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I. INTRODUCTION

Many-electron wave functions may be accurately and
compactly approximated by a product of a small number of
Slater determinants and a positive Jastrow correlation factor.
The Jastrow factor is an explicit function of the electron-
electron separations, so that expectation values calculated
with a Slater-Jastrow wave function do not separate in the
electron coordinates. Nevertheless, the variational and diffu-
sion quantum Monte Carlo(VMC and DMC) methods per-
mit the use of such explicitly correlated wave functions.

In VMC, expectation values are calculated using an ap-
proximate trial wave function, the integrals being performed
by a Monte Carlo method. In DMC(Refs. 1 and 2) the
imaginary-time Schrödinger equation is used to evolve an
ensemble of electronic configurations towards the ground
state. The fermionic symmetry is maintained by the fixed-
node approximation,3 in which the nodal surface of the wave
function is constrained to equal that of a trial wave function.
The DMC method gives the energy that would be obtained in
a VMC calculation with the same Slater determinants, but
using the best possible Jastrow factor.

Although the DMC energy is in principle independent of
the Jastrow factor, a poor trial wave function increases the
statistical error bars and the time-step and population-control
biases. When nonlocal pseudopotentials are used within
DMC, the locality approximation4,5 leads to additional errors
which are second order in the error in the trial wave
function.6 The expectation values of operators that do not
commute with the Hamiltonian are often evaluated using ex-
trapolated estimation,2 the accuracy of the extrapolation de-
pending on the quality of the trial wave function. In practice
the efficiency and accuracy of both VMC and DMC calcula-
tions are critically dependent on the availability of high-
quality Jastrow factors.

Our Jastrow factor is designed for use in atoms, mol-
ecules, and solids. We have used it in a variety of systems,
and here we report results on the He, Ne8+, Ne, and Ni at-
oms, the NiO and SiH4 molecules, and crystalline Si in the
diamond structure. These systems include all-electron and
pseudopotential descriptions of atoms, with the total number
of electrons varying from 2 to 216. We pay particular atten-
tion to the issue of cutting off terms in the Jastrow factor at
finite ranges, which is desirable because of the local nature
of the inhomogeneous correlations in many systems, as well
as for reasons of computational efficiency in large systems.

We obtained the values of the free parameters in our Ja-
strow factors by minimizing the variance of the energy.7,8All
of our QMC calculations were performed using theCASINO

package.9 We use Hartree atomic units"= ueu =me=4pe0=1
throughout this article.

The rest of this paper is organized as follows. In Sec. II
we describe the general form of our Jastrow factor, while in
Sec. III we show how the electron-electron and electron-
nucleus cusp conditions10 apply to this form. The behavior of
the local energy at electron-electron and electron-nucleus
coalescence points is discussed in Sec. IV. Section V de-
scribes the Jastrow factor in detail. In Sec. VI we make fur-
ther comments on the form of our Jastrow factor, while in
Sec. VII we define our notation for specifying the Jastrow
factor and give our criterion for judging its quality. In Secs.
VIII–XI we report the results of studies of various systems.
Finally, we draw our conclusions in Sec. XII.

II. GENERAL FORM OF THE JASTROW FACTOR

The Slater-Jastrow wave function can be written as

Cshr ij,hr Ijd = expfJshr ij,hr IjdgDshr ijd, s1d

wherehr ij and hr Ij denote the electron and ion coordinates,
respectively, expfJg is the Jastrow factor, andD denotes the
Slater part, which depends only implicitly on thehr Ij. An
accurate and efficient Jastrow factor should possess a number
of qualities. The functional form of the Jastrow factor should
be chosen to reflect the physics of the correlations in the
system, and it should be parametrized efficiently. The trial
wave function must be continuous everywhere and its gradi-
ent must be continuous wherever the potential is finite, so
that the kinetic energy is well defined. The Kato cusp
conditions10 determine the behavior of the many-body wave
function when two electrons, or an electron and a nucleus,
are coincident. The cusp conditions derive from the require-
ment that the divergence in the local kinetic energy at a
coalescence point cancels the divergence in the local poten-
tial energy. Failure to satisfy the cusp conditions leads to

