Alternative treatment of the singularity in the Exact Exchange energy of periodic systems

James Spencer and Ali Alavi $C_{U C}{ }^{3}$

May 7, 2008

Reference determinant for molecules

$$
\begin{aligned}
E_{0} & =\left\langle D_{0}\right| H\left|D_{0}\right\rangle \\
& =\sum_{i}^{N} h_{i}+\sum_{i<j}^{N}[\langle i j \mid i j\rangle-\langle i j \mid j i\rangle]
\end{aligned}
$$

Exchange energy is defined as:

$$
E_{x}=-\frac{1}{2} \sum_{i j}^{N}\langle i j \mid j i\rangle
$$

where i and j refer to spin-orbitals.
For a spin-restricted calculation, this becomes:

$$
E_{x}=-\sum_{a b}^{N / 2}\langle a b \mid b a\rangle
$$

What about a periodic system?

Suppose we have a set of one-particle orbitals

$$
\phi_{v k}(\mathbf{r})
$$

computed over a k-point mesh with N_{k} kpoints which span the FBZ.

$$
\phi_{v \mathbf{k}}(\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} u_{v \mathbf{k}}(\mathbf{r})
$$

u_{vk} is periodic over the primitive unit cell (with volume Ω).
$\phi_{v \mathbf{k}}$ is periodic over the crystal cell (with volume $N_{k} \Omega$).

Exact exchange in extended systems

By analogy the exact exchange energy, E_{x}, per unit cell:

$$
\begin{aligned}
& E_{X}=-\frac{1}{N_{k}} \sum_{v \mathbf{k}}^{o c c} \sum_{w \mathbf{k}^{\prime}}^{o c c}\left\langle v \mathbf{k} w \mathbf{k}^{\prime} \mid w \mathbf{k}^{\prime} v \mathbf{k}\right\rangle \\
&=-\frac{1}{N_{k}} \sum_{v \mathbf{k}}^{\text {occ }} \sum_{w \mathbf{k}^{\prime}}^{\text {occ }} \iint \frac{\phi_{v \mathbf{k}}^{*}(\mathbf{r}) \phi_{w \mathbf{k}^{\prime}}^{*}\left(\mathbf{r}^{\prime}\right) \phi_{w \mathbf{k}^{\prime}}(\mathbf{r}) \phi_{v \mathbf{k}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \\
&=-\frac{4 \pi}{N_{k} \Omega} \sum_{v \mathbf{k}}^{o c c} \sum_{w \mathbf{k}^{\prime}}^{o c c} \sum_{\mathbf{G}} \frac{Y_{v \mathbf{k}, w \mathbf{k}^{\prime}}(\mathbf{G}) Y_{w \mathbf{k}^{\prime}, v \mathbf{k}}(-\mathbf{G})}{\left|\mathbf{G}-\mathbf{k}+\mathbf{k}^{\prime}\right|^{2}} \\
& \begin{aligned}
Y_{v \mathbf{k}, w \mathbf{k}^{\prime}}(\mathbf{G}) & =\frac{1}{N_{k} \Omega} \int_{N_{k} \Omega} d \mathbf{r} e^{-i \mathbf{G} \cdot \mathbf{r}} \phi_{v \mathbf{k}}^{*}(\mathbf{r}) \phi_{w \mathbf{k}^{\prime}}(\mathbf{r}) \\
& =\frac{1}{N_{k} \Omega} \int_{N_{k} \Omega} d \mathbf{r} e^{-i\left(\mathbf{G}+\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}} u_{v \mathbf{k}}^{*}(\mathbf{r}) u_{w \mathbf{k}^{\prime}}(\mathbf{r})
\end{aligned}
\end{aligned}
$$

Exact exchange singularity

$$
E_{X}=-\frac{4 \pi}{N_{k} \Omega} \sum_{v \mathbf{k}}^{\text {occ }} \sum_{w \mathbf{k}^{\prime}}^{\text {occ }} \sum_{\mathbf{G}} \frac{Y_{v \mathbf{k}, w \mathbf{k}^{\prime}}(\mathbf{G}) Y_{w \mathbf{k}^{\prime}, v \mathbf{k}}(-\mathbf{G})}{\left|\mathbf{G}-\mathbf{k}+\mathbf{k}^{\prime}\right|^{2}}
$$

Singular terms are those for which: $\mathbf{k}=\mathbf{k}^{\prime}$ and $v=w$ and $\mathbf{G}=0$. (Note \mathbf{k} and \mathbf{k}^{\prime} are confined to be within FBZ.)

