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BiNi clusters have been studied using the hybrid B3LYP density functional and diffusion quantum Monte
Carlo (DMC) methods. Different cluster families have been characterized for each cluster size using B3LYP,
and the energy differences have been compared with those obtained within DMC. The DMC results predict
that the global minimum energy structures are rings fori ) 2-9, a three-ring structure fori ) 10 and spheroids
for i g 11. The aromaticity of the ring structures has been studied using the nuclear independent chemical
shifts (NICS) criterion. According to this criterion, rings with an odd number of BN units are aromatic.
Aromatic structures are thought to be the most stable, and the DMC results for the most stable structures are
consistent with this hypothesis, but in some cases, the B3LYP results are not.

1. Introduction

Over 40 years ago, Richard Feynman described how in
nanotechnology “There’s plenty of room at the bottom!”.1

Indeed, the recent spectacular growth of nanotechnology has
followed the predictions of some of the pioneers in the field,
such as Arthur von Hippel2 and K. Eric Drexler.3,4 There have
been many important developments in nanotechnology,5-8 and
new and revolutionary techniques have been developed, such
as the scanning tunneling microscope (STM), the atomic force
microscope (AFM), and others. It might be possible to create
new materials that are useful in a broader sense than their bulk
counterparts.9-13 The recent spectacular success of nanotech-
nology makes cluster science more interesting, because in
addition to rationalizing some surface-related and other proper-
ties of bulk materials, studies of clusters of increasingly larger
sizes can eventually bridge the gap with nanosize materials in
a comprehensible manner. Consequently, the literature in the
field is growing rapidly, and several reviews of cluster science
have appeared.14-16 One of the best known “new” clusters or
nanostructures is the family of so-called fullerenes discovered
in 1985,17 which are hollow carbon spheroidal structures.

Interest in valence isoelectronic clusters such as III-V
clusters is also growing rapidly. Studies of small III-V clusters
have appeared in the literature,18-21 along with studies of large
clusters or bulk.22-24 III -V fullerenes and nanotubes have also
been studied.25-28 Theoretical studies have been performed for
fullerene-like B12N12 clusters,29,30 in which it has been found
that a structure built from squares and hexagons is more stable
than those built from pentagons and hexagons. This is because
in the second case less stable B-B and N-N bonds are formed.
The most stable B12N12 structure is built from six squares and
eight hexagons. The B36N36 fullerene has also been studied
theoretically,31 and a structure built from six squares and 32
hexagons has been found. Similar structural trends have been
observed for II-VI clusters,32 in which fullerene-like structures
are built from six squares with the number of hexagons
increasing by one when adding a new unit.

In this work, we focus on BiNi clusters,i ) 2-15. Our aim
is to find the global minimum energy structure for each cluster
size, for which an exhaustive search of the potential energy
surface has been performed. To characterize the cluster geom-
etries, we use the hybrid B3LYP exchange-correlation functional
within density functional theory. However, energy differences
obtained within density functional theory may not be as accurate
as one would like, and therefore, when the energy differences
are small, we have performed diffusion quantum Monte Carlo
(DMC) calculations. This level of accuracy has been found to
be crucial for accurate studies of the crossover from carbon rings
to fullerenes.33

The DMC method34,35 is the most accurate approach known
for calculating the quantum-mechanical ground-state energy of
a large number of interacting particles. The great promise of
DMC for interacting electron systems lies in the fact that
correlations are included explicitly and that the computational
cost increases as the third power of the number of electrons,
which is very favorable when compared with other correlated
wave function techniques. Highly accurate DMC calculations
have already been demonstrated for both molecules33,36-39 and
condensed matter systems.34,40-42

2. Methods

All geometries were fully optimized using the hybrid43 Becke
3 Lee-Yang-Perdew (B3LYP) gradient-corrected approxima-
tion within density functional theory.44-46 Harmonic vibrational
frequencies were determined by analytical differentiation of the
energy gradients, and we checked that all of the optimized
structures have only positive force constants.

We used soft pseudopotentials47 to model the core electrons,
which are important for efficient quantum Monte Carlo calcula-
tions. These pseudopotentials were combined with an efficient
uncontracted Gaussian basis set for the valence electrons, which
contains five s-type, five p-type and one d-type functions for
both B and N. The values of the exponents are given in Table
1.