divergences in the local energyC−1ĤC, where Ĥ is the
Hamiltonian. These divergences are especially harmful in
DMC calculations, where they can lead to population-control
problems and significant biases. It is standard practice to use
the Jastrow factor to enforce the cusp conditions. The Slater
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part of the wave function is chosen to satisfy the correct
symmetry under exchange of electrons, and therefore the Ja-
strow factor should be symmetric under exchange. Indeed
the Slater part of the wave function is normally chosen to
have the correct symmetries of the state, so we should
choose a Jastrow factor that does not change this symmetry.
Finally, the Jastrow factor should allow rapid evaluation, as
this is one of the more computationally demanding parts of
VMC and DMC calculations.

Our Jastrow factor is the sum of homogeneous, isotropic
electron-electron termsu, isotropic electron-nucleus termsx
centered on the nuclei, isotropic electron-electron-nucleus
termsf, also centered on the nuclei and, in periodic systems,
plane-wave expansions of electron-electron separation and
electron positionp andq. The form is

Jshr ij,hr Ijd = o
i=1

N−1

o
j=i+1

N

usr ijd + o
I=1

Nions

o
i=1

N

xIsr iId

+ o
I=1

Nions

o
i=1

N−1

o
j=i+1

N

fIsr iI ,r jI ,r ijd + o
i=1

N−1

o
j=i+1

N

psr i jd

+ o
i=1

N

qsr id, s2d

whereN is the number of electrons,Nions is the number of
ions, r i j =r i −r j, and r iI =r i −r I. Note thatu, x, f, p, and q
may also depend on the spins ofi and j . Although we will
present results using spin-dependent parameters, for com-
pactness the spin type has been suppressed in all formulas.
The basic form is not novel, as terms of each type present in
Eq. (2) have appeared in Jastrow factors in the literature,2 but
our particular forms ofu, xI, and f I are new.

The plane-wave termp will describe similar sorts of cor-
relation to theu term. In periodic systems theu term must be
cut off at a distance less than or equal to the Wigner-Seitz
radius of the simulation cell(see Sec. V C and therefore the
u function includes electron pairs over less than three quar-
ters of the simulation cell. Thep term adds variational free-
dom in the “corners” of the simulation cell, which could be
important in small cells. Thep term can also describe aniso-
tropic correlations, such as might be encountered in a layered
compound. However, we expect that theu term will be con-
siderably more important than thep term, which cannot de-
scribe the electron-electron cusps and is therefore best lim-
ited to describing longer-ranged correlations. Theq term will
describe similar electron-nucleus correlations to thexI terms.

III. THE ELECTRON-ELECTRON AND ELECTRON-
NUCLEUS CUSP CONDITIONS

Imposing the cusp conditions on the Jastrow factor is non-
trivial because the variablesr ij , r iI , and r jI are not indepen-
dent. It is important to understand the meaning of the deriva-
tives considered in this section. In Eq.(3), for example, the

derivative ]Ĉ /]r ij means the derivative with respect tor ij
with all other coordinates held fixed, while in Eq.(5) the
derivative ]J/]r ij means the derivative with respect tor ij
with r i and r j fixed.

A. The antiparallel-spin electron-electron cusp condition

Consider the situation where two electrons of opposite
spin, i and j , approach one another and the wave function is
nonzero at the two-particle coalescence point. This condition
holds at almost all coalescence points of antiparallel-spin
electrons. Let us omit the coordinates of all the other elec-
trons and write the wave function in terms of the center-of-
mass and difference coordinates of electronsi and j , r̄ i j
=sr i +r jd /2 andr i j =r i −r j. The cusp condition10 is

S ]Ĉ

]r ij
D

ri j=0
=

1

2
Ĉri j=0, s3d

whereĈsr̄ i j ,r ijd is the spherical average ofCsr̄ i j ,r i jd about
the coalescence point.

