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Alternative treatment of the singularity in the Exact Exchange of periodic systems

Reference determinant for molecules

E0 =〈D0|H|D0〉

=

N
∑

i

hi +

N
∑

i<j

[〈ij |ij〉 − 〈ij |ji〉]

Exchange energy is defined as:

Ex = −
1

2

N
∑

ij

〈ij |ji〉

where i and j refer to spin-orbitals.
For a spin-restricted calculation, this becomes:

Ex = −

N/2
∑

ab

〈ab|ba〉
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What about a periodic system?

Suppose we have a set of one-particle orbitals

φvk(r)

computed over a k-point mesh with Nk kpoints which span the
FBZ.

φvk(r) = e ik.ruvk(r)

uvk is periodic over the primitive unit cell (with volume Ω).

φvk is periodic over the crystal cell (with volume NkΩ).
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Exact exchange in extended systems

By analogy the exact exchange energy, Ex , per unit cell:

Ex = −
1

Nk

occ
∑

vk

occ
∑

wk′

〈vkwk
′|wk

′vk〉

= −
1

Nk

occ
∑

vk

occ
∑

wk′

∫ ∫

φ∗
vk

(r)φ∗
wk′

(r′)φwk′(r)φvk(r
′)

|r − r′|
drdr

′

= −
4π

NkΩ

occ
∑

vk

occ
∑

wk′

∑

G

Yvk,wk′(G)Ywk′,vk(−G)

|G − k + k′|2

Yvk,wk′(G) =
1

NkΩ

∫

NkΩ
dre−iG.rφ∗

vk(r)φwk′ (r)

=
1

NkΩ

∫

NkΩ
dre−i(G+k−k′).ru∗

vk(r)uwk′(r)



Alternative treatment of the singularity in the Exact Exchange of periodic systems

Exact exchange singularity

Ex = −
4π

NkΩ

occ
∑

vk

occ
∑

wk′

∑

G

Yvk,wk′(G)Ywk′,vk(−G)

|G − k + k′|2

Singular terms are those for which: k = k′ and v = w and G = 0.
(Note k and k′ are confined to be within FBZ.)

Singularity is integrable only in the infinite k-point limit where the
sums Σk → Ω

(2π)3

∫

dk.
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Auxiliary functions I

A function, f (k), which:

• is periodic within the reciprocal lattice

• diverges as 1
k2 as k → 0 and is smooth elsewhere

• is even

can be added to the singular terms (cancelling out the singularity)
and then integrated out separately (ideally analytically).

Relies on existence of suitable auxiliary function for a given lattice
type.

fcc, analytic: Gygi and Balderschi, PRB 34 4405 (1986)
various: Wenzien, Cappellini and Bechstedt, PRB 51 14701 (1995)
general: Carrier, Rohra and Görling, PRB 75 205126 (2007)
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Auxiliary functions II

Ex = −
4π

NkΩ

occ
∑

vk

occ
∑

wk′ 6=k

∑

G

Yvk,wk′(G)Ywk′,vk(−G)

|G − k + k′|2

−
4π

NkΩ

∑

k

occ
∑

vw

∑

G 6=0

Yvk,wk(G)Ywk,vk(−G)

|G|2

+ Nv (F̃ − F ),

where

F̃ =
4π

NkΩ

∑

k

∑

k′ 6=k

f (k − k
′)

and

F =
1

2π2

∫

BZ

f (k)dk.
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Auxiliary functions III

e.g. for α-SiC, using the Wenzien auxiliary function:
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Truncated Coulomb potential

vatten.(r) =

{

1
|r| |r| ≤ Rc

0 otherwise.

So the equivalent exchange integrals are:

〈vkwk
′|wk

′vk〉atten =

∫

NkΩ

∫

ΩRc (r)

φ∗
vk

(r)φ∗
wk′

(r′)φwk′(r)φvk(r
′)

|r − r′|
drdr

′

Simple modification to the potential kernel:

Ex = −
4π

NkΩ

occ
∑

vk

occ
∑

wk′

∑

G

Yvk,wk′(G)Ywk′,vk(−G)

|G − k + k′|2
[1−cos(|G−k+k

′|Rc)].

Potential no longer contains any singularities.

JS and AA, PRB (in press, May 2008).
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UEG

1 10 100 1000 10000

# electrons (log scale)

-15

-10

-5

0

E
x
c
h
a
n
g
e
 e

n
e
rg

y
 [

e
V

]

c L1.0=R

c L52.0=R

c Lv=R

c L=R

c ∞=R

Exact=-12.462eV

L: lattice
parameter.
4
3π(vL)3 = L3.
Calculations: Alex Thom.
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α-SiC

Hexagonal close-packed (a = 3.076Å, c = 5.048Å), 80 Rydberg
cutoff.
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β-SiC

Face-centred cubic (a = 4.3596Å), 80 Rydberg cutoff.
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Graphite

Hexagonal close-packed (a = 2.464Å, c = 6.711Å), 80 Rydberg
cutoff.
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Diamond

Face-centred cubic (a = 3.3676Å), 80 Rydberg cutoff.
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Exact exchange and periodic boundary conditions

• Infinite system: pair-wise exchange between all electrons.

• Artificial periodicity of the crystal cell imposed on the system.
⇒ Forces electrons in different crystal cells to be
distinguishable.

• Calculating exchange integrals over the Wigner–Seitz cell
allows only exchange between electrons in the same crystal
cell.
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Reference determinant for extended systems

E0 =〈D0|H|D0〉

Extended systems:

E0 =2
∑

vk

hvk +
∑

vk

∑

w ,k′

[

2〈vkwk
′|vkwk

′〉 − 〈vkwk
′|wk

′vk〉atten
]

=2
∑

vk

hvk +
∑

vk

′
∑

wk′

[

2〈vkwk
′|vkwk

′〉 − 〈vkwk
′|wk

′vk〉atten
]

+
∑

vk

〈vkvk|vkvk〉+
∑

vk

ξvk

where the prime ’ indicates w 6= v when k′ = k.
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Periodic interactions

Uee =
1

2

∑

L

′
∑

i ,j

1

|ri − rj + L|

The prime ’ indicates that when L = 0, i 6= j , i.e.
An electron interacts with its periodic images but not itself.
Obtain a “ξ”-like correction which is wavefunction-dependent:

ξvk = 〈vkvk|
∑

L 6=0

1

|r1 − r2 + L|
|vkvk〉

= 〈vkvk|
∑

L

1

|r1 − r2 + L|
|vkvk〉 − 〈vkvk|

1

|r1 − r2|
|vkvk〉cell

= 〈vkvk|
∑

L

1

|r1 − r2 + L|
|vkvk〉 − 〈vkvk|

1

|r1 − r2|
|vkvk〉atten
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