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Jastrow correlation factor for atoms, molecules, and solids
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A form of Jastrow factor is introduced for use in quantum Monte Carlo simulations of finite and periodic
systems. Test data are presented for atoms, molecules, and solids, including both all-electron and pseudopo-
tential atoms. We demonstrate that our Jastrow factor is able to retrieve a large fraction of the correlation
energy.
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I. INTRODUCTION We obtained the values of the free parameters in our Ja-

Many-electron wave functions may be accurately andgstrow factors by minimizing the variance of the enef§wll
compactly approximated by a product of a small number of our QMC calculations were performed using thesiNO
Slater determinants and a positive Jastrow correlation factopackage. We use Hartree atomic unifs=|e| =me=4mey=1
The Jastrow factor is an explicit function of the electron-throughout this article.
electron separations, so that expectation values calculated The rest of this paper is organized as follows. In Sec. II
with a Slater-Jastrow wave function do not separate in thave describe the general form of our Jastrow factor, while in
electron coordinates. Nevertheless, the variational and diffuSec. 1l we show how the electron-electron and electron-
sion quantum Monte CarloyMC and DMC) methods per- nucleus cusp conditiotsapply to this form. The behavior of
mit the use of such explicitly correlated wave functions.  the local energy at electron-electron and electron-nucleus

In VMC, expectation values are calculated using an apcoalescence points is discussed in Sec. IV. Section V de-
proximate trial wave function, the integrals being performedscribes the Jastrow factor in detail. In Sec. VI we make fur-
by a Monte Carlo method. In DMGRefs. 1 and 2the ther comments on the form of our Jastrow factor, while in
imaginary-time Schrodinger equation is used to evolve arbec. VIl we define our notation for specifying the Jastrow
ensemble of electronic configurations towards the groundactor and give our criterion for judging its quality. In Secs.
state. The fermionic symmetry is maintained by the fixed-VIII-XI we report the results of studies of various systems.
node approximatiof,n which the nodal surface of the wave Finally, we draw our conclusions in Sec. XII.
function is constrained to equal that of a trial wave function.

The DMC method gives the energy that would be obtained in
a VMC calculation with the same Slater determinants, but  !l. GENERAL FORM OF THE JASTROW FACTOR
using the best possible Jastrow factor.

Although the DMC energy is in principle independent of
the Jastrow factor, a poor trial wave function increases the Y{rih{r}) =exdI{r}{r HID{rD, (1)

statistical error bars and the time-step and population-control

biases. When nonlocal pseudopotentials are used withihereirit and{r,} denote the electron and ion coordinates,
DMC, the locality approximatict? leads to additional errors €SPectively, exil] is the Jastrow factor, anid denotes the

which are second order in the error in the trial waveSlater part, which depends only implicitly on theg}. An
function® The expectation values of operators that do notaccurate and efficient Jastrow factor should possess a number
commute with the Hamiltonian are often evaluated using ex®f qualities. The functional form of the Jastrow factor should
trapolated estimatiohthe accuracy of the extrapolation de- P& chosen to reflect the physics of the correlations in the
pending on the quality of the trial wave function. In practice System, and it should be parametrized efficiently. The trial
the efficiency and accuracy of both VMC and DMC calcula-Wave function must be continuous everywhere and its gradi-

tions are critically dependent on the availability of high- €nt must be continuous wherever the potential is finite, so
quality Jastrow factors. that the kinetic energy is well defined. The Kato cusp

Our Jastrow factor is designed for use in atoms, mol-conditions® determine the behavior of the many-body wave
ecules, and solids. We have used it in a variety of Systemsjgnction when two electrons, or an electron and a nucleus,
and here we report results on the He 8NéNe, and Ni at- are coincident. The cusp conditions derive from the require-
oms, the NiO and Siimolecules, and crystalline Si in the ment that the divergence in the local kinetic energy at a
diamond structure. These systems include all-electron angPalescence point cancels the divergence in the local poten-
pseudopotential descriptions of atoms, with the total numbefial energy. Failure to satisfy the cusp conditions leads to
of electrons varying from 2 to 216. We pay particular atten-divergences in the local energy 'HW, whereH is the
tion to the issue of cutting off terms in the Jastrow factor atHamiltonian. These divergences are especially harmful in
finite ranges, which is desirable because of the local naturBMC calculations, where they can lead to population-control
of the inhomogeneous correlations in many systems, as wefiroblems and significant biases. It is standard practice to use
as for reasons of computational efficiency in large systemsthe Jastrow factor to enforce the cusp conditions. The Slater

The Slater-Jastrow wave function can be written as
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part of the wave function is chosen to satisfy the correct A. The antiparallel-spin electron-electron cusp condition
symmetry under exchange of electrons, and therefore the Ja-
strow factor should be symmetric under exchange. Indee
the Slater part of the wave function is normally chosen to onzero at the two-particle coalescence point. This condition
have the correct symmetries of the state, so we shoul

h ] ¢ hat d h hi olds at almost all coalescence points of antiparallel-spin
choose a Jastrow factor that does not change this sSymmetiye yrons. et us omit the coordinates of all the other elec-

Fi_na_lly, the Jastrow factar ShOU|d. allow rapid evgluation, 4Srons and write the wave function in terms of the center of-
this is one of the more computationally demanding parts o ass and difference coordinates of electronand |
VMC and DMC calculations. =(ri+r;)/2 andrjj=r;=r;. The cusp conditiolf is

Our Jastrow factor is the sum of homogeneous, isotropic

electron-electron terms, isotropic electron-nucleus terms (a@) 1.

Consider the situation where two electrons of opposite
pin,i andj, approach one another and the wave function is

centered on the nuclei, isotropic electron-electron-nucleus — ==V, _, (3)
termsf, also centered on the nuclei and, in periodic systems, anij j=0 2
plane-wave expansions of electron-electron separation and
electron positiorp andg. The form is Where\lf(_J, ij) is the spherical average df(r;,r;;) about
Nl N the coalescence point.
Nons Neglecting the cusplegsandq terms, the Slater-Jastrow
Jdritdrih) = Izi 1%1 u(ry) + |§1 %X' Fir) wave function may be written as
Nions N1 N N1N W(r,rip) = exd (i, r, ) ID(rij,ry), 4
+2 22 fl(rilyrjl:rij)+2 > p(rij) : .
I=1 i=1 j=i+1 i=1 j=i+l where for clarity we have assumed there is only one nucleus,
which is located at the origin. Consider the change in the
> q(ry), %) value of ¥ for a small displacement from the coalescence

point such that the center-of-mass remains fixed:

whereN is the number of electron\i,,s is the number of SU=T. aJ\ (a4 o+ a
ions, rj=r;—rj, andr; =r;—r,. Note thatu, x, f, p, andq rij=0 or; o) 1 = i ar; r__orii

may also depend on the spinsioénd j. Although we will

present results using spin-dependent parameters, for com- +exp[Jrij:O](Vij D)rij:O'rij +(’)(r§ , (5)

pactness the spin type has been suppressed in all formulas.

