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Unrestricted Hartree-Fock theory of Wigner crystals
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We demonstrate that unrestricted Hartree-Fock theory applied to electrons in a uniform potential has stable
Wigner crystal solutions forr s>1.44 in two dimensions andr s>4.5 in three dimensions. The correlation
energies of the Wigner crystal phases are considerably smaller than those of the fluid phases at the same
density.
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I. INTRODUCTION

Wigner1 first predicted that a system of electrons in
uniform potential would crystallize at low densities. Loca
izing electrons around lattice sites increases their kinetic
ergy, but at sufficiently low densities the reduction in inte
action energy is always greater. The Wigner crystal remai
theoretical prediction in three dimensions~3D!, but in 2D
Wigner crystals have been created on a liquid heli
surface2 and at the interface between two semiconductors3,4

It has been suggested that electrons forming a Wigner cry
might eventually be used as quantum bits~qubits! in a quan-
tum computer.5,6

The widely studied model system of electrons in a u
form potential has yielded many insights into electron
many-body phenomena. The most accurate calculations
formed to date for the zero-temperature ground-state ph
of this system have used the diffusion quantum Monte Ca
~DMC! method.7,8A Wigner crystal may also be described
a vibrating lattice of electrons. When harmonic phonon
brations and anharmonic terms are included the resulting
ergies are very similar to DMC ones.9 A recent Hartree-Fock
study of small numbers of electrons confined by an exte
potential revealed a transition from a Fermi fluid to a Wign
molecule state.10 In this paper we also employ the Hartre
Fock approximation which gives a description of Wign
crystals in terms of Einstein oscillators, but including anh
monic and exchange effects.

Within Hartree-Fock theory the paramagnetic~unpolar-
ized! fluid phase is unstable to the ferromagnetic~fully po-
larized! fluid for values of the density parameterr s ~Ref. 11!
greater than 2.01 in 2D and greater than 5.45 in 3D. Hart
Fock theory also predicts that the paramagnetic fluid is
stable to the formation of a spin density wave.12 The intro-
duction of electron correlation changes the pictu
dramatically, with the instability of the paramagnetic to t
ferromagnetic fluid being shifted tor s.26 in 2D,13 while in
3D a second-order transition to a partially polarized fluid
predicted to occur atr s.50.14 The spin-density-wave insta
bility may be entirely eliminated. DMC calculations also pr
dict the occurrence of Wigner crystal phases forr s.35
~Refs. 15 and 16! in 2D and r s.65–100 in 3D~Refs. 7
and 17!.

Within a mean-field theory of electron systems the int
actions are replaced by a potential which acts on each e
tron orbital separately. The wave function is then simply
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determinant of single-particle orbitals. Two criteria are r
quired for a mean-field description of Wigner crystals. In
Wigner crystal the electrons are localized individually, not
up- and down-spin pairs. To describe this situation we m
use a mean-field theory in which the potentials felt by the
and down-spin orbitals are different. The second issue is
some theories, such as standard implementations of de
functional theory, suffer from a spurious effect whereby t
electrons interact with themselves, giving a ‘‘se
interaction’’ error. The energy lowering on crystallization d
rives from the reduction of the interaction energy by spatia
separating the electrons. A theory which suffers from se
interaction will tend to overestimate the interaction energy
separated electrons, destabilizing Wigner crystals.10 The un-
restricted Hartree-Fock~HF! theory used here is free of sel
interactions and the single-particle orbitals for up and do
spins may have different spatial variations, allowing a d
scription of magnetic states and localized electrons.

II. 2D HF CALCULATIONS

For our 2D calculations we wrote a Hartree-Fock co
which uses a plane-wave basis set. We considered squar
hexagonal lattices with one electron per primitive cell f
fully polarized systems and two electrons per primitive c
for unpolarized systems. Basis sets consisting of about
plane waves per electron were sufficient to give excell
convergence forr s,10, while 40 plane waves per electro
were required for largerr s . Highly converged Brillouin-zone
integrations were performed using 169 evenly spaced w
vectors for the square and ferromagnetic hexagonal latt
and 153 wave vectors for the antiferromagnetic hexago
lattice.