Neglecting the cusplessp andq terms, the Slater-Jastrow
wave function may be written as

Csr̄ i j ,r i jd = expfJsr i,r j,r ijdgDsr̄ i j ,r i jd, s4d

where for clarity we have assumed there is only one nucleus,
which is located at the origin. Consider the change in the
value of C for a small displacement from the coalescence
point such that the center-of-mass remains fixed:

dC = Cri j=0 3 HFS ]J

]r i
D − S ]J

]r j
DG

ri j=0
dr i + S ]J

]r ij
D

ri j=0
r ijJ

+ expfJrij=0gs¹i jDdri j=0 · r i j + Osr ij
2d, s5d

where dr i and dr j are the changes inr i and r j when the
electron separationr i j is increased from zero, and we have
used dr j =−dr i. If the spherical average about the coales-
cence point is taken then the terms involvingdr i and r i j
vanish toOsr ijd, so that

dĈ = Ĉri j=0S ]J

]r ij
D

ri j=0
r ij + Osr ij

2d. s6d

Hence the antiparallel cusp condition is equivalent to the
requirement that

S ]J

]r ij
Dri j=0

ri=r j

=
1

2
, s7d

wherer ij , r i, andr j are treated as independent variables.

B. The parallel-spin electron-electron cusp condition

Suppose now that the approaching electronsi and j have
parallel spins. The cusp condition10 is

S ]C1m

]r ij
D

ri j=0
=

1

4
sC1mdri j=0, s8d

where C1m is the r ijY1m component ofC and Ylm is the
sl ,mdth spherical harmonic.

Let us expandC aboutr i j =0. D is an odd function ofr i j ;
hence we obtain
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C = expfJrij=0gH1 +S ]J

]r ij
D

ri j=0
r ij

+ FS ]J

]r i
D − S ]J

]r j
DG

ri j=0
dr i + Osr ij

2dJ
3fs¹i jDdri j=0 · r i j + Osr ij

3dg. s9d

The change in the electron-nucleus distance when the elec-
tron separation r ij is increased from zero isdr i
=r ij cossuid /2+Osr ij

2d, whereui is the angle betweenr i j and
r i. The r ijY1m component ofC is therefore

C1m = expfJrij=0gfs¹i jDdri j=0 · r i jg1m

3F1 +S ]J

]r ij
D

ri j=0
r ij + Osr ij

2dG , s10d

where fXg1m denotes ther ijY1m component ofX. So the
parallel-spin cusp condition of Eq.(8) is equivalent to the
requirement that

S ]J

]r ij
Dri j=0

ri=r j

=
1

4
, s11d

wherer ij , r i, andr j are treated as independent variables.

C. The electron-nucleus cusp condition

Now consider the cusp condition that must be satisfied as
electron i approaches a nucleus of atomic numberZ. The
coordinates of all other electrons are omitted. The spherical

average ofCsr id about the nucleusC̄sr id must obey10

S ]C̄

]r i
D

ri=0
= − ZC̄ri=0. s12d

By similar arguments to those given for the antiparallel
electron-electron cusp condition, if the Slater determinant is
continuously differentiable at the nucleus then the Jastrow
factor must satisfy

S ]J

]r i
D ri=0

ri j=r j

= − Z. s13d

Note that if the Slater part of the wave function satisfies the
electron-nucleus cusp condition, or if a nondivergent pseudo-
potential is used, then the Jastrow factor is required to be
cuspless at the nuclei: it should satisfy Eq.(13) with Z=0.