The basic form is not novel, as terms of each type present iwhere &r; and Jr; are the changes in; andr; when the

Eq.(2) have appeared in Jastrow factors in the |iteraﬁb’3t electron separationij is increased from zero, and we have

our particu|ar forms ofy, Xi» andfl are new. used a‘j:_&i- If the Spherical average about the coales-
The plane-wave terrp will describe similar sorts of cor- cence point is taken then the terms involviag and r;;

relation to theu term. In periodic systems theterm must be  vanish toO(r;;), so that

cut off at a distance less than or equal to the Wigner-Seitz
radius of the simulation ce{lsee Sec. V C and therefore the SV = \i,r O( 9 ) [ +O(2). (6)
u function includes electron pairs over less than three quar- S\ N _o U

ters of the simulation cell. Thp term adds variational free-
dom in the “corners” of the simulation cell, which could be Hence the antiparallel cusp condition is equivalent to the
important in small cells. The term can also describe aniso- requirement that

tropic correlations, such as might be encountered in a layered

) . 1
compound. However, we expect that thhéerm will be con- (=0 = 5 7
siderably more important than theterm, which cannot de- ar /i 2

. . . ri=r;
scribe the electron-electron cusps and is therefore best lim- b

ited to describing longer-ranged correlations. Giterm will  wherer;;, r;, andr; are treated as independent variables.
describe similar electron-nucleus correlations toyherms.
B. The parallel-spin electron-electron cusp condition

ll. THE ELECTRON-ELECTRON AND ELECTRON- . . .
NUCLEUS CUSP CONDITIONS Suppose now that the approaching electroasadj have

_ B _ parallel spins. The cusp condititfhis
Imposing the cusp conditions on the Jastrow factor is non-

trivial because the variables, r;, andr; are not indepen- (&n
dent. It is important to understand the meaning of the deriva- o
tives considered in this section. In E@), for example, the

derivative 9¥/dr;; means the derivative with respect tp ~ where Wy, is the r;;Y;, component of¥ and Y, is the
with all other coordinates held fixed, while in E¢) the  (I,m)th spherical harmonic.

derivative dJ/Jr;j means the derivative with respect tg Let us expandV aboutr;;=0.D is an odd function of;;
with r; andr; fixed. hence we obtain

1
)r " = Z(\le)rij:O! (8
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&J ‘5.35 T E T
\I’=exp[Jr__:0] 1+<_> rij :
I Nij/ri.=0 5
1] 3
ad ad 5 5 >
+ — =l — &i + O(rij %0
0"f, 07r] rij:O E
3 g 537
X[(VijD)r =0 1y + O(rj)]. 9) ks
The change in the electron-nucleus distance when the elec- 538 . i .
tron separation r; is increased from zero isér; O st (e
_ 2 ) istance (a.u.)
=rjj cog6)/2+0(rj;), whereg; is the angle between; and
ri. Ther; Yy, component of¥” is therefore FIG. 1. Local energy plotted against the position of an electron
_ as it is moved along a straight line through another electron of the
Wim= eXF[JrijZO][(Vij D)rij:0 Tijlim opposite spin in Sil The dotted line indicates the location of the
aJ stationary electron.
x| 1+ (—) r+ 00 |, (10)
drij r;=0

and we have assumed there are fnterms in the Jastrow
where [X];, denotes ther;;Y;, component ofX. So the factor. Assuming thati satisfies the Kato cusp condition of
parallel-spin cusp condition of E@8) is equivalent to the Ed.(7), the local energy can be shown to be

requirement that 2
viv 1
EX) 1 EL(rij):__\uP_"'_"'ELO
(aT)ri,:o s (1D K
whererj;, ri, andr; are treated as independent variables. 4 drij rso S Srij:o X T
+0(ry), (15

C. The electron-nucleus cusp condition
here theE ; and —SlVﬁSterms are continuous at the coa-

Now consider the cusp condition that must be satisfied a )
escence point.

electroni approaches a nucleus of atomic numBerThe

coordinates of all other electrons are omitted. The spherica| Satisfying the cusp condition removes the divergence in
w b h loud b the local energy at the coalescence point, irrespective of the
average of(r;) about the nucleu® (r;) must obey’ angle at which the electrons approach. However, dte])

( —> term in Eq.(15) doesdepend on the direction of approach.
ri=0

=-2ZV, . (12) The local energy therefore has a point discontinuity at

ar; antiparallel-spin coalescence points. This behavior is illus-
trated in Fig. 1.

There is a similar discontinuity in the local energy at nu-
ei when the electron-nucleus cusp condition is enforced. If,
n the other hand, the no-cusp condition is enforced at the

center of a pseudoatom, there is no discontinuity in the local

dJ energy.
5_ =0 =7 Z. (13 o . _
ri/ B. Continuity at parallel-spin coalescence points

By similar arguments to those given for the antiparallel
electron-electron cusp condition, if the Slater determinant isCI
continuously differentiable at the nucleus then the Jastrovy)
factor must satisfy

M=

Note that if the Slater part of the wave function satisfies th%asgﬁvuaggsfi ;ypk? ereﬂ\iﬁltizﬂ?nct%aeliz?;ng? IIEDSLIZ)t 'iﬁ‘%ﬁ'en the
electron-nucleus cusp condition, or if a nondivergent pseudo\-/iCinity of the coalescence point, but this tinSsis an odd
potential is used, then the Jastrow factor is required to bg, o ¢ |f the Kato cusp,condition of Eqll) is
cuspless at the nuclei: it should satisfy E#§3) with Z=0. satisfied byu ”;che local energy is

IV. THE BEHAVIOR OF THE LOCAL ENERGY 1 d’u
EL=—-—-5—
dr;

Vis
_ [}
AT COALESCENCE POINTS =" 16 ) s +E o+ O(ry). (16
.

