Charge transfer in Carbon Nanotubes (?)

ESDG 13 Feb 2013 Robert Bell, Arash Mostofi

" H_2O molecules can be adsorbed on the nanotubes and act like electron donors"

"The electronic properties of [nanotubes] can be deeply modified by [...] minute quantities of H_2O ."

PRB 62 15 (2000)

PRB 62 15 (2000)

Charge transfer model (?)

PRB 62 15 (2000)

Charge transfer model (?)

PRB 62 15 (2000)

Charge transfer model (?)

- Mulliken analysis to assign ionic partial charges
- Water net positive
- CNT net negative

Ε

Ε

Expected observations: Strong interaction Modified bandstructure Delocalised electrons

Issues:

Energy penalty Poor state alignment Scattering effect

CNT

Expected observations: Strong interaction Modified bandstructure Delocalised electrons

Issues:

Energy penalty Poor state alignment Scattering effect

Expected observations: Strong interaction Modified bandstructure Delocalised electrons

Issues:

Energy penalty Poor state alignment Scattering effect

Ε

Expected observations: Strong interaction Modified bandetructure Delocalised electrons

Issues:

Energy penalty Poor state alignment Scattering effect

E

Wednesday, 13 February 13

Single water molecule: dipole away

$$\delta V_{\rm loc}(\vec{r}) = \frac{q}{|\vec{r} - \vec{r}_{+}|} - \frac{q}{|\vec{r} - \vec{r}_{-}|}$$
$$\delta V_{\rm loc}(\vec{g}) = q \left[\frac{e^{i\vec{g} \cdot \vec{r}_{+}}}{g^{2}} - \frac{e^{i\vec{g} \cdot \vec{r}_{-}}}{g^{2}} \right]$$

- •No electrons added
- •Exact long-range interaction
- •Parameter free

Single water molecule: dipole away

Single water molecule: dipole away

Summary

- Mulliken analysis has been consistently misinterpreted in the literature
- Electrostatic effects may be isolated through the use of classical charges
- There exists no charge transfer between water and CNTs

z (Å)

