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Moleular Dynamis
In order to do Moleular Dynamis, we need to (atleast approximately) alulate the fore on eah atomdue to all other atoms. This is the gradient of the totalenergy of the system with respet to the oordinatesof the atom in question.Empirial PotentialsPro: O(N), parallelizableCon: inaurate, non-transferable, hard to buildTight-Binding MethodsPro:aurate, muh faster than DFTCon:O(N3), not parallelizable, non-transferableDFTPro:very aurate, transferableCon:O(N3) and very slow
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Our aim
Our aim is to develop a universal method foronstruting Empirial Potentials by �tting a nearestneighbour energy potential to QM data.Pro:O(N)parallelizabletransferableeasy to buildmaximum auray*Con:Nearest neighbourSize of phase spae
*within nearest neighbour approximation 3



Empirial Potentials
Task: �t parametrized energy potential funtionempirially.This is an \art" (Brenner), whih involvessome level of intuitive hemial insight, onsiderabletrial-and-error, and signi�ant tenaityE.g. Stillinger-Weber potential:

�SW (r1; : : : ; rN) = NXi; jj > i f2(rij� )+ Xi; j; kk > j > i f3(ri� ; rj� ; rk� )
where f2(r) = A(Br�p � r�q)e 1r�af3(ri; rj; rk) = X�(i;j;k)�e rij�a+ rik�a(os �jik + k)2
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Tight-Binding Methods
In the Tight-Binding sheme the total energy isgiven by:

Etot = Eoh + Erep
where the ohesive part is alulated using anapproximate Hamiltonian matrix H:

Eoh = tr(�H)
The elements of H only depend on a parametrizedfuntion of the internulear distane.
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Loal Tight-Binding energies (Cs�anyi)
Reall and rewrite Eoh:

Eoh = tr(�H) = NorbXi=1 (�H)ii
where Norb is the number of orbitals. Now weintrodue �j suh that:�j =Xkj (�H)kjkj
where kj runs over the orbitals of atom j. Thus wean write: E = NatomsXj=1 �jso that �j is a form of loal energy.
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How loal are these energies?
These loal energies satisfy the strong loalityassumption [Cs�anyi℄:rnxjrxiE ! 0 as jxi � xjj ! 0 8n; i 6= jBut this depends on TB model:
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Nearest Neighbour Loalization Errors
How dependent are these loal energies on theneighbourhood?Keep given neighbourhood �xed, allow the rest toevolve freely:

Results: Keeping nearest four neighbours �xed theloal energy varies less than 2% (� 0:2eV). 8



Distribution of Loal Energies
Histogram of loal TB energies olleted fromon�gurations sampled during a 5000K Stillinger-Weber run in Silion.
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Gaussian Proesses
Gaussian Proesses allow us to estimate the valueof a funtion y(x) at a given point xN+1, based on aset of values fyig of the funtion at other points fxig,i = 1::N .This is done by �rst expanding the funtion y(x) interms of a set of basis funtions �h(x) with parametersfwhg:

y(x;w) = HXh=1wh�h(x)
These basis funtions an but do not have to beGaussian. The reason why the Gaussian proess isalled Gaussian is beause we plae assume a Gaussianprior on the distribution of fwhg.
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Gaussian Proesses (II)
We an then use Bayesian estimation to obtain anestimate ŷN+1 = kTC�1N yNof the value of the funtion at position xN+1, where kis a vetor of basis funtion dot produts given by

kj / ZH dh�h(xN+1)�h(xj)
with j = 1::N , and CN is a ovariane matrix givenby (CN)ij / ZH dh�h(xi)�h(xj)with i; j = 1::N and the vetor yN is given byyk = y(xk)with k = 1::N .
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Gaussian Proesses (III)
Gaussian Proesses are partiularly useful as theyalso produe a variane for every estimate:�2̂yN+1 = �� kTC�1N kwhere � is given by:

� / ZH dh�h(xN+1)�h(xN+1)
Note that the variane does not depend on y(x) at all,but only on fxig for i = 1::N .
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Basis Funtions: Width
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Inferring (From) Derivatives
By using the derivatives of the original basisfuntions �h(x), we an:(a) infer a derivative of a funtion y(x) from a setof values of this funtion fykg.(b) infer a funtion from values of its derivative,albeit with a onstant shift.The onstant shift in (b) an be removed by addinga single value of the funtion to be inferred to theteahing set.
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Inferring (From) Derivatives (II)
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Teahing Point Distributions
An example of how to hoose teahing pointdistributions eÆiently, for a model 2D double-wellpotential:
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Teahing Point Distributions (II)
The results:
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GP in MD: Coordinate System
We want to �t the potential in the on�gurationspae of the four nearest neighbours.As we expet radial and angular ontributions, weuse radii and diretion osines of the bonds betweenthe entral atom and the four nearest neighbours.In the spae of radii we use Gaussian basisfuntions, in the spae of diretion osines we useSpherial Harmonis as basis funtions.Using Spherial Harmonis means that the angularpart of the basis funtion dot produt is only dependenton the angle between the diretion osines.
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Symmetries
Permutation SymmetryIn our on�guration spae of radii and diretionosines, 24 points are equivalent to one another, as wean relabel the four neighbours and should still get thesame energies and fores.Rotational SymmetryOur potential funtion should be invariant underrotation of the entire on�guration. Hene pre-rotateall on�gurations suh that the �rst neighbour liesalong the x-axis and the seond neighbour lies in thepositive x-y plane.Mirror SymmetryWe an mirror the system in the x-y plane so thatthe third neighbour always lies in the positive z spae.
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Implementing Symmetries
The symmetries are implemented inside thebasis funtions by generating all 24 permutationsof neighbour labels, pre-rotating & mirroring theon�gurations, alulating the dot produt and thensumming the 24 ontributions:
�(z1)�T (z2) = 1(n!)2 X�1;�22�p�n�nz� exp��(jz1r;�1 � z2r;�2j2)4�2z �

� nYk=1 1Xl=0 2l + 14� Pl(os �1;�2k;R )
os �1;�2k;R = (R1z1ak)�1:(R2z2ak)�2
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How To Fit A Potential
We an �t a potential by doing the following:� Run a Stillinger-Weber MD run at high temperature� At intervals, alulate loal Tight-Binding energiesas well as Gaussian Proess estimates ofon�gurations in the simulation ell� Compare the two for eah on�guration: If thedi�erene is greater than a given threshold, teahthe on�guration
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Modelling the Fitting Proess for anExat Potential
If we assume that the physially aessible part ofon�guration spae is �lled by randomly distributedsmaller 'taught' volumes, we an derive a model inwhih the number of teahing points obeys:NTP = �ln �1� x ln(1� vV )�ln(1� vV )where x is the number of teahing iterations and vV isthe fration of the on�guration spae volume �lled byevery teahing point.From this model we an also derive a distributionof the errors for an exat potential with its width as afuntion of teahing iterations given by:
� = "p2t erf�1 � Na[1� x ln(1� vV )℄�#�1
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Results (I)
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Results (II)
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Results (III)
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Results (IV)
t=eV T ��bulk vV 0.25 2000K 1 0.161706 4.830700.25 3000K 1 0.0336771 4.418560.25 4000K 1 0.0236521 44.76330.25 5000K 1 0.00881727 24.95420.25 5000K 0.75 0.00586319 29.85650.5 5000K 1 0.0341717 32.32930.5 5000K 0.75 0.0143356 27.6467Table of the exat potential model parameters forvarious thresholds, temperatures and densitiest=eV ��bulk �data/eV �theory/eV0.25 1 0.0856813 0.090590.25 0.75 0.0979888 0.099050.5 1 0.135018 0.15740.5 0.75 0.148017 0.1772Table of the error distribution widths of the bareloal energy data for 5000K, and the theoretialpreditions derived from the exat potential model 26



Modelling a Non-Exat Potential
A potential funtion with a �nite error, suhas the nearest neighbour loalization error in Tight-Binding loal energies obeys a di�erent equation forthe teahing point number, namely:
NTP = �ln[(k + )(1� vV )�kx � ℄ + ln kln(1� vV )the gradient of whih tends towards k (instead of zeroas in the exat ase) as x ! 1. The width of theerror distribution is given by:

� = "p2t erf�1  kNa[1� k+(1� vV )kx℄!#�1whih tends towards t[p2erf�1(k=Na)℄�1 (instead ofzero as in the exat ase) for x!1.
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Results (V)
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Results (VI)
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Results (VII)
t=eV T ��bulk k  vV0.25 5000K 1 12.3267 21.9239 0.0040700.25 5000K 0.75 10.7345 17.1938 0.0021840.5 5000K 1 1.19629 9.17308 0.0077190.5 5000K 0.75 1.66906 15.4847 0.005479Table of the non-exat potential model parametersfor various thresholds, temperatures and densitiest=eV ��bulk �data/eV �theory/eV0.25 1 0.193061 0.19180.25 0.75 0.188321 0.20540.5 1 0.215667 0.21450.5 0.75 0.235656 0.2396Table of the error distribution widths of the non-bare loal energy data for 5000K, and the theoretialpreditions derived from the non-exat potential model
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Conlusion
� The task of �tting a potential to an exat potentialderived from QM alulations is learly feasible� < 103 points are suÆient to over the phase spaeof (near-)bulk Silion at high temperatures� This method gives an interesting tool for measuringphase spae volumes explored by dynamial systemsMuh remains to be done...
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Further Work
� Use averaged instead of bare loal energies to obtainexat potential� Use fores (already implemented) to run full GPMD and see how well it does qualitatively andquantitatively for a wide range of systems� If universal GP potential proves impossible, an stilluse this �tting approah in the ontext of LOTF
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