IV. THE BEHAVIOR OF THE LOCAL ENERGY
AT COALESCENCE POINTS

A. Continuity at antiparallel-spin coalescence points

The Slater-Jastrow wave function in the vicinity of an
antiparallel-spin coalescence point can be written as

Csr i jd = expfusr ijdgSsr i jd, s14d

whereS is the Slater wave function multiplied by the terms
in the Jastrow factor that are analytic at the coalescence point

and we have assumed there are nof terms in the Jastrow
factor. Assuming thatu satisfies the Kato cusp condition of
Eq. (7), the local energy can be shown to be

ELsr i jd = −
¹i j

2C

C
+

1

r ij
+ EL0

= −
1

4
− 3Sd2u

drij
2 D

ri j=0

−
¹i j

2S

S
+ EL0 −

s¹i jSdri j=0 · r i j

Srij=0 3 r ij

+ Osr ijd, s15d

where theEL0 and −S−1¹i j
2S terms are continuous at the coa-

lescence point.
Satisfying the cusp condition removes the divergence in

the local energy at the coalescence point, irrespective of the
angle at which the electrons approach. However, theOsr ij

0d
term in Eq.(15) doesdepend on the direction of approach.
The local energy therefore has a point discontinuity at
antiparallel-spin coalescence points. This behavior is illus-
trated in Fig. 1.

There is a similar discontinuity in the local energy at nu-
clei when the electron-nucleus cusp condition is enforced. If,
on the other hand, the no-cusp condition is enforced at the
center of a pseudoatom, there is no discontinuity in the local
energy.

B. Continuity at parallel-spin coalescence points

Now consider a parallel-spin coalescence point. Again the
wave function may be written in the form of Eq.(14) in the
vicinity of the coalescence point, but this timeS is an odd
function of r i j . If the Kato cusp condition of Eq.(11) is
satisfied byu, the local energy is

EL = −
1

16
− 5Sd2u

drij
2 D

ri j=0

−
¹i j

2S

S
+ EL0 + Osr ijd. s16d

The −S−1¹i j
2S term is discontinuous at a parallel-spin coales-

cence point, giving a point discontinuity in the local energy.
In spite of this, the local energy is continuous when one
electron is moved along a straight line through another of the
same spin because of the symmetry of the local energy with
respect to exchanges of parallel-spin electrons. This behavior
is illustrated in Fig. 2.

FIG. 1. Local energy plotted against the position of an electron
as it is moved along a straight line through another electron of the
opposite spin in SiH4. The dotted line indicates the location of the
stationary electron.
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C. Further coalescence conditions

Rassolov and Chipman11 have demonstrated that, at the
coalescence point of two antiparallel-spin electronsi and j

S ]3Ĉ

]r ij
3 D

ri j=0

= S ]2Ĉ

]r ij
2 D

ri j=0

−
Ĉri j=0

8
, s17d

while for two parallel-spin electrons

S ]3C1m

]r ij
3 D

ri j=0

=
7

12
S ]2C1m

]r ij
2 D

ri j=0

−
sC1mdri j=0

48
. s18d

These cusp conditions are difficult to apply to Slater-
Jastrow wave functions because Eqs.(17) and (18) involve
the Slater determinant as well as the Jastrow factor. If we

assume thats]2Ŝ/]r ij
2dri j=0=0, whereŜ is the spherical aver-

age of S about an antiparallel-spin coalescence point, then
we can derive an approximate condition on the antiparallel-
spin u term in the Jastrow factor.12 Likewise, if we assume
that s]2S1m/]r ij

2dri j=0=0, whereS1m is the r ijY1m component
of S about a parallel-spin coalescence point, then we can
derive an approximate condition on the parallel-spinu term.
Imposing these additional conditions was not found to be of
any benefit in practice.

The Rassolov-Chipman conditions can be derived by de-

manding thatĈ−1ĤĈ and sC1mrijY1md−1ĤsC1mrijY1md are
cuspless at antiparallel- and parallel-spin coalescence points,
respectively.12 There seems little point in attempting to apply
the Rassolov-Chipman conditions unless one has already en-
sured that the local energy itself is continuous at coalescence
points. A continuous local energy can be achieved in a two-
electron atom by using a trial wave function based upon the
Fock expansion.13 However, it is unlikely that a practical
method for eliminating the local-energy discontinuities in
larger systems will be found.

