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motivations: beyond DFT

Modern AB-INITIO simulation methods are largely based on Density Functional Theory
(DFT), in principle exact but in practice it invokes the Local Density Approximation (LDA
and various improvements GGA).

DFT+LDA(GGA) is in general a good compromise between accuracy and efficiency to
perform dynamical studies of several hundreds atoms for times of the order of 100 psec
(Car-Parrinello and BO Molecular Dynamics).

There are cases in which DFT is not accurate enough (Van-der-Waals bonding
systems, sp-bonded materials, calculation of excitation energies and energy gaps)

Can we do better than DFT? Quantum Monte Carlo (QMC) provides in general better
electronic energies for given ionic positions.
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Carbon cluster C20

J.C.Grossman et al. PRL, 75, 3870 (1995).

BLYP=Becke-Lee-Yang-Parr GGA

Highly accurate chemical methods calculations confirms QMC data (R.B.Murphy,
R.A.Friesner, Chem.Phys.Lett. 288, 403 (1998))
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beyond DFT

Can we devise an efficient method to exploit the accuracy of QMC in AB-INITIO

"dynamical" simulation of condensed systems?
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beyond DFT

Can we devise an efficient method to exploit the accuracy of QMC in AB-INITIO

"dynamical" simulation of condensed systems?

Previous attempts

Diffusion Monte Carlo for electrons and nuclei (DMC)
(Ceperley-Alder 1987)
- temperature effects are absent
- time scale separation problem (even for hydrogen!)

Restricted Path Integral Monte Carlo (RPIMC)
(Pierleoni, Ceperley et al, 1994, Militzer and Ceperley 1999)
- electrons and nuclei are at finite temperature
- sampling problem at low temperature (T < 1/20TF )
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(Ceperley-Alder 1987)
- temperature effects are absent
- time scale separation problem (even for hydrogen!)

Restricted Path Integral Monte Carlo (RPIMC)
(Pierleoni, Ceperley et al, 1994, Militzer and Ceperley 1999)
- electrons and nuclei are at finite temperature
- sampling problem at low temperature (T < 1/20TF )

Coupled Electron-Ion Monte Carlo (CEIMC)
- Born-Oppenheimer separation of time scales:
ground state electrons, finite T nuclei
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High pressure hydrogen

The most abundant element in the universe : giant planets (>90%)

The simplest element in the periodic table: good theoretical playground

Still so much unknown!! The high pressure phases are still largely out of the
experimental reach.
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Hydrogen: phase diagram
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Hydrogen phase diagram. Continuous transition lines are experimental results, dashed lines are theoretical prediction from
various methods. Blue squares and red right-triangle are ab-initio MD predictions of molecular melting (Bonev et al, Nature
’04) and molecular dissociation in the liquid phase (Scandolo, PNAS ’03). The diamonds are shock-waves experimental
data through the liquid metalization (Weir et al. PRB ’96). The green triangles are early CEIMC data for the insulating
molecular state while the green domain on the extreme right indicates the CEIMC prediction for the melting (Pierleoni et al
PRL ’04). Red lines are model adiabats for the interior of the giant planets of the solar system.
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Hydrogen: know and less know facts

Solid hydrogen is insulating up to 3.5Mbars (DAC experiments, Loubeyre Nature ’02)

at T=0K molecular dissociation occurs at rs=1.31 (DMC, Ceperley Alder PRB ’87)

At the molecular dissociation a diamond structure of protons is predicted. At higher
pressure a diamond–bcc transition is expected (DMC, Natoli et al PRL ’93).

crystal structures of different symmetry can have very close energies: needs of very
accurate total energy methods.

Size effects are crucial to obtain accurate energies (Brillouin zone sampling in CPMD).

ZPM is large and favors isotropic structures (Kitamura et al, Nature 2000).

Molecular phases I and II are understood, phase III is still unsettled.

Predicting metalization requires going beyond DFT-LDA-GGA (Johnson Ashcroft,
Nature 2000)

Most recent prediction (T=0K): Pc '4Mbars within the molecular phase
(DFT-Exact-Exchange functional) (Stadele and Martin, PRL 2000). But this method is
too demanding to be used in a "dynamical" simulation.

