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Nonlinear transport of correlated electrons

Ex: Magnetite (Fe304)
Group of Prof. Doug. Natelson @ Rice Nature Materials 7, 130 (2007)
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Ex: Organic molecular Mott insulator
Group of Prof. Y. Tokura @ Tsukuba Science 284, 1645 (1999)
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Correlated metal + Electric field
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ex: 2d Hubbard model
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aji(t) = qfx);" dx - A(t,x)

Coulomb: (¢, A) = (0, —Et), Temporal: (¢,A) = (—qE - x,0)
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Correlated metal + Electric field

Steady states are impossible

@ U = 0 = Bloch oscillations
@ U#0= Current J#0 <> Work W=J-E>0
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Correlated metal + Electric field 4 Dissipation

E field
l Work

System

.

Thermostat

Coupling to a thermostat at temperature T

Hop =V Y %Obl iy +hec.
iol

0:(t) = [fdt’ ¢i(t')
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Effect of dissipation on the Mott physics

Local density of states p(e)
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Real-time dynamics

Schwinger-Keldysh formalism
GK GR 0 xR
G_<éR o) z‘(zR ZK>

Schwinger-Dyson equation(s)

\

G(t,x;t',x') = Go(t,x; t',x') + Gg o X o G(t, x; ', x)

Steady-state solutions

Space & time translational invariance

N
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Real-time dynamics

Schwinger-Keldysh formalism
GK GR 0 xR
G_<éR o) z‘(zR ZK>

Schwinger-Dyson equation(s)

G(t,x;t',x') = Go(t,x; t',x') + Gg o X o G(t, x; ', x)

Steady-state solutions

Space & time translational invariance
is broken (artificially) by every choice of gauge !

4

= Need for a gauge invariant formalism
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Gauge invariant formalism

Wigner transform
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Gauge invariant formalism

Wigner transform

Change of variables

wr— w—¢(T,X)=w

k> k—qgA(T,X)=k = Gauge invariant G(T,X; w, k)
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Gauge invariant formalism

Wigner transform

Change of variables

w— w—¢(T,X)=w
k— k—qgA(T,X)=k

= Gauge invariant G(T,X; w, k)

Space & time translational invariance: T, X = G(w, k)
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Gauge invariant formalism

Wigner transform

Change of variables

wr— w—¢(T,X)=w

k> k—qgA(T,X)=k = Gauge invariant G(T,X; w, k)

Space & time translational invariance: T, X = G(w, k)

Steady-state Schwinger-Dyson equations

G(w,k) = Go(w,K)+ Go X *G(w, k)

*= exp(3q[0=E-V,.— E. V,.Aﬁ_;])
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Dimensional reduction

the out-of-equilibrium d-dimensional system reduces to an
equilibrium system in the d — 1 dimensions perpendicular to the
field.

G(w, k1) =Go(w,k1)+GoXG(w, k)

Phys. Rev. Lett. 108, 086401 (2012)
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Dynamical Mean-Field Theory

Zu[G(w, k)] ~ E5PIG ()]
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Dynamical Mean-Field Theory

1 — Build the impurity problem
_ —1
GR(@) = [Gie(@)! + ()]

loc
2 GK (w
@)= 9@ |5 - =)

Impurity Lattice

Gioc(w) = [dk G(w,k)/ [dr

2 — Solve the impurity problem
i~ U g

3 — Mean-Field approximation
Ty (@, k) = TP [G ()]

4 — Solve the lattice problem

G(w,k) = Go(w,k)+ Go* X *G(w, k)
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Dimensional crossover of the metal

Spectral function A(e, k) = —Im GR(e,k)/m
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Dimensional crossover of the metal

Current density J(E)

0.2 t U=0
u=2
U=4 -
U=6 -
0 o

half-filling Phys. Rev. Lett. 108, 086401 (2012)
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@ Driven insulating phase
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Dielectric breakdown of the Mott insulator

Current density J(E)
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U=16,T=0.20
half-filling arXiv:1203.3540 (2012)
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Dimensional crossover of the Mott insulator

Local density of states p(e)
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Dielectric breakdown of the Mott insulator

0.1t
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U=16,T =0.20,
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Dielectric breakdown of the Mott insulator

Current
J(E)
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Fate of the electric field driven Mott insulator

Spectral properties and distribution functions crossover to 1d at
different energy scales.

equilibrium _ full dimensional
spectrum 2d: 1d reduction

distribution 2d




Electric field driven correlated electrons — Summary

Physical setup: need for a dissipation mechanism, [

Theoretical approach: gauge invariant formalism

Generic result: dimensional reduction for E — 0o

Technique at finite U & E: DMFT directly in the NESS

Out-of-equilibrium phase diagram:
@ illustration of the dimensional crossover
@ non-linear transport properties
o dielectric breakdown of the Mott insulator



Star product

* = exp <%q[ng -V,.—E. Vna—‘z;])

Compute [f * g] (w, k)

f(wv "'") g(w, Iﬂ',)

brr1 Fr-t 4
f(7: k) g(Ti k)

If
[fxg] (1K) = /dT' f (T — 7k + qE%') g (7_/; . qETl;T)

S
[F*g] (@, k)




Dimensional Crossover

Distribution function ¢(e) = [1 + GX.(€)/Im Gf_(¢)] /2
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U=3, energies in units of 2t, a=qg =1
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