The reliability of the energy differences obtained with this
method has been tested using two all-electron basis sets, namely,
6-311G(d)48,49and a TZ2P. Single-point calculations have been
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carried out with these basis sets because the geometry of the
clusters was not significantly altered by optimizing the structures
with each basis set. The results obtained are given in Table 2.

Each of the basis sets predicts the same global minimum
energy structure, and the estimated energy differences are
similar, which supports the reliability of our pseudopotential-
basis set combination.

The nuclear independent chemical shifts (NICS) values were
calculated using the gauge-including atomic orbitals (GIAO)
method at the B3LYP level of theory. In this method, the nuclear
magnetic resonance (NMR) parameters are calculated for a ghost
atom, usually placed at the center of the ring, and the NICS
value is the negative of the isotropic magnetic shielding constant
at the ghost atom. The aromaticity of a ring structure can be
studied by computing the NICS value in the center of the
structure, either in the plane of the ring or 1 Å out of the plane,
which are generally denoted as NICS(0) and NICS(1), respec-
tively. If the corresponding NICS values are negative, the
structure is aromatic.50,51

In the DMC method,34,35 the imaginary time Schro¨dinger
equation is used to evolve an ensemble of electronic configura-
tions toward the ground state. Exact imaginary-time evolution
would lead to the exact fermion ground-state wave function,
provided it has a nonzero overlap with the initial fermion state.
However, the stochastic evolution is never exact, and the
solution converges to the bosonic ground state. In DMC
calculations, the fermionic symmetry is maintained by the fixed-
node approximation,52 in which the nodal surface of the wave
function is constrained to equal that of a guiding wave function.
The fixed-node DMC energy provides a variational upper bound
on the ground-state energy with an error that is second-order in
the error in the nodal surface.53,54

In this work, Slater-Jastrow-type guiding wave functions
consisting of the product of a Slater determinant of single-
particle orbitals obtained using the Gaussian 98 code55 and a
Jastrow correlation factor56 have been used. The optimized
uncontracted basis set of Table 1 has been used to generate
single-particle Hartree-Fock orbitals, which form the Slater
determinant of the guiding wave function. We emphasize that
the DMC energies are not limited by the basis set or the detailed
form of the orbitals, the DMC energy is fixed only by the nodal
surface of the guiding wave function. The Jastrow factors, up
to 25 parameters, were optimized using efficient variance
minimization techniques.57,58All of the DMC calculations were
performed using the CASINO code.59

Although the computational effort of a DMC calculation
scales as the cube of the number of electrons, the scaling with
the atomic number,Z, of the atoms is approximatelyZ5.5-6.5.60,61

It is therefore very advantageous to use pseudopotentials in
DMC calculations, which reduces the effective value ofZ.
Hartree-Fock pseudopotentials have been shown to give better
results than density functional theory ones when used within
DMC calculations.62 Unfortunately, the Hartree-Fock pseudo-
potentials available within the quantum chemistry literature
usually diverge at the origin, normally like 1/r2 or 1/r. These
divergences lead to large “time-step” errors and even instabilities
in DMC calculations.63 In this study, we have used soft
pseudopotentials,47 which are smooth at the origin and do not
suffer from this problem. The nonlocal energy was evaluated
stochastically within the locality approximation.64-66

3. Results

This section has been organized as follows. In subsection 3.1,
the structures characterized at the B3LYP level of theory are
presented. Subsection 3.2 deals with the aromaticity of some
planar structures, and finally the DMC results are reported in
subsection 3.3.

3.1. Structures of the BiNi clusters,i ) 2-15.The structures
can be divided into different families, namely, rings, chains,
two-rings, three-rings, five-rings, graphitic-like and three-
dimensional spheroids. The structures are labeled according to
the following system: BiNi

a, where i denotes the number of
BN units and the superscript a denotes the family of the
structure. The families are R (rings), C (chains), S (spheroids),
2R (two-rings), 3R (three-rings), 5R (five-rings), G (graphitic),
D (distorted spheroids), and O (others).