Molecular-atomic (insulating-metallic) transition in the liquid at higher temperature
(T=1500K) has been recently predicted by CPMD (Scandolo, PNAS 2003) but not yet
confirmed by experiments. At higher T ('5000K) PIMC exhibits a continuous
molecular-atomic transition.
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CEIMC

CEIMC: Metropolis Monte Carlo for the finite T ions. The BO energy in the Boltzmann
distribution is obtained by a QMC calculation for the gound state electrons.

Finite temperature Ions: Noisy Monte Carlo The Penalty Method

Ground state electrons:

VMC & RQMC

Moving the electrons: the bounce algorithm

Energy difference methods

Trial wave functions for hydrogen

Finite size effects: Twist Average Boundary Conditions (TABC) within CEIMC

Pre-rejecting protonic moves: multilevel Metropolis

Strategy for Protonic PIMC within CEIMC
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Moving the ions

- In Metropolis MC we generate a Markov chain of ionic states S distributed according to
Boltzmann

P (S) ∝ exp(−βEBO(S))

EBO(S) = Born-Oppenheimer energy for the configuration S.
- Given an initial state S we propose a trial state S ′ with probability

T (S → S′) = T (S′ → S)

and we accept the move with probability

A(S → S′) = min
ˆ
1, exp

˘
−β[EBO(S′)− EBO(S)]

¯˜

- After a finite number of moves the Markov chain is distributed with Boltzmann (if ergodicity
holds).
- But EBO(S) from QMC is noisy ⇒ use the penalty method
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The Penalty Method

Assume mean value and variance of the energy difference over the noise distribution
exist

β[EBO(S′)−EBO(S)] = < δ(S, S′) >= ∆(S, S′)

< (δ −∆)2 > = σ2(S, S′)

We want to find the new acceptance probability a(S → S ′) such that we satisfy detailed
balance on average:

T (S → S′) < a(S → S′) >= T (S′ → S) < a(S′ → S) > exp[−β∆(S, S′)]

where

< a(S → S′) >=

Z ∞

−∞

dδ P (δ|S, S′)
| {z }

a(δ|S, S′)

noise distribution

D.M.Ceperley and M.Dewing, J. Chem. Phys., 110, 9812 (1999)

Electronic Group Discussion Meeting; Cambridge 26 October 2005 – p.12/62



The Penalty Method

Assume:

a(δ|S, S′) = a(δ)

P (δ|S, S′) = P (−δ|S′, S)

Detailed Balance is
Z ∞

−∞

dδP (δ|S, S′)
h

a(δ)− e−Γa(−δ)
i

= 0 (1)

where

Γ(S → S′) = ∆(S, S′)− log
ˆ
T (S′ → S)/T (S → S′)

˜

If a(δ) satisfies eq. (1), after a finite number of moves the Markov chain is distributed
with Boltzmann (if ergodicity holds).

If we assume P (δ|S, S′) to be gaussian with known σ2

P (δ) =
1√

2πσ2
exp

»−(δ −∆)2

2σ2

–

=⇒ a(δ|σ) = min

»

1,
T (S′ → S)

T (S → S′)
exp

„

−δ − σ2

2

«–
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The Penalty Method

But noise must be extracted from the data:

γ =
1

M

X

k

δk ≈ ∆ s2 =
1

M − 1

"

1

M

X

k

(δk − γ)2

#

≈ σ2

P (δ) → P (γ, s2) = G(γ −∆, σ2)
| {z }

Pn−1(s
2, σ2)

| {z }

normal distribution χ2 distribution

Detailed balance is now a 2 parameter integral equation and the solution is a Bessel
function. Using its asymptotic expansion one gets:

a(γ, s2, M) = min

"

1,
T (S′ → S)

T (S → S′)
e
−

„

δ+ s2

2
+ s4

4(M+1)
+ s6

3(M+1)(M+3)
+...

«#

valid for s2 < 4M and very good for s2 < 0.1M .

The noise always causes extra rejection !
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The Penalty Method

EFFICIENCY: which level of noise is optimal?
For a generic observable we ask which level of noise minimizes its statistical error ε2 at
fixed computer time T : T = m[nt + t0]

m=total number of ionic steps attempted
n=number of electronic calculations before the acceptance test
t=CPU time for a single electronic calculation
t0=time in the noiseless part of the code per total step
In general ε = c(s)m−(1/2) and s = dn−(1/2). (c(s) and d are unknown).
A measure of the inefficiency of our calculation is:

Tε2 = c2(s)t0

»

1 +
f

s2

–

f = d2 t

t0

For any given application we have to chose s which minimize this quantity.