Singularity is integrable only in the infinite \mathbf{k}-point limit where the sums $\Sigma_{\mathbf{k}} \rightarrow \frac{\Omega}{(2 \pi)^{3}} \int d \mathbf{k}$.

Auxiliary functions I

A function, $f(\mathbf{k})$, which:

- is periodic within the reciprocal lattice
- diverges as $\frac{1}{\mathbf{k}^{2}}$ as $\mathbf{k} \rightarrow 0$ and is smooth elsewhere
- is even
can be added to the singular terms (cancelling out the singularity) and then integrated out separately (ideally analytically).

Relies on existence of suitable auxiliary function for a given lattice type.
fcc, analytic: Gygi and Balderschi, PRB 344405 (1986) various: Wenzien, Cappellini and Bechstedt, PRB 5114701 (1995) general: Carrier, Rohra and Görling, PRB 75205126 (2007)

Auxiliary functions II

$$
\begin{aligned}
E_{X}= & -\frac{4 \pi}{N_{k} \Omega} \sum_{v \mathbf{k}}^{o c c} \sum_{w \mathbf{k}^{\prime} \neq \mathbf{k}}^{o c c} \sum_{\mathbf{G}} \frac{Y_{v \mathbf{k}, w \mathbf{k}^{\prime}}(\mathbf{G}) Y_{w \mathbf{k}^{\prime}, v \mathbf{k}}(-\mathbf{G})}{\left|\mathbf{G}-\mathbf{k}+\mathbf{k}^{\prime}\right|^{2}} \\
& -\frac{4 \pi}{N_{k} \Omega} \sum_{\mathbf{k}} \sum_{v w}^{o c c} \sum_{\mathbf{G} \neq \mathbf{0}} \frac{Y_{v \mathbf{k}, w \mathbf{k}}(\mathbf{G}) Y_{w \mathbf{k}, v \mathbf{k}}(-\mathbf{G})}{|\mathbf{G}|^{2}} \\
& +N_{v}(\tilde{F}-F),
\end{aligned}
$$

where

$$
\tilde{F}=\frac{4 \pi}{N_{k} \Omega} \sum_{\mathbf{k}} \sum_{\mathbf{k}^{\prime} \neq \mathbf{k}} f\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

and

$$
F=\frac{1}{2 \pi^{2}} \int_{\mathrm{BZ}} f(\mathbf{k}) d \mathbf{k}
$$

Auxiliary functions III

e.g. for α-SiC, using the Wenzien auxiliary function:

Truncated Coulomb potential

$$
v_{\text {atten. }}(\mathbf{r})= \begin{cases}\frac{1}{|\boldsymbol{r}|} & |\mathbf{r}| \leq R_{c} \\ 0 & \text { otherwise }\end{cases}
$$

So the equivalent exchange integrals are:
$\left\langle v \mathbf{k} w \mathbf{k}^{\prime} \mid w \mathbf{k}^{\prime} v \mathbf{k}\right\rangle_{\text {atten }}=\int_{N_{k} \Omega} \int_{\Omega_{R_{c}}(\mathbf{r})} \frac{\phi_{v \mathbf{k}}^{*}(\mathbf{r}) \phi_{w \mathbf{k}^{\prime}}^{*}\left(\mathbf{r}^{\prime}\right) \phi_{w \mathbf{k}^{\prime}}(\mathbf{r}) \phi_{v \mathbf{k}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}$
Simple modification to the potential kernel:
$E_{X}=-\frac{4 \pi}{N_{k} \Omega} \sum_{v \mathbf{k}}^{\mathrm{occ}} \sum_{w \mathbf{k}^{\prime}}^{\mathrm{occ}} \sum_{\mathbf{G}} \frac{Y_{v \mathbf{k}, w \mathbf{k}^{\prime}}(\mathbf{G}) Y_{w \mathbf{k}^{\prime}, v \mathbf{k}}(-\mathbf{G})}{\left|\mathbf{G}-\mathbf{k}+\mathbf{k}^{\prime}\right|^{2}}\left[1-\cos \left(\left|\mathbf{G}-\mathbf{k}+\mathbf{k}^{\prime}\right| R_{c}\right)\right]$.
Potential no longer contains any singularities.
JS and AA, PRB (in press, May 2008).

