Liouvillian Dynamics for Materials Simulation

Roger Haydock, Department of Physics, University of Oregon(www.uoregon.edu)

Alternative Method for Simulating the Mechanical Properties of Materials For Example Hardness

- Long Times - Green Functions for Linear Equations
- Rare Events -Analytic Integration over Distributions (moments)
- Correlated Motion of Many Atoms - Propagate only Disturbances

Liouville's Equation

For Functions on Phase Space (position and velocity)

Properties of Liouville's Equation

- Linear - a Classical Analogue of the Schrödinger Equation
- Liouvillian $\mathrm{L}=\mathrm{V} \cdot\left(-\mathrm{i} \nabla_{\mathrm{x}}\right)+\mathrm{A} \cdot\left(-\mathrm{i} \nabla_{\mathrm{v}}\right)$ replaces the Hamiltonian
- Use Green Functions $(\omega-\mathrm{L})^{-1}$ to find long-time behavior
- Solve using moments $\left\langle\mathrm{L}^{\mathrm{n}}\right\rangle$ (Recursion)
- Many Atoms \Rightarrow Function Space of High Dimension

Application to Correlated Motion in Materials

Represent local disturbances by operators

Operator u acts on phase space functions
modified $\Psi(\mathrm{X}, \mathrm{V})=\mathrm{u} \Psi(\mathrm{X}, \mathrm{V})$

Evolve the Disturbance not the State

$$
-\mathrm{i} \partial \mathrm{u} / \partial \mathrm{t}=[\mathrm{L}, \mathrm{u}]=\Lambda \mathrm{u}
$$

The Liouvillian Commutator Equation is the Analogue of Heisenberg's Equation

- Green Functions for long times $(\omega-\Lambda)^{-1}$
- Moments include rare events << $\Lambda^{\text {n }} \gg$
- Motion of Disturbance rather than whole system reduces the problem of many atoms

Dynamical Basis Sets for Computation

Given N words of Memory, which is better?

1. Static -Perform Calculation in an N -Dimension Subspace storing N Components of a Vector
2. Dynamic - Perform Calculation in a 10^{18}-Dimensional Subspace storing the N/2 Indices for the N/2 largest Components of a Vector (64 bit word)

Neglect of small Components leads to small errors in Tridiagonalization or Recursion

Liouvillian Commutator, Dynamic Basis, and Tridiagonalization

- Direct Calculation of Mechanical Properties
- Access to Long times
- Inclusion of Rare Events
- Many Correlated Atoms