BiNi, i ) 2-5. The optimized structures fori ) 2-5 are
shown in Figures 1 (i ) 2) and 2 (i ) 3-5), along with the
energy differences in electronvolts of each structure from the
most stable one. For B2N2, the three most stable structures
contain only B-N bonds, while higher lying structures contain
B-B or N-N bonds. This is in agreement with previous work
on BN clusters.28,29 Therefore, for larger clusters, only com-
pletely B-N bonded structures are shown. The global minimum
energy structure is found to be a ring, while a bent chain lies
close in energy. It is interesting to note that this bent chain is
preferred to a linear chain. The bent chain is only 0.283 eV
above the global minimum, while the linear one is 1.360 eV
above. As the cluster size increases, the energy difference

TABLE 1: Basis Set Exponents for the B and N Atoms in
au

B R N R

s 52.5393 68.6151
s 8.5622 12.679
s 2.003 3.0226
s 0.5749 1.026
s 0.1916 0.418
p 6.3999 6.7365
p 1.5767 1.4646
p 0.3856 0.4257
p 0.1018 0.1431
p 0.0303 0.0524
d 0.8 0.8

TABLE 2: Energy Differences (eV) for the Lowest-Lying
Structures of the BiNi, i ) 2 and 3, Clusters Using Three
Different Basis Sets

this work 6-311G(d) TZ2P

∆E (EB2N2
GM - EB2N2

LM1) 0.283 0.430 0.517
∆E (EB3N3

GM - EB3N3
LM1) 4.185 4.411 4.370

Figure 1. Cluster structures characterized for B2N2. Shaded atoms are
B.
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between the ring and chain structure increases, being 4.185,
5.657, and 6.609 eV fori ) 3, 4, and 5, respectively. In ring
structures, a strong tendency toward N-B-N angles of 180°
is observed as the cluster size increases. Three-dimensional
structures have also been characterized fori ) 4 and 5. B4N4

S

is interesting, although it is very high in energy (6.462 eV above
the minimum) because it is composed of six squares and is a

deformed cube. This is the smallest spheroid following the so-
called squares-hexagons route. B5N5

D lies even higher in energy
than B4N4

S.
BiNi, i ) 6-11. The optimized structures fori ) 6-11 are

shown in Figures 3 (i ) 6-8) and 4 (i ) 9-11), along with
the energy differences from the most stable structures in
electronvolts. For all cluster sizes, the global minima are ring

Figure 2. Cluster structures characterized for BiNi, i ) 3-5.

Figure 3. Cluster structures characterized for BiNi, i ) 6-8.
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structures with N-B-N angles close to 180°. In smaller
clusters, we have shown above that the chain structures lie higher
in energy asi increases, and therefore, we have not characterized
them for these cluster sizes. On the other hand, new families of
structures are observed at these cluster sizes. The lowest-lying
local minimum energy structures belong to the three-ring family,
in which two rings are linked together by a small square. The
energy differences decrease asi increases, being 3.516 eV for
i ) 6 and 1.248 eV fori ) 11. The two-ring family is the second
lowest-lying local minimum and spheroids the third one, except
for i ) 11, for which the spheroid is closer to the global
minimum. In the case of two-ring structures, the energy
difference decreases from 4.963 eV (i ) 6) to 3.990 eV (i )
11) and in the case of spheroids from 5.981 eV (i ) 6) to 2.232
eV (i ) 11). The graphitic-like structures and distorted spheroids
lie about 6 eV higher in energy and are not described in detail.

BiNi, i ) 12-15. The optimized structures fori ) 12-15
are shown in Figure 5, along with the energy differences of
these structures from the most stable one in electronvolts. We
observe a transition in the global minimum structures, which
are spheroids fori ) 12, 14, and 15. However, fori ) 13, the
ring structure is predicted to be the global minimum. Except
for i ) 15, the energy differences between spheroids and rings
are small, and a more accurate picture is desirable.

Spheroids are built from squares and hexagons. The number
of squares remains constant and equal to six, while the number
of hexagons increases as the cluster size increases. A similar

trend is observed in carbon fullerenes, where the number of
pentagons remains constant at twelve, while the number of
hexagons increases with cluster size. These trends can be seen
in Table 3.

In ref 31, a B36N36 fullerene was characterized, built from
six squares and 32 hexagons, which follows our trend rather
nicely. This trend was also observed in II-VI clusters32 and is
common for all structures built from squares and hexagons.