A. Continuity at antiparallel-spin coalescence points .. . .
Y P P P The —SlvﬁSterm is discontinuous at a parallel-spin coales-

The Slater-Jastrow wave function in the vicinity of an cence point, giving a point discontinuity in the local energy.
antiparallel-spin coalescence point can be written as In spite of this, the local energy is continuous when one
o ) ) electron is moved along a straight line through another of the
Wry) = exury IS(ry), (14) same spin because of the symmetry of the local energy with
whereSis the Slater wave function multiplied by the terms respect to exchanges of parallel-spin electrons. This behavior
in the Jastrow factor that are analytic at the coalescence poiig illustrated in Fig. 2.
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sists of a complete power expansionrjpup to orderri‘j:”“u

which satisfies the Kato cusp conditions rgt=0, goes to
zero at the cutoff length;;=L,, and hasC-1 continuous
derivatives at_;

b
o0
3%
T
1

u(ry) = (rjj = L)@ (L, = ry))

Local energy (a.u.)
. n .
r

NU
586 _ x| ap+ Ly +—a0C S+ D> ark ], (19
| ; . 0 (_ L )C L ij I'ij
0.1 0 0.1 u u =2

Distance (a.u.) where® is the Heaviside function anid;=1/2 if electrons

FIG. 2. Local energy plotted against the position of an electronandj haye oppo_site spins _arﬂj =1/4 ,if i andj have .the
as it is moved along a straight line through another electron of th&ame spin. In this expressidD determines the behavior at

same spin in Siil The dotted line indicates the location of the the cutoff length. IfC=2, the gradient ofi is continuous but
stationary electron. the second derivative and hence the local energy is discon-

tinuous, and ifC=3 then both the gradient efand the local
energy are continuous.

C. Further coalescence conditions LT .
The form of y is similarly related to our earlier work

Rassolov and Chipmé&hhave demonstrated that, at the

coalescence point of two antiparallel-spin electroasid j xi(ry)=(r; = LX,)C®(LX, -ry)
~ N
R N ) -Z BoC A
(03_\1’> i} (ﬁz_q}> - a7 X('B"' ’ {(— A ]r“ 2 Bm'rw)'
a0 \ah/) o 8 X X m=2

: , (20
while for two parallel-spin electrons

It may be assumed tha#,,=B,,; wherel andJ are equiva-
(33‘1’1m) _ l( 02‘1’1m) B (Wam)r, =0 (18) lent ions. The term involving the ionic charg@eenforces the
grﬁ . :o_ 12 grﬁ - 48 electron-nucleus cusp condition.
The expression fof is the most general expansion of a
These cusp conditions are difficult to apply to Slater-function ofr;j, ry, andr; that is cuspless at the coalescence
Jastrow wave functions because E(r) and(18) involve  point and goes smoothly to zero when eithgror rj reach
the Slater determinant as well as the Jastrow factor. If weutoff lengths
assume thaotazS/ariz-),,:O:O, whereS is the spherical aver-
age of S about an ]arlltiparallel-spin coalescence point, therf (Tt Tt Fig) = (i = L) “O(Ln = ria) X (= L) “O(Ly = 1)

we can derive an approximate condition on the antiparallel- NEN NEN nee
spinu term |n2 the Jastrow facté?._L|keW|se, if we assume X > >y ylmmr:lr]rprif}_ (22)
that (&ZSlm/arij)rij:O:O, whereS,, is ther;;Yy,, component 1=0 m=0 n=0

of S about a parallel-spin coalescence point, then we can . .
derive an approximate condition on the parallel-spierm. ~ various restrictions are placed opy. To ensure the Ja-

Imposing these additional conditions was not found to be offOW factor is symmetric under electron exchanges we de-
any benefit in practice. mand thaty,mm=Ymn J1,m,1,n. If ions | andJ are equiva-

The Rassolov-Chipman conditions can be derived by deIEe{'trtr:‘]ef:‘ W‘; derlna?rd :]hafmn{r: 7r’]|an' Thei condition that the
manding that¥'HY and (V1 Y1m) "H(W 10 Y1) are Brm Nas no electron-electron cusps 15

cuspless at antiparallel- and parallel-spin coalescence points, of
respectivelyt? There seems little point in attempting to apply )= T 0, (22)
the Rassolov-Chipman conditions unless one has already en- U

sured that the local energy itself is continuous at coalescence

points. A continuous local energy can be achieved in a twoWhich implies that

electron atom by using a trial wave function based upon the

Fock expansioA® However, it is unlikely that a practical
s ’ . A [ 2C

method for eliminating the local-energy discontinuities in 2 E_ Y Fit (T = L) =0 (23

larger systems will be found. 1=0 m=0

eN \.eN
N~ Npy

for all r;,. Hence, Ok e {0, ..., NV, we must have
V. NEW JASTROW FACTOR
> Ymu=0. (24)
A.The u, x, and f terms Lmil+m=k
For theu term we use an expression which is a variationThe condition that thé term has no electron-nucleus cusps
on the form we have used for a number of yéaend con- s

235119-4
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(7)o =0
ary ) =0

M=

(25)

which gives
NF NG
2 2 (CYomni= Loryamad X (= L)y - L)€ =0,
m=0 n=0
(26)

for all ry. We therefore require thatJk’ €{0,... N

+N3

> (CYomm~LaYamn) =0. (27)

m,n:m+n=k’

The method by which we impose the various constraint

is described in detail in Appendix A.

B. The p and q terms
The p term takes the cuspless form

p(rij) = > an2, coGp- i),
A

+
Ga

(28)
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however, proportional t&®(N?), which is prohibitive in large
systems. If we choose the cutoff lengths to be independent of
the system size then each term can be updatef(i) op-
erations.

The f, term describes inhomogeneous correlations that are
spherically symmetric about atoin It does not seem likely
that f, could describe the inhomogeneity in correlations at
points distant from aton in systems with many atoms.
Similarly we argue that the long-ranged part of the spheri-
cally symmetric y; terms will not give useful variational
freedom. For a fixed number of variable parameters we
therefore expect that the best results will be obtained by cut-
ting off the y, andf, terms at distances of roughly the size of
atoml, so that the variational freedom in these terms is con-
centrated at short distances where it is most useful. The
Jerm must describe both long- and short-ranged correlations
and therefore we expect it to be long ranged. In our imple-
mentation we allow the cutoff lengths,, L,, andL; to be
varied, and these degrees of freedom are investigated in
Secs. VIII-XI. In many cases the optimal value kof is
approximately proportional to the system size and the opti-
mal values ofL, andL; are approximately independent of
the system size, so that overall the cost of updating the Ja-
strow factor after each electron move scale4h).