V. NEW JASTROW FACTOR

A. The u, x, and f terms

For theu term we use an expression which is a variation
on the form we have used for a number of years14 and con-

sists of a complete power expansion inr ij up to orderr ij
C+Nu

which satisfies the Kato cusp conditions atr ij =0, goes to
zero at the cutoff lengthr ij =Lu, and hasC−1 continuous
derivatives atLu:

usr ijd = sr ij − LudCQsLu − r ijd

3Sa0 + F Gi j

s− LudC +
a0C

Lu
Gr ij + o

l=2

Nu

alr i j
l D , s19d

whereQ is the Heaviside function andGi j =1/2 if electronsi
and j have opposite spins andGi j =1/4 if i and j have the
same spin. In this expressionC determines the behavior at
the cutoff length. IfC=2, the gradient ofu is continuous but
the second derivative and hence the local energy is discon-
tinuous, and ifC=3 then both the gradient ofu and the local
energy are continuous.

The form ofx is similarly related to our earlier work

xIsr iId = sr iI − LxIdCQsLxI − r iId

3Sb0I + F − ZI

s− LxIdC +
b0IC

LxI
Gr iI + o

m=2

Nx

bmIriI
mD .

s20d

It may be assumed thatbmI=bmJ whereI andJ are equiva-
lent ions. The term involving the ionic chargeZI enforces the
electron-nucleus cusp condition.

The expression forf is the most general expansion of a
function of r ij , r iI , andr jI that is cuspless at the coalescence
point and goes smoothly to zero when eitherr iI or r jI reach
cutoff lengths

f Isr iI ,r jI ,r ijd = sr iI − LfIdCQsLfI − r iId 3 sr jI − LfIdCQsLfI − r jId

3 o
l=0

NfI
eN

o
m=0

NfI
eN

o
n=0

NfI
ee

glmnIr iI
l r jI

mrij
n . s21d

Various restrictions are placed onglmnI. To ensure the Ja-
strow factor is symmetric under electron exchanges we de-
mand thatglmnI=gmlnI ∀ I ,m, l ,n. If ions I andJ are equiva-
lent then we demand thatglmnI=glmnJ. The condition that the
f term has no electron-electron cusps is

S ]f

]r ij
D ri j=0

riI=r jI

= 0, s22d

which implies that

o
l=0

NfI
eN

o
m=0

NfI
eN

glm1Ir iI
l+msr iI − LfId2C = 0 s23d

for all r iI . Hence,∀kP h0, . . . ,2NfI
eNj, we must have

o
l,m:l+m=k

glm1I = 0. s24d

The condition that thef term has no electron-nucleus cusps
is

FIG. 2. Local energy plotted against the position of an electron
as it is moved along a straight line through another electron of the
same spin in SiH4. The dotted line indicates the location of the
stationary electron.
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S ]f

]r iI
D riI=0

ri j=r jI

= 0, s25d

which gives

o
m=0

NfI
eN

o
n=0

NfI
ee

sCg0mnI − LfIg1mnId 3 s− LfIdC−1r jI
m+nsr jI − LfIdC = 0,

s26d

for all r jI . We therefore require that,∀k8P h0, . . . ,NfI
eN

+NfI
eej

o
m,n:m+n=k8

sCg0mnI − LfIg1mnId = 0. s27d

The method by which we impose the various constraints
is described in detail in Appendix A.

B. The p and q terms

The p term takes the cuspless form

psr i jd = o
A

aAo
GA

+

cossGA · r i jd, s28d

where thehGAj are the reciprocal lattice vectors of the simu-
lation cell belonging to theAth star of vectors that are
equivalent under the full symmetry group of the Bravais lat-
tice, and “1” means that, ifGA is included in the sum, −GA
is excluded.