In few simple examples the optimal noise level was found to be s2 ≈ 1.
In CEIMC other constraints imposes the noise level but as a rule of thumb we always try
to stay around 1.
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The electronic problem

System of Np ions and Ne electrons. We need to compute the BO energy

EBO(S) = < Φ0(S)|Ĥ|Φ0(S) >

|Φ0(S) >= electronic ground state w.f. for ionic state S = {~s1, . . . , ~sNp
}.

In configurational space X = (R, Σ) = ({r1, . . . , rNe
}, {σ1, . . . , σNe

})

EBO(S) =

Z

dX |Φ0(X|S)|2 EL(X|S); EL(X|S) =
Ĥ(R, S)Φ0(X|S)

Φ0(X|S)

σ2(S) =

Z

dX |Φ0(X|S)|2 [(EL(X|S)−EBO(S)]2

If |Φ0(S) > is an eigenfunction of Ĥ

8
<

:

EL(X|S) = EBO(S)

σ2(S) = 0 zero variance principle
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The electronic problem
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8
<

:

EL(X|S) = EBO(S)

σ2(S) = 0 zero variance principle

Electronic Group Discussion Meeting; Cambridge 26 October 2005 – p.16/62



Variational Monte Carlo - VMC 1

The “Variational Theorem”: assume a trial wave function for the electrons in the external
field of the ions ΨT (X|S) and compute the total energy as the average of the local
energy EL = Ψ−1

T HΨT

E0 ≤ ET =
< ΨT |Ĥ|ΨT >

< ΨT |ΨT >
=

R
dX|ΨT (X; S)|2Ψ−1

T (X; S)ĤΨT (X; S)
R

dX|ΨT (X; S)|2

The functional form of the trial wave function must be suitable

continuous

of proper symmetry

normalizable

with finite variance (for MC only)

Parametrized: for a given functional form ΨT depends on a number of parameters
~α = (α1, . . . , αn)

ΨT (X|S, ~α) =⇒ ET (S, ~α) = 〈EL(X|S, ~α)〉
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< ΨT |Ĥ|ΨT >

< ΨT |ΨT >
=

R
dX|ΨT (X; S)|2Ψ−1

T (X; S)ĤΨT (X; S)
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VMC 2

1. Since |ΨT |2 ≥ 0 use Metropolis MC to sample P (X|S, α) = |ΨT |2/
R

dr|ΨT |2.

2. take averages of the local energy and the variance

3. optimize over {αi} by minimizing energy and/or variance

4. repeat until convergence is reached
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VMC 3

advantages:

VMC can use any computable and suitable trial function

easy to implement and very robust

learn directly what works in wave functions

no sign problem for fermions!

problems:

favors simple states over more complicated states (e.g. solid is more accurate than
liquid)

the optimization is time consuming (human and machine). It introduces an element
of human bias in the calculation.

variational energy is quite insensitive to long range order. Error in the energy and
variance are second order in the trial function while for other properties (like
correlation functions) it is first order.

an automatic optimization method is preferable
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Projection Monte Carlo

Project |ΨT > onto the true ground state |Φ0 > by applying some projection operator P̂ .

Diffusion MC (DMC) and Reptation Quantum MC (RQMC) / (VPI) : P̂ = e−tĤ

Green Function MC (GFMC) : P̂ = [1̂ + tĤ]−1

Power MC : P̂ = 1̂− tĤ (lattice models)
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RQMC - 1

|ΨT >=
P

i ci |Φi > eigenstates of Ĥ

|Ψ(t) >≡ e−tĤ |ΨT >=
X

i

cie
−tEi |Φi >=⇒ lim

t→∞
|Ψ(t) >∝ |Φ0 >

E(t) =
< Ψ(t/2)|Ĥ|Ψ(t/2) >

< Ψ(t/2)|Ψ(t/2) >
=

< ΨT |e−
t
2

ĤĤe−
t
2

Ĥ |ΨT >

< ΨT |e−tĤ |ΨT >

Define the generating function of the moments

Z(t) =< ΨT |e−tĤ |ΨT > =⇒

8
>><

>>:

E(t) = −∂t log Z(t) =< EL >t −→ E0

t →∞
σ2(t) = ∂2

t log Z(t) = −∂tE(t) > 0 −→ 0

- The energy converges monotonously from above (∂tE(t) 6 0)

- At any finite time t, E(t) is a variational upper bound to E0: E(t) > E0
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ĤĤe−
t
2
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8
>><

>>:

E(t) = −∂t log Z(t) =< EL >t −→ E0

t →∞
σ2(t) = ∂2

t log Z(t) = −∂tE(t) > 0 −→ 0

- The energy converges monotonously from above (∂tE(t) 6 0)

- At any finite time t, E(t) is a variational upper bound to E0: E(t) > E0

Electronic Group Discussion Meeting; Cambridge 26 October 2005 – p.21/62



RQMC - 1

|ΨT >=
P

i ci |Φi > eigenstates of Ĥ
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< Ψ(t/2)|Ĥ|Ψ(t/2) >

< Ψ(t/2)|Ψ(t/2) >
=

< ΨT |e−
t
2
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Ĥ |ΨT >

< ΨT |e−tĤ |ΨT >
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|Ψ(t) >≡ e−tĤ |ΨT >=
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RQMC - 2

In configuration space

Z(t) =

Z

dRdR′ < ΨT |R > ρ(R, R′, t) < R′|ΨT >

ρ(R, R′, t) =< R|e−tĤ |R′ > is the thermal density matrix at inverse temperature t.

1 - Factorization (t = Mτ )

ρ(R, R′, t) =< R|(e−τĤ)M |R′ >=

Z

dR1 · · · dRM−1

M−1Y

k=1

ρ(Rk−1, Rk, τ)

R0 = R, RM = R′ paths boundary conditions in imaginary time

2 - Importance Sampling break-up: Ĥ = Ĥ+ EL(R)

Ĥ = λ

»

−∇2 +
∇2ΨT

ΨT

–

EL(R) = V (R)− λ
∇2ΨT

ΨT
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RQMC - 3

ρ(Rk−1, Rk, τ) ' < Rk−1|e−τĤ|Rk >se−
τ
2 [EL(Rk)+EL(Rk−1)]

< Rk−1|e−τĤ|Rk >s = (4πλτ)−
3N
2 e−Ls(Rk−1,Rk,τ)

Ls(Rk−1, Rk, τ) =
(Rk − Rk−1)2

4λτ
+

λτ

2
(F 2

k + F 2
k−1) +

(Rk − Rk−1) · (Fk − Fk−1)

2

Putting all pieces together

ρ(R, R′, t) =

Z M−1Y

k=1

dRk

"
MY

k=1

e−Ls(Rk−1,Rk,τ)

(4πλτ)3N/2

#

e
−τ

h

EL(R0)
2

+
PM−1

k=1
EL(Rk)+

EL(RM )
2

i

Z(t) =

Z

dRdR′ < ΨT |R > ρ(R, R′, t) < R′|ΨT >
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Summary of FN-RQMC

Build a path Q = (R0, . . . , RM ) for the system of Ne electrons at fixed ionic
configuration S.

Sample the path space according to the distribution

Π(Q|S) = exp
ˆ
− U(R0|S)− U(RM |S)−A(Q|S)

˜

U(R|S) = <[lnΨ
T

(R|S)]

A(Q|S) =

MX

k=1

Ls(Rk−1, Rk, τ |S) + τ

"

EL(R0|S)

2
+

M−1X

k=1

EL(Rk|S) +
EL(RM |S)

2

#

FN: check ΨT (Rk−1)ΨT (Rk) > 0 along the path. Otherwise reject the new path.

Compute the local energy and the variance at path ends, other properties at the middle:

O(t) =
1

Z(t)

Z

dR1dR2dR3Ψ∗
T (R1)ρ(R1, R2|

t

2
) < R2|Ô|R2 > ρ(R2, R3|

t

2
)ΨT (R3)

no mixed estimators bias!!!

ensure convergence to the continuum limit (τ → 0) and to the ground state (t →∞)
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Sampling the electrons

VMC: with backflow wave functions we need to performe global moves.