We found stable Wigner crystal solutions forr s>1.44.
Figure 1 shows the electron density of the 2D ferromagn
hexagonal Wigner crystal atr s510, clearly showing the hex
agonal lattice. The ratio of the maximum to minimum char
densities is 13 for this crystal and 17 for the correspond
antiferromagnetic hexagonal crystal.

Figure 2 shows the maximally localized Wannier fun
tions centered on neighboring sites of the antiferromagn
Wigner crystals atr s510. The overlap of the Wannier func
tions is small, indicating that the electrons are kept far ap
Note also that the parallel-spin Wannier functions have
cillations which maintain their orthogonality.

Figure 3 shows the Hartree-Fock energies of various
©2003 The American Physical Society07-1



-
ag
-
al
ig
e

e
i

w
e

em
s

gle
-
o

ve

et

c
c
se

lso
-
so-
is
ock

the

ri-
ite
rary
t a
ell

ti-

he

e

he

ed

J. R. TRAIL, M. D. TOWLER, AND R. J. NEEDS PHYSICAL REVIEW B68, 045107 ~2003!
phases as a function ofr s . The data show a first-order tran
sition from the paramagnetic fluid phase to the antiferrom
netic square Wigner crystal atr s51.44 and another first
order transition atr s52.60 to the ferromagnetic hexagon
crystal, which remains the most stable phase up to the h
est density studied ofr s5100. The ferromagnetic fluid phas
is predicted to be unstable at all densities.

III. 3D HF CALCULATIONS

We considered body-centered-cubic~bcc! and face-
centered-cubic~fcc! lattices with one electron per primitiv
cell for fully polarized systems and two electrons per prim
tive cell for unpolarized systems. For our 3D calculations
used theCRYSTAL ~Ref. 18! Gaussian basis set code. W
tested many Gaussian basis sets for the different syst
carefully optimizing the Gaussian exponents in each ca
For r s.15 we found no improvement beyond using a sin
s function on each site. Forr s<15 we obtained some im
provements from using several functions on each site and
best basis set at these densities consisted of threes functions
and ap function on each site. We found that 83838 wave-
vector grids for two-electron unit cells were sufficient to gi
excellent convergence of the Brillouin-zone integrations.

We found Wigner crystal solutions forr s>4.4. The
Hartree-Fock energies~Fig. 4! show first-order transitions
from the paramagnetic fluid phase to the antiferromagn

FIG. 1. Hartree-Fock charge density~arbitrary units! of the 2D
ferromagnetic hexagonal Wigner crystal atr s510.

FIG. 2. Maximally localized Wannier functions for the 2D an
ferromagnetic hexagonal Wigner crystal atr s510 along a line join-
ing two opposite-spin nearest neighbors~dashed line! and joining
two parallel-spin nearest neighbors~solid line!. The nearest-
neighbor distance isa.
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bcc Wigner crystal atr s54.4, then to the ferromagnetic fc
Wigner crystal atr s59.5, and finally to the ferromagneti
bcc crystal atr s513.3, which remains the most stable pha
up to the highest density studied ofr s5100. The ferromag-
netic fluid is predicted to be unstable at all densities. We a
found a second region (9.5,r s,9.7) where the ferromag
netic bcc crystal is extremely close to stability, but the re
lution of our data is insufficient to confirm whether it
actually stable in this density range. Note that Hartree-F
theory predicts~incorrectly! that the electron fluid should
crystallize at the average valence charge densities of
heavier alkali metals K, Rb, and Cs.

IV. BROKEN SYMMETRY SOLUTIONS

The Hartree-Fock solutions break the translational inva
ance of the many-body Hamiltonian. There is an infin
number of degenerate solutions corresponding to arbit
translations and rotations, but our calculations pick ou
particular translational and rotational state. Using a unit c

FIG. 3. ~Color! Hartree-Fock energies in a.u. per electron of t
unpolarized~solid! and fully polarized~dashed! 2D phases as a
function of r s for the square~red! and hexagonal~blue! lattices and
for the fluid phases~black!. For clarity of presentation we hav
subtracted the Madelung energy of the hexagonal lattice,EM5

21.1061/r s , and multiplied byr s
3/2.

