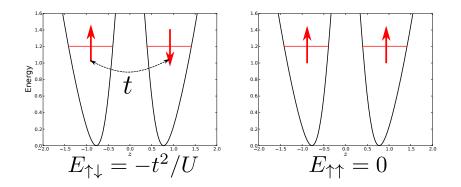
▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Diamagnetic-Ferromagnetic transition



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ferromagnetic-Antiferromagnetic transition



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

We want to find the stationary states of the time-independent Schrödinger equation, that is, all $E,|\Psi\rangle$ pairs such that

 $\hat{H} \left| \Psi \right\rangle = E \left| \Psi \right\rangle$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We want to find the stationary states of the time-independent Schrödinger equation, that is, all $E,|\Psi\rangle$ pairs such that

$$\hat{H} \left| \Psi \right\rangle = E \left| \Psi \right\rangle$$

where

$$\hat{H} = \sum_{i} \hat{h}(\mathbf{r}_{i}) + \sum_{i>j} \hat{V}(\mathbf{r}_{i}, \mathbf{r}_{j})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Hamiltonian eigenvalue equation $\hat{H} \left| \Psi \right\rangle = E \left| \Psi \right\rangle$ can always be solved by expanding $\left| \Psi \right\rangle$ in a basis with the correct symmetry.

Let the basis functions be called $\{|i\rangle\}.$ The method proceeds as follows:

- Write the Hamiltonian matrix in the $\{|i\rangle\}$ basis: $\langle i|\hat{H}|j\rangle$.
- ² Diagonalise this matrix. The eigenvalues are the energies and the eigenvectors are the stationary states $|\Psi\rangle$ expressed in the $\{|i\rangle\}$ basis.

Full Configuration Interaction (3)

- **1** Define a set of one-electron orbitals $\{\phi_i\}$.
- Build all n-electron Slater determinants:

$$|D_{\alpha}\rangle = |\phi_{\alpha_1}\phi_{\alpha_2}\dots\phi_{\alpha_n}\rangle$$

that you can in this basis.

- Construct all matrix elements $\langle D_{\alpha} | \hat{H} | D_{\beta} \rangle$.
- Oiagonalise the resultant matrix.

Full Configuration Interaction (4)

Pros

- Arbitrarily improvable. Gives the right answer in the limit of complete basis set.
- Variational.
- Gives excited states.
- Conceptually simple (and easy enough to implement).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Full Configuration Interaction (4)

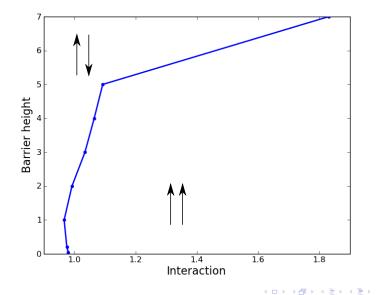
Pros

- Arbitrarily improvable. Gives the right answer in the limit of complete basis set.
- Variational.
- Gives excited states.
- Conceptually simple (and easy enough to implement).

Cons

Very expensive: for N orbitals and n electrons, there are ${}^{N}C_{n}$ Slater determinants. This gives a cost of $O(n!^{3})$.

Phase diagram



900

æ

Thank you for your attention!

- E