RQMC: classical algorithm
- One end of the many-body polymer is sampled with probability 1/2 to be the growth end Rg

d =

8
<

:

+1 ⇒ Rg = RM

−1 ⇒ Rg = R0

- A link is added to the growth end and removed from the opposite end in order to keep the
polymer length constant. The transition probability is factorized as

Pd(Q → Q′) = Td(Q → Q′)ad(Q → Q′)

The choice

ad(Q → Q′) = min

»

1,
Π(Q′)T−d(Q′ → Q)

Π(Q)Td(Q → Q′)

–

ensures the detailed balance

Π(Q)Pd(Q → Q′) = Π(Q′)P−d(Q′ → Q)

Problems: a) the memory of this algorithm in MC step scales as (#beads)2/acceptance.

b) persistent configurations can appear
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The bounce algorithm

Bounce algorithm: choose at random one end of the chain at the beginning of the Markov
chain and reverse the growth direction upon rejection only. Minimal modification of the
algorithm and solve both problems
Proof of the Bounce algorithm:
- enlarge the configurational space {Q, d} and define P (Q, d → Q′, d′).
- assuming ergodicity, the Markov chain converges to a unique stationary state, Υ(Q, d)

solution of the eigenvalue equation:

X

Q,d

Υ(Q, d) P (Q, d → Q′, d′) = Υ(Q′, d′).

- allowed transitions

P (Q, d → Q′, d′) 6= 0 ⇐⇒

8
<

:

d = d′ , Q 6= Q′ accepted move

d′ = −d , Q = Q′ rejected move.

- assume d′ = +1. Since Π(Q) does not depend on d

Π(Q′)P (Q′,−1 → Q′, 1) +
X

Q6=Q′

Π(Q)P (Q, 1 → Q′, 1) = Π(Q′).
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The bounce algorithm

- DB (Π(Q)P (Q, 1 → Q′, 1) = Π(Q′)P (Q′,−1 → Q,−1)) provides

Π(Q′)

2

4P (Q′,−1 → Q′, 1) +
X

Q

P (Q′,−1 → Q,−1)

3

5 = Π(Q′)

The term in the bracket exhausts all possibilities for a move from the state (Q′,−1), thus it

adds to one. Hence Π(Q) is a solution and by the theory of Markov chains, it is the unique

probability distribution of the stationary state.
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The bounce algorithm
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Probability distribution of the correlation time of the energy difference between two fixed protonic configurations (S, S ′).
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The bounce algorithm
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Energy difference method

In CEIMC we need to evaluate the energy difference between two closeby protonic
configurations (S,S’).

Two independent electronic calculations (uncorrelated sampling) is very inefficient for
∆E << E.

Optimal sampling function: minimizes the variance of the energy difference

P (Q|S, S′) ∝
˛
˛Π(Q|S)(ES− < ES >)−Π(Q|S′)(ES′− < ES′ >)

˛
˛

but it requires an estimate of < ES >, < ES′ >.

simpler form: P (Q|S, S′) ∝ Π(Q|S) + Π(Q|S′)
These two forms have the properties that
- sample regions of both configuration spaces (S and S’)
- make the energy difference bounded

compute properties for the system S by reweighting technique (RQMC easier than
DMC).
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but it requires an estimate of < ES >, < ES′ >.

simpler form: P (Q|S, S′) ∝ Π(Q|S) + Π(Q|S′)
These two forms have the properties that
- sample regions of both configuration spaces (S and S’)
- make the energy difference bounded

compute properties for the system S by reweighting technique (RQMC easier than
DMC).
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Energy difference method

Efficiency versus importance function on a system with Ne = Np = 16 and rs = 1.31. In
one system the protons are taken in a simple cubic lattice and in the other they are displaced
randomly, with an average displacement of ∆. The diffusion constant is defined as
∆2/TCPU where TCPU is the computer time needed to calculate the energy difference to
an accuracy of 1000 K.
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Finite size effects: TABC

In the metallic systems finite size effects coming from the discrete structure of the Fermi
surface are dominant and must be carefully treated.
The finite size effects can be reduced to the classical 1/N behavior averaging over the
undetermined phase of the wave function (Li et al. PRE 2001). For periodic systems we
have

Ψ(~r1 + L~̂x, ~r2, · · · ) = eiθxΨ(~r1, ~r2, · · · ) θ ∈ [−π, π)

TABC:

A =
1

(2π)3

Z π

−π
d3θ < Ψθ|A|Ψθ >

In practice θ can be chosen on a 3D grid and independent calculations be performed for
each grid point.

or one can sample the twist angle at random and run different calculations.

