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Introduction

• Most systems can be modelled in a collinear fashion, with every electron having
a definite spin (up or down) with respect to a global quantization axis.

• There are some aplications where such an approach is insufficient. Need to be
able to deal with electron spin pointing in any direction, and potentially varying
with position. In other words, non-collinear spin structures.

Examples:

• Frustrated (e.g. triangular) antiferromagnetic lattices

• Spiral or helical spin structures in materials such as fcc iron or chromium

• Spin Density Waves in the Homogeneous Electron Gas
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Introducing spinor orbitals

• In standard collinear calculations (RHF, UHF, a lot of DFT, QMC), single-
particle orbitals simply take the form of ψ = φ(r)χ, with χ being a spin-up or
spin-down eigenfunction. The χ part of the orbital then plays little role.

• In the most general form, a particle with spin should really be described using
a two-component spinor orbital, ψα(r).

• Example of use: General Unrestricted Hartree Fock theory. Form a determinant
from spinor orbitals, the self-consistent Hartree-Fock equation is then really a
2x2 matrix equation:

Fαβψiβ(r) = εiψiα(r).
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Non-collinear DFT

• Hohenberg-Kohn theorem originally developed for spinless case. Exchange
correlation energy functional of density only (Exc[n]).

• Von Barth and Hedin developed the general spin dependent version, which was
originally non-collinear in formulation. They suggested that Exc should really
depend on spin density matrix ραβ(r).

• Most DFT calculations are restricted to collinear, possibly spin-polarized case.

Notations and definitions

• The spin density matrix is best defined in 2nd quantized notation:

ραβ(r) = 〈ψ†β(r)ψα(r)〉

• It can be related to the density and magnetization density by

n(r) = Trρ

m(r) =
∑

αβ

ραβσαβ

ραβ(r) =
1

2
n(r)δαβ +

1

2
m(r) · σ(r)
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• Saying that Exc = Exc[ραβ(r)] is equivalent to saying Exc = Exc[n(r),m(r)].

• Collinear DFT within the Local Spin Density Approximation assumes that there
is a global quantization axis, and m points along that everywhere. Hence
Exc = Exc[n(r), |m(r)|] or equivalently Exc = Exc[n↑(r), n↓(r)]. This does away
with the need to use spinor orbitals.

• In non-collinear DFT m(r) is allowed to point in any direction. Spinor orbitals
are now needed, and the Kohn-Sham equations become 2x2 matrix equations.
Formally, the exchange-correlation potential is given by

V αβ
xc (r) =

δExc

δραβ(r)
=

δExc

δn(r)
+

∑

i

δExc

δmi(r)
σαβ

i .

• Even in the case of fully unconstrained non-collinear calculations, it is assumed
that Exc = Exc[n(r), |m(r)|,∇|m(r)|, etc.]. This means that in most actual DFT
codes,

V αβ
xc (r) =

δExc

δρ(r)
+

δExc

δ|m(r)|m̂(r) · σαβ.

(this is the case in ABINIT and VASP for example).

• Even in fully unconstrained non-collinear calculations involving complicated
GGA functionals, changes in the magnetization direction are neglected!
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Failure of local approximations in DFT and beyond

• Antiferromagnetic/spiral spin configurations clearly depend on having non-local
correlations between spin directions.

• The restrictions to the local approximations and the neglection of variation in
magnetization direction mean that DFT still has notorious difficulty describing
spin spiral ground states.

• Several approaches have been suggested to go beyond the simple local approx-
imations.

• Capelle and Oliveira has suggested introducting another variable, called the
staggered spin-density ρs(r, r′) = 〈(Ψ̂†

↑(r)Ψ̂
†
↓(r

′)〉 to introduce one more explicit
term in the energy expression, beyond Ts and UH. ρs is non-local in nature.

• Recent paper by Katsnelson and Antropov suggested including spin angular
gradient terms in Exc, so that Exc =

∫
dr{nεxc(n↑, n↓) + λ(n↑, n↓)(∇αeβ)(∇αeβ)},

where e = m/|m|. This includes terms dependent on the change in direction
of m. (They obtain λ from many-body theory calculations).
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Non-collinear spins in QMC
Attempt 1 - VMC

• Compared to DFT, it is conceptually simple to have non-collinear spin config-
urations in QMC. In principle we can deal with an arbitrary many-body wave
function directly, including its spin configuration.

• Introduce single-particle spinor orbitals directly in Variational Monte Carlo

ψ(r, σ) = φα(r)α(σ) + φβ(r)β(σ),

where α and β are the spin-up and spin-down eigenstates, relative to a fixed,
global quantization axis.