As mentioned earlier, the value @ in Egs. (19—(21)

where the{G,} are the reciprocal lattice vectors of the SimU- getermines the behavior of the Jastrow factor, and hence the
lation cell belonging to theAth star of vectors that are |ocq| energy, at the cutoff lengths. Discontinuities in the local
equivalent under the full symmetry group of the Bravais |at'energy at the cutoff lengths may be harmful to optimization

tice, and “+” means that, ifG, is included in the sum, G,
is excluded.

For systems with inversion symmetry thaerm takes the

cuspless form

q(ry) = E bBE cogGg 1),
B

¥
Cg

(29)

procedures, but the price paid for having a smoother local
energy is a reduction in variational freedom.
VI. FURTHER COMMENTS ON OUR JASTROW FACTOR

We have used power series in the interparticle distances
rather than scaled variables, suctr&1+br;;), which have

where the{Gg} are the reciprocal lattice vectors of the primi- been used by Boys and Harlfiand others**These scaled
tive unit cell belonging to theBth star of vectors that are Vvariables go to a constant at langg which is useful in finite
equivalent under the space-group symmetry of the crystapystems. However, it is not clear whether scaled variables are

and the “+” means that, iiGy is included in the sum,Gg is

helpful when theu, y, and f terms are cut off at finite

excluded. In this workj has only been used for systems with €ngths, as they must be in periodic systems.

inversion symmetry. Plane-wave expansions of electron po- !N our previous Jastrow factors' we used Chebyshev
sition can also be used for systems without inversionPolynomials rather than the powers themselves. The ideas

symmetryts

C. Cutting off terms in the Jastrow factor

behind this were that) the Chebyshev series may be calcu-
lated to very high accuracy with double-precision arithmetic
using recurrence relations argid) the optimal coefficients

tend to be of a more uniform magnitude, which could be

To avoid unwanted derivative discontinuities in the wavehelpful within optimization procedures. However, we have

function of a periodic system, the isotropic functiamsy;,

found that the precision offered by a simple power series

andf, must be cut off at a distance less than or equal to th&vith double-precision arithmetic is perfectly acceptable up to

Wigner-Seitz radius of the simulation cell. Furthermore, rea-an order of at least 20, and we have found no clear benefits
sons of efficiency dictate that in particulfrshould be cut from the use of Chebyshev polynomials within our current
off at short distances in both finite and periodic systemsoptimization procedures either. We have therefore chosen to
Suppose we wish to evaluate a Slater-Jastrow wave functionse simple power series, which may be evaluated more rap-
for a number of systems of increasing size, where the numidly than the corresponding Chebyshev series.

ber of electrondN is assumed to be proportional to the num-  Our new Jastrow factor includes terms suclriagr,rj;)

ber of ionsNi,ns If the cutoff lengthsL,, L,, andL; are  andr;g(r;,rj), whereh and g are polynomials, which are
chosen to be proportional to the size of the system then thabsent in the Jastrow factors used by Schmidt and
numbers of operations required to updatandy, after each MoskowitZ1° and some other researchers. Such terms do
electron move ar@(N). The cost of updating thf term is,  not in general satisfy the cusp conditions on their own, but
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certain linear combinations of them do and therefore theyyround-state wave function must be an eigenfunctiog?of

should be allowed to occur in the power series. The Jastroy, investigation into thispin-contaminatioreffect has been
factors used by Umrigar and co-worké”?'have included 5 ried out by Huangt al,?s who found that highly opti-

such terms for many years. We report tests of the importancgyizeq wave functions suffer from relatively little spin con-
of the terms neglected in the Schmidt-Moskowitz JaStrOWtamination
factor in Sec. VIILI. '

As an option within our implementation we may try to
reduce the extent to whichduplicates thes and y terms in VII. SPECIFICATION OF THE JASTROW FACTOR
the Jastrow factor by imposing the conditiops,, =0 for all '
n and vy,oo =0 for all I. Note, however, that the terms 6f AND THE MEASURE OF ACCURACY
with 1=m=0 do not exactly correspond ta: they are In the tests reported here the parameZemwhich deter-
electron-electron terms local to idn This variational free-  mines the behavior at the cutoff lengths, takes the vallies
describe correlations that occur on two different length ; ; eN ce ’
scales, for example, in the core and valence electrons of those inx by N, and those irf by N; “andNy". In each case

' ! P . ; 3 is the same for all species of atom present, and likewise

atom or the intra-atomic and interatomic electron correla; X

; ¢ ; , for NEN and N¢® Spin dependences in x, f, p, andq are
tions of weakly interacting atoms. The terms fofwith m £ f L

=n=0 are less likely to give useful variational freedom. specified byS, SX Sf Sy and$, where§,=0 dgnotes that.
However, the use of duplication af and y by f does not the samau function is used for parallel- and antiparallel-spin

appear to cause any difficulties within our optimization pro-pa'rs’ S=1 deno_tes that d_'ﬁereT“ functions are used for
cedure, even where, =L,. pgrallel- and a_mtlparallel-spln pairs, algj=2 d_enotes that
The variable par)émeters appear linearly in our Jastro/fifferent functions are used for parallel spin-up, parallel
factor, with the exception of the cutoff lengths, L, and spin-down, and antiparallel-spin paif§=0 denotes that the
Ly;. The least-squares function in an unreweighted variancMex function is used for spin-up and spin-down electrons
minimization is quartic in the linear parametérapwever, ~While S, =1 if they are allowed to be different, etc. Duplica-
the dependence on the cutoff lengths is much more compliion of ther;; terms inu and ther; terms iny by f is denoted
cated, and they couple strongly to the other parameters. THY D=true. The terms included in the plane-wave expansions
use of linear parameters is found to be very advantageous j andg are determined by the number of starsGkectors
practice: up to ten times fewer Gauss-Newton iterations arécluded, Ny and N,. If SMJ=true then only thef terms
required to converge to the minimum of the least-square§ontained in the Schmidt-Moskowitz Jastrq&MJ) factor

function when the cutoff lengths are fixed compared with@re usedi.e., the terms proportional 1 andr; are omitted.
when they are optimized. In each case we will specify the relevant descriptors and give