FIG. 4. ~Color! Hartree-Fock energies in a.u. per electron of t
unpolarized~solid! and fully polarized~dashed! 3D phases as a
function of r s for the bcc~red! and fcc~blue! lattices and for the
fluid phases~black!. For clarity of presentation we have subtract
the Madelung energy of the bcc lattice,EM520.89593/r s , and
multiplied by r s

3/2.
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removes the rotational degree of freedom and for the
calculations the Gaussian basis set removes the translat
degeneracy. The 2D plane-wave calculations also pick
particular translational states, which depend on the star
point of the iterative solution of the equations, but if w
artificially translate the final self-consistent solution, we fi
that the energy only changes by of order the calculatio
precision (;10216 a.u. per electron!. Our calculations there
fore lead to broken symmetry solutions which repres
‘‘pinned’’ Wigner crystals. In experiments pinning of Wigne
crystals may arise from the presence of impurities or bou
aries, and therefore our broken symmetry solutions
physically meaningful.

The broken symmetry Wigner crystals described
Hartree-Fock theory have band gaps for single-electron
citations. Band gaps of the lowest-energy phases of the
system are shown in Fig. 5 as a function ofr s . For r s
,1.44 the unpolarized fluid with zero gap has the low
energy within HF theory. For 1.44,r s,2.6 the gap of the
square antiferromagnetic crystal is plotted, and forr s.2.6
the gap of the ferromagnetic hexagonal crystal is plotted
small r s the band gaps of the crystalline phases rise stee
with increasingr s . On further increase ofr s the band gaps
reach maximum values and then slowly decrease. The
band gap of the ferromagnetic hexagonal crystal at the d
sity of the transition from the fluid to crystal phases p
dicted by DMC @r s535 ~Refs. 15 and 16!# is 0.0303 a.u.
50.825 eV, which is expected to be a considera
overestimate of the true value as correlation effects norm
reduce band gaps.

V. CORRELATION ENERGY OF WIGNER CRYSTALS

Hartree-Fock theory gives the single-determinant appro
mation to the many-body wave function with the lowest po
sible energy, which is always greater than~or equal to! the
exact energy. We define the correlation energyec to be the
difference between the exact and unrestricted Hartree-F
energies. The correlation energy is normally defined as
difference between the exact and restricted Hartree-Fock
ergies, but this is not appropriate for Wigner crystals beca
restricted Hartree-Fock theory cannot describe a Wig

FIG. 5. The HF single-particle band gapED of Wigner crystals
in a.u. as a function ofr s . For 1.44,r s,2.6 the gap of the squar
antiferromagnetic crystal is plotted, while forr s.2.6 the gap of the
ferromagnetic hexagonal crystal is plotted.
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crystal. The energies of the Fermi fluid and Wigner crys
phases are known accurately from DMC calculations,7,13–17

and therefore we may determine the correlation energie
the different phases. In Fig. 6 we plot the ratio (ec

crystal/ec
fluid)

as a function ofr s , whereec
crystal is the correlation energy o

the crystal phase~hexagonal in 2D and bcc in 3D! andec
fluid

is the correlation energy of the ferromagnetic fluid pha
~The energy differences between the ferromagnetic and a
ferromagnetic crystals are negligible at these densities.! Fig-
ure 6 shows that the correlation energy of the crystall
phase is much smaller than in the fluid in both 2D and 3
Hartree-Fock theory therefore tends to favor the crystall
phases, which it describes more faithfully than the flu
phases.

The strength of correlations in a system may be measu
by the ratio of the correlation energy to the total ener
ec /E. The DMC results in both 2D and 3D indicate that
the fluid phasesec /E tends to a positive constant asr s
→`, but for Wigner crystalsec /E tends to zero asr s→`.
In this sense one may think of the Wigner crystal as bein
weakly correlated system at low densities.

VI. ENERGETICS OF WIGNER CRYSTALS

The basic mechanism for electron crystallization with
Hartree-Fock theory is that proposed by Wigner; i.e., at s
ficiently low densities crystallization greatly reduces the
teraction energy with only a small increase in the kine
energy. The problem can be analyzed more deeply in te
of the Hartree and exchange terms provided by our calc
tions. In Hartree-Fock theory one normally defines the H
tree energy and potential to include the unphysical s
interaction, which, however, exactly cancels the se
exchange. In Wigner crystals the self-interaction terms
very large and therefore it is more illuminating to discuss
Hartree and exchange terms with the unphysical s
interactions removed. From this viewpoint the essen
physics of the Wigner crystal is that the electrons are k
apart by the Hartree potential. Exchange effects are sma
Wigner crystals at low densities. The single-particle orbit
obtained at the Hartree-Fock level for a Wigner crystal

FIG. 6. The ratios of the correlation energies of the 2D hexa
nal crystal and ferromagnetic fluid phases~solid line! and of the 3D
bcc crystal and ferromagnetic fluid phases~dashed line! as a func-
tion of r s .
7-3
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ready keep the electrons well separated, and therefore
correlation energies are small.