No extra cost for TABC in CEIMC since we sum over twist angles to reduce the noise.
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Trial wave functions: |ΨT >

Slater-Jastrow form

ΨT (R|S) = exp [−U(R|S)]Det
“

Σ↑
”

Det
“

Σ↓
”

U(R) is a (two-body + three-body + . . . ) correlation factor (”pseudopotential”)

Σ↑ is a Slater determinant of single electron orbitals θk(~xi, σi|S).

The nodes are determined by the form of the orbitals only. They are the most important
part of the trial function since the nodes are not optimized by projection.
Dense hydrogen

metallic state: plane waves in terms of bare or dressed coordinates (backflow)

molecular state: molecular orbitals (LCAO or any other reasonable form)

transition region: band structure or LDA self-consistent orbitals.

It is possible, in principle, to systematically improve any trial function within the
Feynman-Kac formalism [Holzmann et al. PRE 68, 046707 (2003)].
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Backflow-3body trial functions

ΨT (~R|S) = det(ei~ki·~xj )exp

0

@−
NeX

i=1

2

4
1

2

NeX

j 6=i

ũee(rij)−
NpX

j=1

ũep(rij)−
1

2
~G(i) · ~G(i)

3

5

1

A

backflow: ~xi = ~ri +

NeX

j 6=i

ηee(rij)(~ri − ~rj) +

NpX

j=1

ηep(rij)(~ri − ~rj)

ηα(r) = λα
b exp[−(r/wα

b )2]

3body: G(i) =

NeX

j 6=i

ξee(rij)(~rl − ~rj) +

NpX

j=1

ξep(rij)(~ri − ~rj)

ũee(r) = uee(r)− ξ2
ee(r)r2

ũep(r) = uep(r)− ξ2
ep(r)r2

ξ(r) = λα
T exp[−(r/wα

T )2]
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Trial wave functions: |ΨT >
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Optimization

The optimization step in VMC can be tedious and difficult if one needs to use complex
wave functions (multideterminantal, with many adjustable parameters).

It is a non-linear optimization process: it is possible to get stuck in local minima.

Correlated sampling improves the efficiency with respect to independent runs:

Set the initial condition for the parameters: ~α = ~α0 . Generate and store Nc

statistically uncorrelated configurations (several thousands) distributed according to
|ΨT (R|~α0)|2/

R
|ΨT (R|~α0)|2

Use your favorite minimizer for energy or the variance (or better a linear
combination of them). Use reweighting to estimate the new averages

ET (~α) =

NcX

i=1

"

ĤΨ(Ri|~α)

Ψ(Ri|~α)

#

wi(~α, ~α0)

wi(~α, ~α0) =

˛
˛
˛
˛

ΨT (Ri|~α)

ΨT (Ri|~α0)

˛
˛
˛
˛

2 . NcX

j=1

˛
˛
˛
˛

ΨT (Rj |~α)

ΨT (Rj |~α0)

˛
˛
˛
˛

2

Check the number of effective configurations Neff =
“P

j wj

”2
/

P

j w2
j remains

large. Otherwise stop and regenerate the configurations with the last value of ~α.
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Metallic hydrogen trial function

Metallic hydrogen: We derived analytic expressions for the backflow and 3body functions
which provides as good as the trial wf with LDA orbitals but are much faster to use
(Holzmann et al. PRE 68, 046707 (2003)).

No variational parameters to adjust!!
at least 5 times faster than with band orbitals
extremely useful in CEIMC

Np EV MC (h/at) σ2 EDMC

16 LDA -0.4870(10) -0.4890(5)

BF3-O ep -0.4857(1) 0.0317 (5) -0.4900 (1)

BF-A -0.4850(1) 0.0232(1) -0.4905(1)

54 LDA -0.5365(5) -0.5390(5)

BF3-O ep -0.5331 (6) 0.033 (1) -0.5381 (1)

BF-A -0.5323(1) 0.0222(2) -0.5382(1)

128 LDA -0.4962(2) -0.4978(2)

BF3-O ep -0.4934 (2) 0.035 (2) -0.4958 (3)