Our Jastrow factor does not include logarithmic termsthe total number of optimized parameters in the Jastrow fac-

such as those motivated by the Fock expan&@Although  tor Nr. The cutoff lengths are included in the count of pa-
these terms have been used in highly accurate Hylleraa§@meters. _ .

expansion calculations for two-electron atdfis should be Unless otherwise stated, the functions were chosen to
noted that the most accurate calculations of this type pe€ cuspless at the nucldie., Z,=0 in each casebecause
formed to date have not included théfrit cannot therefore ~nondivergent pseudopotentials were used or, where the full
be necessary to include the logarithmic terms to obtain higfFoulomb potential was used, the orbitals satisfied the
accuracy. electrc_m.—nucleus cusp (_:onqnlon.

Our Jastrow factor does not include terms involving three 1O initiate the optimization procedure one must select a
or more electrons. Of course, the repulsive Coulomb interacS€t of configurations from a suitable probability distribution.
tion and the antisymmetry of the wave function ensures thaYVe have found that the distribution obtained from the square
three or more electrons rarely come close to one another, & the Slater part of the wave function is normally an excel-

that such terms are expected to be small, and explicit tests B§nt starting point; indeed our results suggest that it may be
Huanget al?! support this view. preferable to the “self-consistent” approach of updating the

In our imp'ementation itis possib|e to use d|fferentf’ distribution to include the latest estimate of the Jastrow fac-
andp functions for antiparallel, parallel spin-up, and parallel tor- It should be noted that if one sets all of the variable
spin-down pairs of electrons, and differepaindq functions ~ Parameters in our Jastrow factor to zero, the resulting wave
for spin-up and spindown electrons. We investigate the effeciinction can be very poor, often giving energies which are
of using the different possible spin dependences in the Jdligher than that obtained using the Slater part only.
strow factor for a partially polarized system in Sec. X. Note e measure the accuracy of a Jastrow factor by the per-
that if different u functions are used for parallel- and centage of the DMC correlation energy retrieved within

antiparallel-spin pairs of electrons then both of the Kato cusﬁ/MC: ie.,

conditions are satisfied, but if the saméunction is used for E._.—E
all pairs of electrons then only the antiparallel-spin cusp con- n= —HE_—VMC 100 %, (30)
dition is satisfied. The use of a Jastrow factor that is not Enr ~ Eome

symmetric with respect to exchanges of electrons of oppositghere E, ¢ is the energy obtained with the Slater determi-
spin generally produces a trial wave function that is not amgnts only, Eyyc is the VMC energy obtained with the
eigenfunction of the spin operatd®, even though the Slater-Jastrow wave function, afgy,c is the DMC energy.
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TABLE |. Optimized Jastrow factors and VMC energies for He. The HF energy is —2.86167999 a.u., the
exact energy is —2.903724 a.u., and the DMC energy is within error bars of the exact value. In each case
S,=5=5,=0, Ny=N, =N, ,, andNf =Ne=Ng"e®

C N, NNe& D sMJ  N; Evmc (a.u) 7 o2 (a.u)
3 8 0 18  -2.90001@®)  91.172% 0.02374)

3 6 3 T T 33 -2.90355®)  99.5985)%  0.0024506)
2 8 3 F F 40  -2.90359@)  99.6965)%  0.0024€6)
3 6 3 F F 36  -2.903668)  99.8487)%  0.000831)
3 6 3 T F 41  -2.903693)  99.9262)%  0.0006584)

The DMC method gives the energy corresponding to a peref the correlation energy, but when we add fiterm we
fect Jastrow factor: see Sec. I. In this work the orbitals in theobtain nearly 100% of the correlation energy. Elimination of
Slater determinants were kept fixed and we only optimizedhe terms of the forms;h(r;,r;;) andr;;g(r;,r;) leads to an
the Jastrow factor. Under these conditionis an appropriate  expression containing the same powers as the Jastrow factor
measure of the accuracy of Jastrow factors. We also repodf Schmidt and Moskowit?7:19 The additional terms are un-
the variance of the local energ)yé for each Jastrow factor important in He and N&. The results are not strongly de-
tested. The energy variance is the quantity that determingsendent on whetheZ=2 or 3, or whether duplication of the
the size of the statistical error bars for a given computationalerms inu and y by those inf is prevented or not.
effort in QMC calculations. Furthermore, it is the object that  Our results for N& are better than our results for He,
we actually minimize when optimizing the Jastrow factor. both with and without the(r;,r;,r;;) terms in the Jastrow
factor. This is to be expected, because the electron-electron
VIII. EXAMPLE I: HE AND NE ATOMS interaction is a smaller perturbation in ¥eand hence cor-
relation effects are less significant.
Using a Jastrow factor consisting of a fourth-order Padé
Extremely accurate energies are available for the twofunction of scaled variables, Umriget al.” obtained a VMC
electron He and NE& atoms from variational calculations energy of —2.90372@) a.u. for He, so they were able to
using Hylleraas expansioffs and other methods. It is retrieve 100% of the correlation energy in this case. Making
straightforward to show that the exact ground-state waveise of scaled variables, instead of cutting off the Jastrow
function of a two-electron atom is a nodeless functiom@f factor at a finite range, would therefore appear to be benefi-
r,, andrq,. It should therefore be possible to obtain very cial in the special case of two-electron atoms.
accurate results by includin§(r,,r,,r;») terms in the Ja- In general we find that the Jastrow factors which recover
strow factor. As the ground-state wave function is nodelessa large fraction of the correlation energy have a correspond-
the DMC energy should equal the exanbnrelativistic and  ingly low variance. However, the variance obtained fofNe
infinite-nuclear-magsenergy, apart from statistical errors using SMJ=true is surprisingly high, even though the varia-
and biases due to the use of finite time steps and populationonal energy is about the same as the corresponding result in
We used orbitals derived from numerical integrations of thewhich the full variational freedom of is used.
Hartree-FockHF) equations on fine radial grids.
Tables | and Il show variational energies of optimized B. All-electron Ne and pseudo-Ne
Jastrow factors for He and Rie When usingu and y func- The results of optimizing different Jastrow factors for the
tions only we obtain 91.12)% (He) and 93.6411)% (Ne?*) all-electron Ne atom are given in Table Ill. The importance
of the f terms is clear: less than 60% of the correlation en-
TABLE II. Optimized Jastrow factors and VMC energies for €rgy can be retrieved using onlyand x, whereas more than
Ne®*. The HF energy is —93.86111347 a.u., the exact energy i90% can be retrieved if terms are used as well.
-93.906806 a.u., and the DMC energy is within error bars of the We find that usingC=2 gives slightly better results than
exact value. Duplication afi and y by f is permitted. In each case C=3: it does not cause our optimization procedure any dif-