For systems with inversion symmetry theq term takes the
cuspless form

qsr id = o
B

bBo
GB

+

cossGB · r id, s29d

where thehGBj are the reciprocal lattice vectors of the primi-
tive unit cell belonging to theBth star of vectors that are
equivalent under the space-group symmetry of the crystal,
and the “1” means that, ifGB is included in the sum, −GB is
excluded. In this workq has only been used for systems with
inversion symmetry. Plane-wave expansions of electron po-
sition can also be used for systems without inversion
symmetry.15

C. Cutting off terms in the Jastrow factor

To avoid unwanted derivative discontinuities in the wave
function of a periodic system, the isotropic functionsu, xI,
and f I must be cut off at a distance less than or equal to the
Wigner-Seitz radius of the simulation cell. Furthermore, rea-
sons of efficiency dictate that in particularf I should be cut
off at short distances in both finite and periodic systems.
Suppose we wish to evaluate a Slater-Jastrow wave function
for a number of systems of increasing size, where the num-
ber of electronsN is assumed to be proportional to the num-
ber of ionsNions. If the cutoff lengthsLu, Lx, and Lf are
chosen to be proportional to the size of the system then the
numbers of operations required to updateu andxI after each
electron move areOsNd. The cost of updating thef I term is,

however, proportional toOsN2d, which is prohibitive in large
systems. If we choose the cutoff lengths to be independent of
the system size then each term can be updated inOs1d op-
erations.

The f I term describes inhomogeneous correlations that are
spherically symmetric about atomI. It does not seem likely
that f I could describe the inhomogeneity in correlations at
points distant from atomI in systems with many atoms.
Similarly we argue that the long-ranged part of the spheri-
cally symmetricxI terms will not give useful variational
freedom. For a fixed number of variable parameters we
therefore expect that the best results will be obtained by cut-
ting off thexI and f I terms at distances of roughly the size of
atomI, so that the variational freedom in these terms is con-
centrated at short distances where it is most useful. Theu
term must describe both long- and short-ranged correlations
and therefore we expect it to be long ranged. In our imple-
mentation we allow the cutoff lengthsLu, Lx, andLf to be
varied, and these degrees of freedom are investigated in
Secs. VIII–XI. In many cases the optimal value ofLu is
approximately proportional to the system size and the opti-
mal values ofLx and Lf are approximately independent of
the system size, so that overall the cost of updating the Ja-
strow factor after each electron move scales asOsNd.

As mentioned earlier, the value ofC in Eqs. (19)–(21)
determines the behavior of the Jastrow factor, and hence the
local energy, at the cutoff lengths. Discontinuities in the local
energy at the cutoff lengths may be harmful to optimization
procedures, but the price paid for having a smoother local
energy is a reduction in variational freedom.

VI. FURTHER COMMENTS ON OUR JASTROW FACTOR

We have used power series in the interparticle distances
rather than scaled variables, such asr ij / s1+brijd, which have
been used by Boys and Handy16 and others.17,18These scaled
variables go to a constant at larger ij , which is useful in finite
systems. However, it is not clear whether scaled variables are
helpful when theu, x, and f terms are cut off at finite
lengths, as they must be in periodic systems.

In our previous Jastrow factors14 we used Chebyshev
polynomials rather than the powers themselves. The ideas
behind this were that(i) the Chebyshev series may be calcu-
lated to very high accuracy with double-precision arithmetic
using recurrence relations and(ii ) the optimal coefficients
tend to be of a more uniform magnitude, which could be
helpful within optimization procedures. However, we have
found that the precision offered by a simple power series
with double-precision arithmetic is perfectly acceptable up to
an order of at least 20, and we have found no clear benefits
from the use of Chebyshev polynomials within our current
optimization procedures either. We have therefore chosen to
use simple power series, which may be evaluated more rap-
idly than the corresponding Chebyshev series.

Our new Jastrow factor includes terms such asr ihsr j ,r ijd
and r ijgsr i ,r jd, where h and g are polynomials, which are
absent in the Jastrow factors used by Schmidt and
Moskowitz17,19 and some other researchers. Such terms do
not in general satisfy the cusp conditions on their own, but
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certain linear combinations of them do and therefore they
should be allowed to occur in the power series. The Jastrow
factors used by Umrigar and co-workers18,20,21have included
such terms for many years. We report tests of the importance
of the terms neglected in the Schmidt-Moskowitz Jastrow
factor in Sec. VIII.