BF-A -0.4928(2) 0.030(1) -0.4978(4)
rs=1.31, T=0K, BCC proton crystal, zero phase. (LDA=Natoli et al PRL 1993)
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Two level sampling

Since the electronic part is much more expensive than computing any classical effective
potential, in CEIMC we can use two level Metropolis sampling to improve the efficiency.
Suppose Vcl(S) is a reasonable proton-proton potential. The equilibrium distribution can be
written as:

P (S) ∝ e−β[EBO(S)−Vcl(S)]e−βVcl(S) = P2(S)P1(S)

A trial move is proposed and accepted or rejected based on a classical potential

A1 = min

»

1,
T (S → S′)

T (S′ → S)
exp(−β[Vcl(S

′)− Vcl(S)])

–

If we accept at the first level, the QMC energy difference is computed and the move
accepted with probability

A2 = min
ˆ
1, exp(−β∆EBO − uB) exp(β[Vcl(S

′)− Vcl(S)]
˜

where uB is the noise penalty.
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Quantum protons

By increasing pressure or decreasing temperature, ionic quantum effects start to
become relevant. Those effects are important for hydrogen at high pressure.

Static properties of quantum systems at finite temperature can be obtained with Path
Integral Monte Carlo method (PIMC).
We need to consider the thermal density matrix rather than the classical Boltzmann
distribution:

ρ
P

(S, S′|β) =< S|e−β(Kp+EBO)|S′ >

The same formalism as in RQMC applies. However
1 - β is the physical inverse temperature now.
2 - to compute averages of diagonal operators we map quantum protons over ring
polymers
3 - we limit to distinguishable particle (T > Td).

Factorization β = Pτp and Trotter break-up
For efficiency introduce an effective proton-proton potential Ĥeff = K̂

P
+ V̂eff

ρ̂
P

(τp) = e−τp[Ĥeff +(ÊBO−V̂eff )] ≈ e−τpĤeff e−τp[ÊBO−V̂eff ]
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Quantum protons - 2

We compute numerically the matrix elements of the effective pair density matrix

ρ̂
(2)
eff (τp) (see lecture notes). The effective N-body density matrix is approximated by

< S|ρ̂(N)
eff (τp)|S′ >≈

Y

ij

< si, sj |ρ̂(2)
eff (τp)|si, sj > +O(n3)

We add the remaining term of the original Hamiltonian (EBO − Veff ) at the level of the
primitive approximation.

With this Trotter break-up we found convergence to the continuum limit (τp → 0) for
1/τp > 3000K which allows to simulate systems at room temperature with only
M ≈ 10 proton slices (for metallic hydrogen at rs = 1).
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Quantum protons - 3

In CEIMC quantum protons are almost for free !

Suppose we run classical ions with a given level of noise (βσcl)
2. Consider now

representing the ions by P time slices. To have a comparable extra-rejection due to the
noise we need a noise level per slice given by: (τpσk)2 ≈ (βσcl)

2/P which provides
σ2

k ≈ Pσ2
cl. We can allow a noise per time slice P times larger which means considering

P times less independent estimates of the energy difference per slice. However we
need to run P different calculations, one for each different time slice, so that the amount
of computing for a fixed global noise level is the same as for classical ions.

When using TABC, for any proton time slice we should in principle perform a separate
evaluation of the BO energy difference averaging over all phases. We have checked
that, at each proton step, we can randomly assign a subset of phases at each time slice
and get the same results.

We need to move all slices of all protons together. This limits the length of proton paths,
therefore the temperature we can achieve. It is essential to use the best possible Trotter
factorization!!
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We need to move all slices of all protons together. This limits the length of proton paths,
therefore the temperature we can achieve. It is essential to use the best possible Trotter
factorization!!
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Quantum protons - 3
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Summary of CEIMC

Given an initial configuration of the electronic path Q and the protonic path P , propose
a trial protonic move P ′ with a suitable transition probability (depending on the
particular system).

Assign at random an equal number of twist phases to any proton slice and run many
independent electronic calculations for each twist phase: ideal for parallel computers !

Sample the electronic configuration space with the importance sampling distribution
depending on both P and P ′.