A. Two-electron atoms

S=5=S,=0,N,=N, =N, ,, andN{"=Nf°= Nehee ficulties, and the extra variational freedom can be exploited
in this case. The discontinuities in the local energy do not

C Ny, NENe® SMJ Ny Eype (auu) 7 o (a.u) appear to cause any population-control problems for the
DMC algorithm either.

2 4 0 10 -93.9038B) 93.547)% 0.64%4) The optimal values of the cutoff lengths, L,, andL; lie

2 8 0 18 -93.90396) 93.61)% 0.64%4) between 2 and 3 a.u. in most cases. In our best wave func-

3 8 0 18 -93.90396) 93.61)% 0.64%1) tions L, is the longest of the three. Whegeis absent, how-

2 4 3 T 29 -93.9067@) 99.842)% 0.081@3) ever, f has the greatest cutoff length. We tried optimizing

2 4 3 F 37 -93.906712) 99.814)% 0.013%8) more than ond function in order to allow separate;,r;,r;;)

3§ 3 F 41 -93.90680B) 99.991)% 0.0027¢7)  correlations for the core and valence electrons, but this did

not lower the variational energy.
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TABLE IIl. Optimized Jastrow factors and VMC energies for all-electron Ne. The HF energy is
-128.54709807 a.u., the exact energy is —-128.9376 @efs. 26 and 27 and our DMC energy is
-128.92387) a.u. In all case§,=1, S,=0, N,=8, andN{"=N"=NF"e

C N, NN s D osMI N Evmc (a.u) n o2 (a.u)
2 8 0 26  -128.75®) 56(2)% 3.176)
2 0 2 0 F F 23 -128.789) 62(2)% 3.21)

3 0 2 o T F 26  -128.850) 80(2)% 2.146)
2 0 2 o T F 26  -128.863) 84(2)% 2.21)

2 0 3 0 F F 39  -128.869) 85(2)% 2.031)
2 4 3 o T T 41 -128.87@) 87.36)% 1.921)
2 0 3 o T F 44  -128.87B) 88(2)% 1.493)
2 4 3 o T F 49  -128.88@) 90.006)% 1.272)
2 4 3 10T F 75  -128.8983)  93.22% 1.122)

If NSN=N£e=2 andy is absent then it is important to allow duce the fixed-node error. Using a Jastrow factor containing
f to duplicateu and x. 62(2)% of the correlation energy is the same types of correlation as ouiectron-electron,
retrieved when duplication is disallowed whereas23% is  electron-nucleus, and electron-electron-nuclea@nd opti-
retrieved when duplication is permitted. However, the differ-mizing the orbitals as well as the Jastrow factor, Huang|.
ence is far less pronounced whidf'=NS°=3: about 85% is obtain a VMC energy of —128.9008) a.u., which is only
retrieved irrespective of whether duplication is allowed. Us-slightly lower than our best energy of —128.898B3a.u.
ing NSN=N£e=2 and allowing duplication ofi and y gives a The results of optimizing Jastrow factors for pseudo-Ne
more efficient parametrization of the Jastrow factor, for theare shown in Table IV.f is much less important in the
number of parameters is substantially less than is the caggseudo-atom than in all-electron Ne. 8&)86 of the corre-
when NeN=N2°=3, In these calculations the optimal cutoff lation energy is retrieved usingandy only, while 95.74)%
length of f (L;=3.7 a.u) is greater than that ofi (L, is retrieved whenf is used too. A greater fraction of the
=1.0 a.u). Isolated atoms are a special case in whichxhe correlation energy can be retrieved in the pseudoatom than in
function can be long ranged. In the absence of is forced the all-electron atom.
to be long ranged so that it can describe the electron-nucleus
correlations. Hence, rather thanf, has to describe all the
short-ranged electron-electron correlations.

We obtain slightly better results when we include the \\e ysed a bond length of 2.8289 a.u. for the Sisilane
terms inf that are neglected in the Schmidt-Moskowitz Ja-mpolecule, in which the %t ion was represented by a relativ-
strow factor. The VMC energy is fairly insensitive to the spinjstic HF pseudopotenti# and the full Coulomb potential

dependence of. was used for the hydrogen nuclei. The orbitals forming the

We have investigated whether it is better to include theg|ater determinants were obtained from HF calculations us-
electron-nucleus cusp in the Jastrow factor or in the orbital§ng g large Gaussian basis set and ¢a@ssiAN coded?

in the Slater wave function. Calculations were carried out Results for some of the Jastrow factors tested f0r4$'fe

using orbitals expgnded in & Gaussian basis set, generated giyen in Table V. We find that a large fraction of the corre-
the CRYSTAL code™ The x term in the Jastrow factor satis- |ation energy can be obtained using rather simple Jastrow
fied the electron-nucleus cusp condition. The results obtainegctors. Usingu and y functions only, and with a total of

order to get reasonable variational energies, a very largge correlation energy. Our best Jastrow factors obtain about
number of y parameters was required, witi, =15. Even

. _ o ,
Wltth Nxdlﬁ’.onlly ah;OUt ZEA) t?lf ﬂt]e Correlag!;)r} etr;]ertgy Vt\./as TABLE V. Optimized Jastrow factors and VMC energies for
retneved. 1L1s clearly preferable 1o use orbitals that sa ISfypseudo-Ne. An HF pseudopotential was used to represent the

the elec”,on'mj'del_ls cusp condition. . Ne?* ion (Ref. 29. The HF energy is —34.6105 a.u. and the DMC
There is a significant fixed-node error in the DMC energY.energy is —34.922@) a.u. In all case€=2, §,=1 $,=$=0, N,

our DMC energy is 0.0138) a.u. higher than the exact non- = =g, andNgN=Nge=Ng\ee
relativistic ground-state enerdg§?” We have verified that
population-control biases_ are negligib_ly small and we have NeNee D Ny Eyye () " o2 (a.u)
performed an extrapolation to zero time step, so the only