• Construct a Slater determinant of these orbitals to form the trial wavefunction

ΨT(r1 . . . rN , σ1 . . . σN) =

∣∣∣∣∣∣

ψ1(r1, σ1) · · · ψ1(rN , σN)
... ...

ψN(r1, σ1) · · · ψN(rN , σN)

∣∣∣∣∣∣

• Any N-particle wavefunction can be rewritten as Ψ =
∑

i Di({r})χi({σ}), if the
spin functions χi are a complete set of eigenstates for the N-particle spin space.
In the most general case, there are 2N terms in the sum.
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• In the case of ΨT , a typical term has the form

χi = α(σ1)α(σ2)β(σ3)α(σ4) · · ·β(σN−1)β(σN)

Di =

∣∣∣∣∣∣

φα
1(r1) φα

1(r2) φβ
1(r3) φα

1(r4) · · · φβ
1(rN−1) φβ

1(rN)
... ...

φα
N(r1) φα

N(r2) φβ
N(r3) φα

N(r4) · · · φβ
N(rN−1) φβ

N(rN)

∣∣∣∣∣∣

• The expectation value of any spin-independent operator (such as Ĥ) becomes

〈ΨT |Ĥ|ΨT 〉 =
∑

{σ}

∫
d{r}

∑

i

(D∗
i χ

∗
i ) Ĥ

∑

j

(Djχj) =

∫
d{r}

∑

i

D∗
i ĤDi,

where we have used the orthogonality relation
∑

{σ} χ∗i χj = δij.

• All the Di containing the same number of α labels are identical up to a per-
mutation of the labels α and β, or equivalently a permutation of the variables
{r}. When we perform

∫
d{r}D∗

i ĤDi, all these terms give identical results. If

there are m of the α labels within a single row of D, there are
(
N
m

)
such Ds.
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• This makes the evaluation of 〈Ĥ〉 a lot easier. We can replace the expectation
value with

〈ΨT |Ĥ|ΨT 〉 =

∫
d{r}

N∑
m=0

D∗
mĤDm,

where

Dm =
(N

m

)
∣∣∣∣∣∣

φα
1(r1) · · · φα

1(rm) φβ
1(rm+1) · · · φβ

1(rN)
... ...

φα
N(r1) · · · φα

N(rm) φβ
N(rm+1) · · · φβ

N(rN)

∣∣∣∣∣∣
.

• Different m correspond to different polarizations of the electrons. The number
of columns in which Dm and Dm′ differ is |m−m′|. There are now only N + 1
terms instead of 2N in the sum, and there are only 2N different columns that
can appear in the Dms.

• The normalized expectation value is

〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

=

∫
d{r} ∑N

m=0 D∗
mĤDm∫

d{r} ∑N
m=0 |Dm|2

=

∫
d{r} ∑N

m=0 |Dm|2 ĤDm

D∗
m∫

d{r} ∑N
m=0 |Dm|2

=

∫
d{r}

N∑
m=0

pm({r})EL,m({r})
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• The distribution pm({r}) can be sampled using the standard Monte Carlo walk
method. The electron-by-electron algorithm can be extended, so that the move
of an electron r → r′ may be accompanied by a flipping of its spin (changing
m → m′). This still results in just one column of D changing.

Collinear case is special case of non-collinear one

• Example two-electron system: Two up-spin electrons. Achieved by setting

φβ
1 = φβ

2 = 0. Only the m = 0 term survives, with D0 =

∣∣∣∣
φα

1(r1) φα
1(r2)

φα
2(r1) φα

2(r2)

∣∣∣∣.

• Example two-electron system: One up- and one down-spin electron. Achieved
by setting φβ

1 = φα
2 = 0. Only the m = 1 term survives, with

D1 = 2

∣∣∣∣
φα

1(r1) φβ
1(r2)

φα
2(r1) φβ

2(r2)

∣∣∣∣ = 2φα
1(r1)φ

β
2(r2).

• In general, the collinear case corresponds to having a single term out of the
sum over m.

• In the collinear case, it is usual to separate the determinant D = D↑D↓. This
directly corresponds to collecting the terms of equal m in the non-collinear
case, and lead to the same result.
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Jastrow correlation factor

• So far, method is no different than poor version of GUHF.

• Power of QMC is in that correlation effects can be directly incorporated into
the wavefunction.

• In the collinear case it is usual to introduce a Jastrow factor in the wavefunction
ΨT = eJD↑D↓, where J depends on {riI}, {rij} and {rijI}. In principle J is ought
to be symmetric under the interchange of any pair of electrons. In practice it is
chosen to be symmetric only under the interchange of up-spin and down-spin
electrons among themselves.

• J is chosen so that ΨT obeys electron-electron cusp conditions. These condi-
tions are different when two parallel-spin or anti-parallel spin electrons meet.