As an option within our implementation we may try to
reduce the extent to whichf duplicates theu andx terms in
the Jastrow factor by imposing the conditionsg00nI=0 for all
n and gl00I =0 for all l. Note, however, that the terms off
with l =m=0 do not exactly correspond tou: they are
electron-electron terms local to ionI. This variational free-
dom, which is investigated in Sec. VIII, may be used to
describe correlations that occur on two different length
scales, for example, in the core and valence electrons of an
atom or the intra-atomic and interatomic electron correla-
tions of weakly interacting atoms. The terms off with m
=n=0 are less likely to give useful variational freedom.
However, the use of duplication ofu and x by f does not
appear to cause any difficulties within our optimization pro-
cedure, even whereLx.Lf.

The variable parameters appear linearly in our Jastrow
factor, with the exception of the cutoff lengthsLu, LxI, and
LfI. The least-squares function in an unreweighted variance
minimization is quartic in the linear parameters;8 however,
the dependence on the cutoff lengths is much more compli-
cated, and they couple strongly to the other parameters. The
use of linear parameters is found to be very advantageous in
practice: up to ten times fewer Gauss-Newton iterations are
required to converge to the minimum of the least-squares
function when the cutoff lengths are fixed compared with
when they are optimized.

Our Jastrow factor does not include logarithmic terms
such as those motivated by the Fock expansion.22,23Although
these terms have been used in highly accurate Hylleraas-
expansion calculations for two-electron atoms13 it should be
noted that the most accurate calculations of this type per-
formed to date have not included them.24 It cannot therefore
be necessary to include the logarithmic terms to obtain high
accuracy.

Our Jastrow factor does not include terms involving three
or more electrons. Of course, the repulsive Coulomb interac-
tion and the antisymmetry of the wave function ensures that
three or more electrons rarely come close to one another, so
that such terms are expected to be small, and explicit tests by
Huanget al.21 support this view.

In our implementation it is possible to use differentu, f,
andp functions for antiparallel, parallel spin-up, and parallel
spin-down pairs of electrons, and differentx andq functions
for spin-up and spindown electrons. We investigate the effect
of using the different possible spin dependences in the Ja-
strow factor for a partially polarized system in Sec. X. Note
that if different u functions are used for parallel- and
antiparallel-spin pairs of electrons then both of the Kato cusp
conditions are satisfied, but if the sameu function is used for
all pairs of electrons then only the antiparallel-spin cusp con-
dition is satisfied. The use of a Jastrow factor that is not
symmetric with respect to exchanges of electrons of opposite
spin generally produces a trial wave function that is not an

eigenfunction of the spin operatorŜ2, even though the

ground-state wave function must be an eigenfunction ofŜ2.
An investigation into thisspin-contaminationeffect has been
carried out by Huanget al.,25 who found that highly opti-
mized wave functions suffer from relatively little spin con-
tamination.

VII. SPECIFICATION OF THE JASTROW FACTOR
AND THE MEASURE OF ACCURACY

In the tests reported here the parameterC, which deter-
mines the behavior at the cutoff lengths, takes the valuesC
=2 or C=3. The terms included inu are specified byNu,
those inx by Nx, and those inf by Nf

eN andNf
ee. In each case

Nx is the same for all species of atom present, and likewise
for Nf

eN and Nf
ee. Spin dependences inu, x, f, p, andq are

specified bySu, Sx, Sf, Sp, andSq, whereSu=0 denotes that
the sameu function is used for parallel- and antiparallel-spin
pairs, Su=1 denotes that different functions are used for
parallel- and antiparallel-spin pairs, andSu=2 denotes that
different functions are used for parallel spin-up, parallel
spin-down, and antiparallel-spin pairs.Sx=0 denotes that the
samex function is used for spin-up and spin-down electrons
while Sx=1 if they are allowed to be different, etc. Duplica-
tion of ther ij terms inu and ther i terms inx by f is denoted
by D=true. The terms included in the plane-wave expansions
p andq are determined by the number of stars ofG vectors
included, Np and Nq. If SMJ=true then only thef terms
contained in the Schmidt-Moskowitz Jastrow(SMJ) factor
are used(i.e., the terms proportional tor ij andr i are omitted).
In each case we will specify the relevant descriptors and give
the total number of optimized parameters in the Jastrow fac-
tor NT. The cutoff lengths are included in the count of pa-
rameters.