IX. EXAMPLE II: SiH 4 MOLECULE

remaining bias in our DMC energy is the fixed-node error. 0 26 -34.8791) 86.23)%  0.742)
The best all-electron VMC energy reported in the literature is 3 F 48 -34.9041) 94.23)%  0.4%1)
that of Huanget al,?! who optimized parameters in their 2 F 32 —34.908L) 94.53)%  0.5%3)
orbitals at the same time as their Jastrow factor, giving them 5 T 35 ~34.9081) 95.53)%  0.46Q4)

extra variational freedom, including the opportunity to re-
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TABLE V. Optimized Jastrow factors and VMC energies for ~ TABLE VII. Optimized Jastrow factors and VMC energies for
SiH,;. The HF energy is -6.118 a.u. and the DMC energy isthe NiO dimer. The HF energy is -54.31362 a.u. and the DMC
—-6.30642) a.u. In each cas§,=1, §,=5=0, N,=N, =N, ,, and  energy is -55.1558) a.u. In each cas€=3, §,=1, S =5=S,;,

NF'=N7=N{"*". Duplication ofu and by f is prohibited. N,=N, =8, andNf"=N*=N;"*% Duplication ofu and x by f is
forbidden.

C Ny NN ONp Eyye (aU) n o2 (a.u) — 2
2 1 0 7 -6.2842) 881)% 0.0962) N Si Syt Nr Eymc (aU) n o2 (a.u)
2 12 0 51 -629R) 9A1)% 0.0664) 0 1 0 35 -549036) 69.998)% 2.1444)
3 4 0 19 -6290) %A% 0.07Y) 0 1 1 51 -54906%) 70.458)% 2.1324)
3 4 2 31 -6202) 9AL% 0.082) 3 1 0 77 -54.9984) 81317% 15213
24 0 19 -6298) 931)% 0.0675) 3 1 1 157 -55.0104) 82.748)% 1.4512)
3 2 1 165 -55.0108) 82758)% 143392

93(1)% of the correlation energy. We find the optimal cutoff
lengths(L,=10 a.u. and_,s;=L,y=5 a.u.) to be fairly in-  additional 1-2 % of the correlation energy can be retrieved
dependent oN, andN,. There is no detectable benefit from when y and u are allowed to differ for spin-up and spin-
going beyondN,=N,=4, or from introducingf functions. down electrons. Using differerft functions for antiparallel,
Both the results obtained and the behavior of the optimizaparallel spin-up, and parallel spin-down pairs also lowers the
tion procedure are very similar f@=2 andC=3, so that in  variational energy slightly, although it greatly increases the
this case there is no benefit from having a continuous locahumber of parameters which have to be optimized. These
energy. calculations are the only ones for which we have retrieved
less than 90% of the correlation energy.

X. EXAMPLE III: Ni ATOM AND NiO DIMER

We investigated the Ni atom and the NiO dimer with a Xl EXAMPLE IV: SI SOLID

bond length of 3.075 a.u., using HF pseudopoterffiais A. 16-atom simulation cell
represent the N?* and ©%* ions. The orbitals were obtained
from HF calculations using a large Gaussian basis set and tlﬁée
CRYSTAL code?® We find that thef functions are significant
for both the Ni atom(Table VI) and the NiO dimerTable
VIl) in spite of the use of pseudopotentials.

Note that Ni and NiO are partially spin polarized, so that
it may be advantageous to have differgntfunctions for
spin-up and spin-down electrons, and differarand f func-
tions for parallel spin-up and parallel spin-down pairs of
electrons, unlike the other systems studied in this work. Ou
results show that the spin dependences ofuhg, and f

We modeled crystalline Si in the diamond structure using
16-atom, face-centered cubic simulation cell subject to pe-
riodic boundary conditions. We used a cubic lattice constant
of 5.12966 a.u., and the “Siions were represented by
pseudopotentiaf®. The orbitals were obtained from HF cal-
culations using a large Gaussian basis set antCHYSTAL
code?® The results of optimizing the our Jastrow factor are
shown in Table VIII.

L, adjusts itself to sizes of the order of the interatomic
gpacing(LXzGA a.u., whereas the nearest-neighbor distance
functions do indeed have a significant effect on the quality o shéllcérl]4|234 ?Hg’ :I/vvklgﬁ eLrijStgi?g Sr;%irs I;rgtﬁzt gﬁillgltieoxaléﬁi

the wavet funct_lo?ﬁ fj)r tNI a?d tNI% althoug? m%udtlng (7.2544 a.u. It is much easier to optimize the cutoff lengths
(ri,rj,riy) terms in the Jastrow factor has a greater effect. Ay ~— 3 than wherC=2. It seems that the discontinuities

o _ in the local energy that are present whHén?2 cause serious
TABLE VI. Optimized Jastrow factors and VMC energies for

pseudo-Ni. The HF energy is —38.6670 a.u. and the DMC energy is

TABLE VIII. Optimized Jastrow factors and VMC energies for
~39.23105) a.u. In each cas&C=3, N,=N,=8 and N¢N=Ng® P g