Use reweighting to compute energy difference ∆ and variance σ2 by averaging results
over all twist phases and proton slices

Performe the Metropolis test with the penalty method

Compute average quantities for the old protonic configuration P using reweighting.
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High pressure hydrogen

Analytical backflow-3body trial wavefunctions

Systems of up to 54 quantum protons and 54 unpolarized electrons

VCM vs RQMC

CEIMC vs Restricted PIMC

CEIMC vs LDA-CPMD (Kohanoff 1995).

Proton quantum effects

Data for the Equation of State and for correlation functions.

Melting of the proton crystal with temperature by the dynamical transition and
Lindemann criterium.

Molecular phase: CEIMC vs experimental data

Molecular dissociation in liquid state: preliminary results
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VMC vs RQMC
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Metallic Hydrogen: VMC vs RQMC

rs=1.2, T=5000K, Np=54, zero phase.

RQMC gives total energy lower by 7.6(2)mH/at=2400(60)K/at

RQMC pressure is 0.03Mbars lower than VMC (0.5%)

τe Etot(h/at) σ2 Ekin Epot P (Mbars)

vmc -0.4694(2) 0.0472(4) 0.8812(4) -1.3508(4) 5.55(1)

0.01 -0.4768(4) —– 0.8850(6) -1.3618(6) 5.50(1)

0.00 -0.47696 —– 0.89112 -1.36808 5.581

CPU time for RQMC ' 10 ×(CPU time for VMC)
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Metallic Hydrogen: VMC vs RQMC
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Metallic Hydrogen: VMC vs RQMC
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CEIMC vs Restricted PIMC
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CEIMC vs RPIMC for electron-proton and proton-proton correlation function at
rs = 1, T = 5000K, Np = Ne = 16, Γ point. RPIMC has ground state free particle nodes.
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CEIMC vs LDA-CPMD
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LDA predicts less structure than observed in CEIMC.

Proton melting:
- Tm(LDA) ' 350K (Lindemann ratio) (Kohanoff 1995)
- 1000K ≤ Tm(CEIMC) < 1500K (dynamical criterium)
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QMC vs LDA

Ground state energies for several crystal structures of atomic hydrogen. Comaprison
between QMC and LDA. From Natoli, Martin and Ceperley, PRL 70, 1952 (1993).

QMC energy differences are about twice the corresponding LDA ones.
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QMC vs LDA
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Atomic Metallic Hydrogen: EOS

rs=1.2: 5.90 ≤ P ≤ 7.69 Mbars

rs=1.0: 20.68 ≤ P ≤ 23.53 Mbars

rs=0.8: 81.95 ≤ P ≤ 86.66 Mbars
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Effects of ZPM on the melting line are small.
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Proton quantum effects
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Proton quantum effects
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Proton quantum effects
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Quantum protons change electronic properties:
Etot(qu)−Etot(cl) = 14.9(2)mH/at = 4670(60)K/at

Kp(qu)−Kp(cl) = 2020(30)K/at

∆Etot −∆Kp =

8
<

:

450(10)K/at : configurational (Coulomb)

2200(20)K/at : electronic kinetic energy
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Main conclusions
we have developed an efficient method for treating electron-nuclei systems with
QMC accuracy within the Born-Oppenheimer approximation

LDA seems to fail not only in predicting gaps (metalization) but even in predicting
the correct liquid state and the melting line at least in the metallic phase (known
problems also in other systems).

In progress
insulating molecular hydrogen: comparison with experiments and prediction of the
EOS, including the melting line.

molecular-atomic transition in liquid phase (LLPT)
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Insulating Molecular Hydrogen
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LCAO: one guassian center on each proton of the molecule. A single variational parameter

PV MC=0.149(2)Mbars, PRQMC=0.224(5)Mbars, Pgas−gun=0.234Mbars

We still don’t have quantum protons here ! sorry
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Molecular Hydrogen: Liquid-Liquid PT
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Liquid-Liquid PT: CEIMC
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Future developments

Constant-pressure algorithm to directly investigate structural phase transitions (level
crossing problem).

Study the melting of the molecular solid in the insulating phase (recent experiments and
theoretical prediction of a maximum in T vs P transition line, Bonev, Nature 2004).

Investigate the possibility of a high pressure-low temperature liquid phase before the
appearance of the atomic crystal

Introduce the use of pseudopotentials to extend the method to heavier elements.
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