Cluster vs. Periodic Boundary Conditions – Approximating an Infinite Crystal by a Finite one

For a calculation of a finite piece of a crystal (N atoms or basis elements), what boundary conditions on the Schrödinger equation give the most information about the band structure?

A surface is a defect of the crystal, so you might think that a cluster with no surfaces, that is a cluster with periodic boundary conditions, would give a better band structure.

This is not true in the sense that you get the most distinct points of the band structure by requiring the wave functions to be zero outside a cluster whose shape maximally breaks the symmetries of the crystal.

A One–Dimensional Tight–binding Example

3 time–reversal doublets and two time–reversal singlets – 5 band energies.

8 atoms with cluster boundary conditions

Speculations on the general relation between cluster shape and distinct band energies

Degeneracies occur in the spectrum of the cluster due to the presence of multi-dimensional irreducible representations of the crystal symmetry, or multiple copies of the same one-dimensional irreducible representation.

The best cluster has no multi-dimensional irreducible representations, or multiple copies of the same one-dimensional irreducible representation.

In most cases this is the same as there being no rotational symmetries present in a connected cluster.