In Figure 6, all energies of each structural family, relative to
the rings, are depicted as a function of the cluster size. We
observe that rings are the global minimum structures fori )
2-11 and 13 and spheroids are the global minimum structures
for i ) 12, 14, and 15. In the small cluster size region,i )
2-5, rings clearly dominate, except fori ) 2, for which the
chain structure lies close in energy. Then, as the cluster size
increases, the energy differences of all of the families decreases,
specially that of spheroids, which become the most stable
structures for larger cluster sizes. The three-ring structures also
lie close in energy for large cluster sizes. DMC calculations
will provide a more accurate picture of the relative energies for
regions where different structures lie close in energy, see
subsection 3.3. The structures chosen for the DMC calculations
are the ring and chain fori ) 2, and rings, three-rings, and
spheroids fori ) 8-13.

3.2. Aromaticity in B iNi Rings. The aromaticity of these
rings has been studied using the NICS method, which is a
magnetic criterion that mirrors the ring current. The NICS values

Figure 4. Cluster structures characterized for BiNi, i ) 9-11.

Stability and Aromaticity of BiNi J. Phys. Chem. A, Vol. 107, No. 46, 200310007



are easily calculated as the negative of the magnetic shielding.
Negative values arise when diatropic ring currents dominate,
that is, aromaticity, while positive values arise when paratropic
currents dominate, that is, antiaromaticity. The NICS(0) value,
calculated at the center of the ring, is influenced by theσ-bonds,
and therefore, calculation of the NICS(1), 1 Å out of the plane,
yields a more reliable result because these values are mainly
influenced only by theπ system.51 The results obtained are given
in Table 4.

These results indicate that rings with odd values ofi are
aromatic and those with even values ofi are antiaromatic, except
for i ) 2. As the size of the ring increases the aromaticity
decreases, B7N7

R being the largest aromatic ring. BiNi
3R

structures are built from two BiNi rings linked together by a
B2N2 ring. It has been shown above that the BiNi

R structures
with i ) 2, 3, 5, and 7 are aromatic, so in principle, they can
maintain their aromaticity within the BiNi

3R structures. The
NICS(1) values have been calculated 1 Å above the center of
each of the rings, and therefore, for the same structure, three

values are provided in Table 5, corresponding to each of the
indicated rings.

The results in Table 5 show that only BiNi, i ) 3 and 5,
rings within BiNi

3R structures are aromatic. Comparing these
results with those of Table 4, we see that the aromaticity of
these rings decreases from isolated rings to rings within BiNi

3R

structures. In this way, isolated B2N2
R and B7N7

R are aromatic,
but they are antiaromatic when fused with other rings within
BiNi

3R structures. Similarly, notice that for all even-i rings the
antiaromaticity increases compared with their corresponding
values for isolated rings.

3.3. DMC Calculations for BiNi, i ) 2 and 8-13. As
mentioned above, the structures chosen for the DMC calcula-
tions are the ring and chain fori ) 2 and rings, three-rings,
and spheroids fori ) 8-13. Smaller structures are not
considered because the energy differences between the rings
and other structures are very large. Although the extra accuracy
of DMC could alter the energy differences, it is not expected
to change the global minimum structures. The relative energies

Figure 5. Cluster structures characterized for BiNi, i ) 12-15.

TABLE 3: Structural Trends in BN Spheroids and Fullerenes

B4N4
S B6N6

S B8N8
S B9N9

S B10N10
S B11N11

S B12N12
S B13N13

S B14N14
S B15N15

S

squares 6 6 6 6 6 6 6 6 6 6
hexagons 0 2 4 5 6 7 8 9 10 11

C20 C28 C34 C42 C48 C54 C60 C72 C84 C94

pentagons 12 12 12 12 12 12 12 12 12 12
hexagons 0 4 7 11 14 17 20 26 32 37
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calculated in DMC and B3LYP are compared in Table 6. For
the i ) 2 case, DMC confirms the B3LYP result, in which the
ring is more stable than the chain. For larger clusters,i ) 8-13,
the results have to be discussed in a deeper way. First of all,

recall that BiNi
R structures are predicted not to be aromatic for

i g 8, while BiNi
3R, i ) 9-11, have aromatic components, which

are the B5N5 rings. Fori ) 8 and 9, DMC and B3LYP results
are in agreement, and both predict BiNi

R clusters to be the global
minima. The case ofi ) 10 is different. DMC predicts B10N10

3R

to be the global minimum, which has two aromatic B5N5 rings,
while B3LYP predicts the antiaromatic B10N10

R to be most
stable. The results of the DMC calculations are therefore in
agreement with the aromaticity picture. For larger cases,i g
11, DMC calculations predict spheroids to be the global minima.
Therefore, according to our DMC results, ring structures are
the global minima fori ) 2-9, the three-ring structure is the
global minimum fori ) 10, and spheroids are the global minima
for i g 11.

