Gaussian Approximation Potentials at work: from silicon to water

Albert Bartók-Pártay, Wojciech Szlachta Gábor Csányi, Risi Kondor, Mike Payne

Outline

- gap between QM and interatomic potentials
- generating potentials
- Gaussian Process
- results
 - silicon
 - tungsten
 - water

From QM...

- quantum mechanics is the 'ultimate truth' but...
- ... expensive to solve
- sequence of approximations
 - full CI: 1 atom
 - Coupled Cluster: few atoms
 - QMC: few molecules
 - DFT: few hundred atoms
 - tight-binding: few thousand atoms
 - interatomic potentials: millions of atoms

Massive gap!

... to interatomic potentials

- energy is the sum of atomic (pair, triplet, etc.) energies
- atomic energy depends on neighbouring atoms
- electronic problem is *not* solved

$$E_{tot} = \sum_{i} \varepsilon \left(\{r_{ij}\} \right) + \sum_{i,j} \hat{L}_{i} \hat{L}_{j} \frac{1}{r_{ij}}$$

finite range

electrostatics

Generating potentials

- How is an interatomic potential generated?
 - empirical, analytic formula
 - choose target properties
 - fit free parameters to reproduce properties
 - hope that the formula remains reasonably valid everywhere in the configuration space
- the GAP way
 - no fixed formula
 - search in the space of smooth functions
 - identify target configurations
 - use arbitrary precision QM data as evidence
 - extend target set if needed

$$V_{ij} = 4 \epsilon \left(\frac{\sigma^{12}}{r_{ij}^{12}} - \frac{\sigma^6}{r_{ij}^6} \right)$$

Gaussian Process

• inference method: given some data, infer function values at arbitrary points

Gaussian Process

• inference method: given some data, infer function values at arbitrary points

Gaussian Process

• inference method: given some data, infer function values at arbitrary points

0.8

0.6

x

$$G(x, x') = \exp\left(\frac{-(x-x')^2}{2\theta^2}\right)$$

$$y(x) = \sum_{n} \alpha_n G(x, x_n)$$

- crystalline configurations
 - diamond, β -tin, simple hexagonal
- liquid
- amorphous
- Results:
 - elastic constants
 - phonon spectrum
 - force correlation
 - phase diagram

- crystalline configurations
 - diamond, β -tin, simple hexagonal
- liquid
- amorphous
- Results:
 - <u>elastic constants</u>
 - phonon spectrum
 - force correlation
 - phase diagram

	CASTEP	GAP
C ₁₁ / GPa	154	154
C ₁₂ / GPa	56	55
C ₄₄ / GPa	75	73

- crystalline configurations
 - diamond, β -tin, simple hexagonal
- liquid
- amorphous
- Results:
 - elastic constants
 - phonon spectrum
 - force correlation
 - phase diagram

- crystalline configurations
 - diamond, β -tin, simple hexagonal
- liquid
- amorphous
- Results:
 - elastic constants
 - phonon spectrum
 - force correlation
 - phase diagram

- crystalline configurations
 - diamond, β -tin, simple hexagonal
- liquid
- amorphous
- Results:
 - elastic constants
 - phonon spectrum
 - force correlation
 - phase diagram

Tungsten

Water

- notoriously difficult to simulate
- interatomic potentials
 - fitted to reproduce some properties (rdf, vaporisation)
 - not very predictive otherwise
- DFT
 - water frozen at room temperature
- CC, QMC
 - expensive
 - systems not big enough network structure...

Water

• Cluster expansion

• GAP on dimers

Acknowledgments

- Dario Alfè
- Noam Bernstein
- Silvia Cereda
- Gábor Csányi
- Mike Gillan
- James Kermode
- Fred Manby
- Letif Mones
- Mike Payne
- Wojciech Szlachta