Diffusion Monte-Carlo, nodal

surfaces and pairing functions




Variational principle for Fermions
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Diffusion Monte-Carlo

lim (exp_m \I!T> = U

t—00

where U is any n-electron wavefunction and ¥ is
the wavefunction that minimizes the energy in H".



DMC for the particle in a box
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DMC for the particle in a box
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Fermion sign problem

Repeated application of exp~ will eventually give
the lowest-energy eigenfunction in H".




Nodal surface

The Hamiltonian operator acts in the same manner
on all particles.

Ensuring that the wavefunction is 0 when any two
electrons coincide is sufficient to guarantee
anti-symmetry.

The locus of points on which the wavefunction is 0
is called the nodal surface.



Fixed node approximation

DMC within the fixed-node approximation allows
the optimization of a trial wavefunction without
changing the nodal surface.

Wavefunctions with
the same nodal
surface as U



Trial functions

Traditionally, the Slater-Jastrow wavefunction is
used as a trial wavefunction:
Uy =e’D

where e’ is positive everywhere and D is the
Hartree-Fock wavefunction for the system.



New trial wavefunctions?

The nodal surface of the trial wavefunction can be
improved by replacing the Slater determinant with
some more complex anti-symmetric function W 4:

Ur ='Wy

But what functional form can we use for W47 |




Beyond one-electron orbitals

Electrons in the real world do not exists in one-
electron orbitals. Could we build two-electron
orbitals?



Beyond one-electron orbitals

Electrons in the real world do not exists in one-
electron orbitals. Could we build two-electron
orbitals?

®(r, 1) = Zgij¢i(r)¢j(f)

These two-electron orbitals are called geminals in
the litterature.



From orbitals to wavefunction




orbitals to wavefunction




Results - Geminals alone
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Results - Geminals alone
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Results - Geminals in DMC
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Results - Geminals in DMC
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The shape of A"
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Multi-geminals?
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Conclusions

@ The nodal surface of the trial wavefunction
controls the ultimate accuracy of a DMC
calculation.

@ Single geminals scale very poorly in bulk
systems.

@ Sums of geminals may be an (expensive)
answer?
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Thank you for listening!