• In the construction of J, it is assumed that we have a fixed number of up- and
down-spin electrons respectively.

How to include the Jastrow factor in the non-collinear trial function?

• One obvious attempt is to include a separate J with each term in sum over m,
such as ΨT =

∑
m eJmDmχm. This would fail because the different Jm weight

each Dm differently, and so alters the ratio between each term, altering the
spin configuration we are trying to achieve.
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• Solution is to have a single factor J for all terms: ΨT = eJ
∑

m Dmχm. J now
cannot depend on the spin of the electrons and must include identical terms
for all pairs of electrons. This will make ΨT disobey the cusp conditions
in general.

• This is not such a big problem however. We can choose J to obey the anti-
parallel spin cusp conditions, making J largely right.

• We can test the seriousness of this alteration. Do a normal calculation involving
unpolarized HEG, where the Jastrow factor is altered to obey anti-parallel cusp
conditions only. See how much difference this makes:

System Energy
HF 0.6480
Normal J in VMC 0.5932(2)
Altered J in VMC 0.5939(2)
DMC 0.5819(5)

(N=102 electrons, density parameter rs = 1.0, single adjustable parameter A)

• It might be possible to come up with something better.
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Attempt 2 - DMC

• It appears to be much harder to introduce non-collinear spin in Diffusion Monte
Carlo. As yet no solution, some of the problem is illustrated here.

• Try and maintain a fixed spin configuration and achieve the lowest energy state
corresponding to that.

• Usual procedure is to start with the imaginary-time Schrödinger equation

(Ĥ − ET)Ψ = −∂Ψ

∂τ
,

which has a formal solution

Ψ(τ) = e−τ(Ĥ−ET)Ψ(0).

In the limit τ →∞, the expression on the RHS projects out the ground state if
ET = E0, the ground state energy, so that limτ→∞Ψ(τ) = Ψ0.

• Consider an initial wavefunction of the form Ψ(0) =
∑

m Dmχm. Since Ĥ is
independent of spin, we obtain

lim
τ→∞

e−τ(Ĥ−ET)Ψ(0) = lim
τ→∞

∑
m

e−τ(Ĥ−ET)Dmχm =
∑
m

cmΨ0χm,

provided that each of the Dm have a non-zero overlap with the ground-state
Ψ0. The relationship between the Dm, responsible for maintaining a given spin
configuration, is therefore destroyed.
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Potential Application - SDW in HEG

• The phases of the Homogeneous Electron Gas have been extensively studied,
including a pletora of QMC calulations. Comparisons have been made between
unpolarized, partially polarized and fully polarized phases, crystalline phase etc.

• All the QMC calculations have been restricted to collinear calculations!

• Overhauser showed first that in the Hartree-Fock approximation, the lowest
energy state of the fluid phase of HEG is neither polarized nor unpolarized, but
in fact a spiral Spin Density Wave state.
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• It is generally beleived by many-body theorists that correlation effects beyond
HF destroy the stability of the SDW and it ceases to be the ground state.
Performing a QMC calculation with an SDW state could resolve that question.

• Aim is to obtain a description of the SDW spectrum, at least in the long-
wavelength limit.

• If we can obtain a set of energies for different amplitudes and wavelengths of
the SDW, we can potentially parameterize a new Exc functional for non-collinear
DFT, that could include effects of changes in magnetization direction.

• It should be possible to create for example a local approximation

Exc =

∫
drεxc(n(r), |m(r)|,∇|m(r)|,q(r)),

where q would be a local wavector representing the rate of change in magne-
tization direction.
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Trial wavefunction for SDW state

• A good starting point might be Overhauser’s solution to the Hartree-Fock
problem. Use spinors of the form

ψ = eik.r(cos θkα + sin θke
iq.rβ),

where Overhauser found the functions θk by solving the self-consistent HF
equations.

• When put inside a determinant, these orbitals give rise to a spiral spin density
wave. The perpendicular component of the magnetization density obeys

P = P (cos(q.r)x̂ + sin(q.r)ŷ),

with

P α

∫
dk sin(2θk)

when q points along the z-direction.

• We can therefore hope to fix both the amplitude and wavevector of the resulting
spin density wave, and calculate the energy of such a state.
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Conclusion

• In DFT, it takes a lot of effort to go beyond local approximations and deal
with non-collinear spin in a manner that is suitable for describing non-local
correlations.

• At the level of VMC at least, QMC provides a straightforward method for
treating arbitrary spin configuration.

• Results of QMC calculations can potentially aid in the development of useful
DFT functionals.

• QMC calculations of non-collinear spin configurations could by themselves yield
interesting and useful results.

• The treatment of non-collinear spins in QMC is a whole new exciting area
which is yet to be explored.
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