UEG

L: lattice
parameter.
$\frac{4}{3} \pi(v L)^{3}=L^{3}$.
Calculations: Alex Thom.

$\alpha-\mathrm{SiC}$

Hexagonal close-packed $(a=3.076 \AA \AA, c=5.048 \AA$), 80 Rydberg cutoff.

β-SiC

Face-centred cubic $(a=4.3596 \AA ̊)$, 80 Rydberg cutoff.

Graphite

Hexagonal close-packed $(a=2.464 \AA \AA, c=6.711 \AA$), 80 Rydberg cutoff.

Diamond

Face-centred cubic $(a=3.3676 \AA ̊)$, 80 Rydberg cutoff.

Exact exchange and periodic boundary conditions

- Infinite system: pair-wise exchange between all electrons.
- Artificial periodicity of the crystal cell imposed on the system. \Rightarrow Forces electrons in different crystal cells to be distinguishable.
- Calculating exchange integrals over the Wigner-Seitz cell allows only exchange between electrons in the same crystal cell.

Reference determinant for extended systems

$$
E_{0}=\left\langle D_{0}\right| H\left|D_{0}\right\rangle
$$

Extended systems:

$$
\begin{aligned}
E_{0}= & 2 \sum_{v \mathbf{k}} h_{v \mathbf{k}}+\sum_{v \mathbf{k}} \sum_{w, \mathbf{k}^{\prime}}\left[2\left\langle v \mathbf{k} w \mathbf{k}^{\prime} \mid v \mathbf{k} w \mathbf{k}^{\prime}\right\rangle-\left\langle v \mathbf{k} w \mathbf{k}^{\prime} \mid w \mathbf{k}^{\prime} v \mathbf{k}\right\rangle_{\text {atten }}\right] \\
= & 2 \sum_{v \mathbf{k}} h_{v \mathbf{k}}+\sum_{v \mathbf{k}} \sum_{w \mathbf{k}^{\prime}}^{\prime}\left[2\left\langle v \mathbf{k} w \mathbf{k}^{\prime} \mid v \mathbf{k} w \mathbf{k}^{\prime}\right\rangle-\left\langle v \mathbf{k} w \mathbf{k}^{\prime} \mid w \mathbf{k}^{\prime} v \mathbf{k}\right\rangle_{\text {atten }}\right] \\
& +\sum_{v \mathbf{k}}\langle v \mathbf{k} v \mathbf{k} \mid v \mathbf{k} v \mathbf{k}\rangle+\sum_{v \mathbf{k}} \xi_{v \mathbf{k}}
\end{aligned}
$$

where the prime ' indicates $w \neq v$ when $\mathbf{k}^{\prime}=\mathbf{k}$.

Periodic interactions

$$
U_{\mathrm{ee}}=\frac{1}{2} \sum_{\mathbf{L}} \sum_{i, j}^{\prime} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}+\mathbf{L}\right|}
$$

The prime ' indicates that when $L=0, i \neq j$, i.e.
An electron interacts with its periodic images but not itself. Obtain a " ξ "-like correction which is wavefunction-dependent:

$$
\begin{aligned}
\xi_{v \mathbf{k}} & =\langle v \mathbf{k} v \mathbf{k}| \sum_{\mathbf{L} \neq 0} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}+\mathbf{L}\right|}|v \mathbf{k} v \mathbf{k}\rangle \\
& =\langle v \mathbf{k} v \mathbf{k}| \sum_{\mathbf{L}} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}+\mathbf{L}\right|}|v \mathbf{k} v \mathbf{k}\rangle-\langle v \mathbf{k} v \mathbf{k}| \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}|v \mathbf{k} v \mathbf{k}\rangle_{\text {cell }} \\
& =\langle v \mathbf{k} v \mathbf{k}| \sum_{\mathbf{L}} \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}+\mathbf{L}\right|}|v \mathbf{k} v \mathbf{k}\rangle-\langle v \mathbf{k} v \mathbf{k}| \frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}|v \mathbf{k} v \mathbf{k}\rangle_{\text {atten }}
\end{aligned}
$$