— NeNee pseudo-Si (16-atom simulation cell The HF energy is
F —-7.63946 a.u. per primitive cell and the DMC energy is
—7.906006) a.u. per primitive cell. In each ca=S,=1, S, =
N?N,ee S SX S D Ny Eymc (au) n O’é (a.u) =S.=0 gu:N E?\lu pN?N:N?eEN?N,ee andN;t;NqspENpqSXDﬁf—
) y X ) q
0 1 0 26 —-39.059@) 69.659)% 1.1482) plication ofu and y by f is allowed.
0 1 1 34 -39.067@!) 70.0989)% 1.1143) oNee
0 2 1 42 -39071@) 71.81% 10084y = Nax NiT7 Nog Nr BEwc@u) 7 o¢ (au)
3 1 0 0 F 48 -39.1048) 77.519% 0.72%3) 2 1 0 0 5 -7.858%) 82.12)% 1.5513)
3 1 1 0 F 56 -39.1078) 78.099)% 0.69%1) 2 10 0 0 32 -7.8714) 87.02% 0.8632)
3 2 1 0 F 64 -39.123B) 80.809% 0.7341) 3 1 0 0 5 -7.876) 88.92% 1.01@6)
3 2 1 1 F 85 -39.124B8) 81.159% 0.7432) 3 10 0 0 32 -7.880Q) 90.62)% 0.8426)
3 2 1 2 F 106 -39.1243) 81.159% 0.7274) 3 4 0 5 29 -7.881@) 90.91)% 0.811)
3 2 1 2 T 121 -39.1462) 85.098)% 0.5711) 3 4 2 0 23 -7.8838) 91.41)% 0.8462)
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problems for our optimization procedures. For example, a We have investigated the importance of terms in the Ja-
flexible Jastrow factor witlC=2 gives a lower variance, but strow factor that were neglected by Schmidt and
higher energy, than a simple Jastrow factor with3. Such ~ Moskowitz!”*° but we found them to be unimportant in the
problems were not apparent in our calculations for atoms andystems studied here. The electron-electron-nudetesms
small molecules. The discontinuities do not appear to lead tavere found to be important in all-electron simulations of the
any problems within DMC calculations, however. He, N&*, and Ne atoms. Thd, terms are generally less
The use of thep and g terms does not bring about a important for pseudo-atoms than all-electron atoms. For ex-
statistically significant lowering of the VMC energy. The op- ample, they account for nearly 40% of the correlation energy
timal value ofL, is a little less than the Wigner-Seitz radius in all-electron Ne, but only about 10% in pseudo-Ne. We
whenp terms are included, so theterm must describe the found thef, terms to be significant for pseudo-Ni and the
long-ranged correlations, as expected. The sinuspidaldq NiO dimer, but they had little effect in Sitbr crystalline Si.
functions are considerably more expensive to evaluate thafhe plane-wave termg andq were found to be unimportant
the polynomialu and y functions, so it is anticipated that  in crystalline Si.
andq will rarely be used in practice, except in strongly an- We have found that it is preferable to use orbitals which
isotropic systems such as graphite, where Prendeeggas?  satisfy the electron-nucleus cusp condition and to require the
have demonstrated that plane-wave expansions in the Jdastrow factor to be cuspless at nuclei rather than to enforce
strow factor have an important role to play. the electron-nucleus cusp condition through the Jastrow fac-
tor. Overall we found that optimizing the cutoff radii is very
important. In crystalline Si the cutoff far adjusted itself to
the largest possible value, which is the Wigner-Seitz radius
Similar calculations to those reported in Sec. XI A wereof the simulation cell. This indicates that there are significant
carried out using a 54-atom simulation cell. The HF energy igorrelations in Si extending over many atoms. We have ar-
=7.6792 a.u. per primitive cell and the DMC energy is gyed that the long-ranged parts of theandf, terms do not
~7.95582) a.u. per primitive cell. The VMC energy ob- give useful variational freedom, and in support of this we
tained using our Jastrow factor wit,=Ny=4, §,=1, and  found that the corresponding cutoffs adjusted themselves to
S,=0 (giving 14 free parametersis -7.93316) a.u. per sizes of the order of the interatomic spacing.
primitive cell, so 91.82)% of the correlation energy is re-  Although we have optimized our Jastrow factors by mini-
trieved. A very similar fraction of the correlation energy is mizing the variance of the energy, we have measured the
retrieved in the 16-atom cellsee Table VII). The VMC  accuracy of the Jastrow factors in terms of the variational
energy variance is 2.92) a.u., so the variance per electron energy itself. If we were to minimize the variational energy
is about the same as for the 16-atom simulation cell. Thelirectly then we might get even better results. Recently there
optimal value ofL is again equal to the Wigner-Seitz radius has been much interest in developing energy-minimization
of the simulation cel(10.882 a.u. The optimal value of.,  methods for optimizing trial wave functiod$;3*and we in-
remains of order the atomic size, laf=4.7 a.u. These re- tend to pursue this avenue further.
sults indicate that cutting off thg function at sizes of order
the inter-atomic spacing is a valuable improvement to the
Jastrow factor.

B. 54-atom simulation cell
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tested our Jastrow factor on atoms, molecules, and solids,
including both all-electron and pseudopotential atoms. In Consider a particular set of iorilsand a particular spin-
most cases our VMC calculations have retrieved over 90% opair type. To impose the symmetry bunder interchange of
the fixed-node correlation energy. electrons we work withy,,,, wherel=m, and then com-
The variable parameters appear linearly in our Jastrovplete they array by settingy,mn=ymn for | <m. Letx be a
factor, except for the cutoff radii af, y;, andf,. The linear-  vector whose components are each of theoefficients with
ity in the variable parameters aids the computational effil=m. The remaining constraintao-cusp conditions and,
ciency of the optimization algorithm. We have found that it is optionally, no-duplication-oft-and-y conditiong may then
often beneficial to make the local energy continuous at thée written in matrix form asAx=0. The total number of
cutoffs when optimizing the cutoff radii, but that a lower constraints determines the number of rowsAof
variational energy can be achieved in some cases when dis- There are Rf\+1 constraintsone for each value ok
continuities are allowed at the cutoffs. =l+m) associated with the imposition of the electron-

235119-10



JASTROW CORRELATION FACTOR FOR ATOMS, PHYSICAL REVIEW B 70, 235119(2004

electron no-cusp condition. Using the symmetry9fEqg. Cveurs — L o+ C -L =0.
(24) can be rewritten so that only elementsxadire involved: Yoot = 1Yok % e (Con1 = Lt an)
Oke{0,..., 2NN, oy
(A2)
> 2%mu* > % =0. (A1)
|,m:'|+;n;k 21k For eachk’, this equation defines a row &

If desired, there ard\$® constraints imposed to prevent
duplication ofu. (ypoy=00n.)

If desired, there aré\§" constraints imposed to prevent
For eachk, this equation defines a row @i duplication ofy. (y,0e=001.)

There areN$M+N*+1 constraintgone for each value of Imposing the constraints reduces the number of indepen-
k’=1+n) associated with the imposition of the electron- dent variable parameters by ratk). The matrixA is trans-
nucleus no-cusp condition. Equati@) can be rewritten so  formed into its row-reduced echelon form by Gaussian elimi-

that only elements ofx are involved: Ok’ €{0,... ,N?l'\‘ nation, which allows us to identify a suitable set of
+N§%, independent variable parameters.
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