4. Conclusions

The hybrid B3LYP functional has been used to characterize
the geometry of a number of different structural families for a
wide range of cluster sizes. Although density functional theory
usually predicts reasonable bond lengths and bond angles, the
calculated energy differences are not particularly accurate
because of the approximate exchange-correlation functionals
used. At this point, the importance of diffusion quantum Monte
Carlo (DMC) calculations is clear because it is crucial to
determine the correct global minima for BiNi clusters. B3LYP
predicts ringlike structures to be the global minima fori ) 2-11
and 13 and spheroids fori ) 12, 14, and 15. In the region of
the crossover from rings to spheroids, DMC calculations show
a different sequence, the global minima structures being ringlike
for i ) 2-9, three-ring structures fori ) 10, and spheroids for
i ) 11-15. This difference comes from the fact that DMC
describes correctly the correlation energy for all systems, while
B3LYP does not. In this case, B3LYP underestimates the energy
of the spheroids.

The aromaticity of the BiNi
R and the BiNi

3R structures has
been studied using the nuclear independent chemical shifts
(NICS) criterion. According to this criterion, BiNi

R, i ) 2, 3, 5,
and 7, are aromatic, while within BiNi

3R structures, onlyi ) 3
and 5 rings are aromatic. In this case, the B10N10

3R structure is

Figure 6. Energy differences between the ring and the remaining structures in kJ/mol at the B3LYP level of theory.

TABLE 4: NICS(0), Calculated in the Center of the Ring,
and NICS(1), Calculated 1 Å out of the Plane, Values for
BiNi

R Structures

NICS(0) NICS(1)

B2N2
R -54.4050 -10.8124

B3N3
R -11.5038 -2.7952

B4N4
R 0.7791 1.8903

B5N5
R -2.8316 -2.0540

B6N6
R 0.3597 0.6063

B7N7
R -0.8899 -0.5512

B8N8
R 0.6361 0.6629

B9N9
R 0.2419 0.2963

TABLE 5: NICS(1) Values, Calculated 1 Å out of the Plane,
for B iNi

3R Structures

B2N2 B3N3 B4N4 B5N5 B6N6 B7N7

B6N6
3R 4.0099 -0.8808

B7N7
3R 3.2465 -1.4252 0.4509

B8N8
3R 3.3365 0.8901

B9N9
3R 4.3317 1.1618 -1.0496

B10N10
3R 5.7349 -0.9540

B11N11
3R 5.3311 -0.8937 5.3311

B12N12
3R 5.1594 1.1558

B13N13
3R 6.1075 1.1420 0.8856

B14N14
3R 6.9706 0.9014

TABLE 6: Calculated Energy Differences,∆E, in EV, at the
B3LYP and DMC Levels of Theory

B3LYP DMC

∆E (EB2N2
R - EB2N2

C) +0.283 +1.392( 0.055
∆E (EB8N8

R - EB8N8
3R) +2.233 +1.541( 0.160

∆E (EB9N9
R - EB9N9

3R) +1.837 +2.227( 0.123
∆E (EB10N10

R - EB10N10
3R) +1.387 -1.685( 0.127

∆E (EB10N10
R - EB10N10

S) +4.200 +2.081( 0.172
∆E (EB11N11

R - EB11N11
S) +2.232 -1.490( 0.151

∆E (EB11N11
R - EB11N11

3R) +1.248 +2.557( 0.223
∆E (EB12N12

R - EB12N12
S) -0.770 -7.750( 0.169

∆E (EB13N13
R - EB13N13

S) +1.141 -4.412( 0.178
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built from two aromatic rings linked together by a square, and
because of these aromatic rings, the stability of this structure is
large. These results for aromaticity are consistent with the DMC
results for the most stable structures because aromatic structures
are thought to be the most stable.
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