As Wigner argued,1 at low densities the kinetic energy
unimportant and the many-body wave function of a Wign
crystal is expected to have a large weight for configurati
in which the electrons lie far apart on a lattice. The latt
adopted should therefore have the lowest Madelung elec
static energy—i.e., the hexagonal lattice in 2D and the
lattice in 3D. At higher densities the kinetic energy becom
important in determining the structure of the crystal. The
are two factors which control the kinetic energy of Wign
crystals. First, crystal structures with larger packing fractio
have lower kinetic energies because they allow the elec
orbitals to spread out over a greater volume~or area in 2D!
without overlap. Second, the kinetic energy of an antifer
magnet tends to be lower than that of the corresponding
romagnet because in the antiferromagnet the Wannier fu
tions on neighboring sites need not be orthogonal
therefore they can overlap without oscillation, which reduc
the kinetic energy.

The relative stabilities of the phases are controlled by
competition between the kinetic and potential energy ter
A detailed study of the numerical values of these terms
veals the following simple picture. In both 2D and 3D th
low-density stable phase has the structure with the low
Madelung energy—i.e., the hexagonal and bcc phases
spectively. The dominant effect at low densities is theref
the Madelung energy, as proposed by Wigner, and ferrom
netism is slightly favored because of the larger excha
interactions. The kinetic energy becomes more importan
higher densities, and lattices with higher packing fractio
are favored. In 2D the hexagonal crystal has the largest p
ing fraction and so the stable phase remains unchanged
in 3D the fcc crystal has the largest packing fraction, a
therefore the ferromagnetic fcc crystal becomes the m
stable. At still higher densities the reduction in kinetic ene
arising from adopting an antiferromagnetic spin configu
tion dominates. In 2D the hexagonal lattice frustrates anti
romagnetism and therefore a nonfrustrated square lattice
comes more stable. The 2D square lattice with ferromagn
order along the rows in one direction but antiferromagne
order in the perpendicular direction is calculated to hav
substantially higher energy than the completely antifer
magnetic lattice at high densities, indicating the importan
of the spin ordering. The 3D fcc lattice frustrates antifer
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magnetism, and therefore the antiferromagnetic bcc lat
becomes more stable at higher densities. At the very hig
densities the need to reduce the kinetic energy becomes p
mount and the crystalline phases become unstable to the
mation of paramagnetic fluids. This simple picture expla
the occurrence of the different stable phases as a functio
density.

VII. CONCLUSIONS

Although Hartree-Fock theory gives a rather approxim
description of the electron-electron interaction, we believ
is important to understand how different levels of theory d
scribe such an important model system as electrons in a
form potential. There are, of course, important corrections
Hartree-Fock theory due to electron correlations. The m
effect of adding correlations is to lower the energies of
fluid phases more than the crystalline ones, which moves
transitions to crystalline phases to lower densities. DMC c
culations show that only the 2D hexagonal and 3D b
Wigner crystals are stable when electron correlations are
cluded. In both 2D and 3D Hartree-Fock theory predicts
same stable low-density phases as DMC, which is a furt
indication that Hartree-Fock theory provides a simple a
useful framework for understanding Wigner crystals.

We have shown that unrestricted Hartree-Fock theory
able to describe Wigner crystals in 2D and 3D. We belie
this to be important for four reasons.~1! It leads to a picture
of Wigner crystals as phases with small correlation energ
~2! It gives simple physical insights into the competition b
tween kinetic and potential energy terms which determi
the stability of different phases.~3! Hartree-Fock theory is
fairly accurate for Wigner crystals, and because it is com
tationally inexpensive, it may be used to describe Wign
crystals in more complicated situations, such as when def
or external fields are present or when atomistic effects
important. ~4! Hartree-Fock theory forms a natural startin
point for more accurate descriptions of Wigner crystals, su
as perturbation theory.
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