Unless otherwise stated, thexI functions were chosen to
be cuspless at the nuclei(i.e., ZI =0 in each case) because
nondivergent pseudopotentials were used or, where the full
Coulomb potential was used, the orbitals satisfied the
electron-nucleus cusp condition.

To initiate the optimization procedure one must select a
set of configurations from a suitable probability distribution.
We have found that the distribution obtained from the square
of the Slater part of the wave function is normally an excel-
lent starting point; indeed our results suggest that it may be
preferable to the “self-consistent” approach of updating the
distribution to include the latest estimate of the Jastrow fac-
tor. It should be noted that if one sets all of the variable
parameters in our Jastrow factor to zero, the resulting wave
function can be very poor, often giving energies which are
higher than that obtained using the Slater part only.

We measure the accuracy of a Jastrow factor by the per-
centage of the DMC correlation energy retrieved within
VMC, i.e.,

h =
EHF − EVMC

EHF − EDMC
3 100 % , s30d

where EHF is the energy obtained with the Slater determi-
nants only,EVMC is the VMC energy obtained with the
Slater-Jastrow wave function, andEDMC is the DMC energy.
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The DMC method gives the energy corresponding to a per-
fect Jastrow factor: see Sec. I. In this work the orbitals in the
Slater determinants were kept fixed and we only optimized
the Jastrow factor. Under these conditionsh is an appropriate
measure of the accuracy of Jastrow factors. We also report
the variance of the local energysE

2 for each Jastrow factor
tested. The energy variance is the quantity that determines
the size of the statistical error bars for a given computational
effort in QMC calculations. Furthermore, it is the object that
we actually minimize when optimizing the Jastrow factor.

VIII. EXAMPLE I: HE AND NE ATOMS

A. Two-electron atoms

Extremely accurate energies are available for the two-
electron He and Ne8+ atoms from variational calculations
using Hylleraas expansions24 and other methods. It is
straightforward to show that the exact ground-state wave
function of a two-electron atom is a nodeless function ofr1,
r2, and r12. It should therefore be possible to obtain very
accurate results by includingfsr1,r2,r12d terms in the Ja-
strow factor. As the ground-state wave function is nodeless,
the DMC energy should equal the exact(nonrelativistic and
infinite-nuclear-mass) energy, apart from statistical errors
and biases due to the use of finite time steps and populations.
We used orbitals derived from numerical integrations of the
Hartree-Fock(HF) equations on fine radial grids.

Tables I and II show variational energies of optimized
Jastrow factors for He and Ne8+. When usingu andx func-
tions only we obtain 91.17(2)% (He) and 93.64(11)% sNe8+d

of the correlation energy, but when we add anf term we
obtain nearly 100% of the correlation energy. Elimination of
the terms of the formsr ihsr j ,r ijd and r ijgsr i ,r jd leads to an
expression containing the same powers as the Jastrow factor
of Schmidt and Moskowitz.17,19The additional terms are un-
important in He and Ne8+. The results are not strongly de-
pendent on whetherC=2 or 3, or whether duplication of the
terms inu andx by those inf is prevented or not.

Our results for Ne8+ are better than our results for He,
both with and without thesr i ,r j ,r ijd terms in the Jastrow
factor. This is to be expected, because the electron-electron
interaction is a smaller perturbation in Ne8+, and hence cor-
relation effects are less significant.

Using a Jastrow factor consisting of a fourth-order Padé
function of scaled variables, Umrigaret al.7 obtained a VMC
energy of −2.903726s4d a.u. for He, so they were able to
retrieve 100% of the correlation energy in this case. Making
use of scaled variables, instead of cutting off the Jastrow
factor at a finite range, would therefore appear to be benefi-
cial in the special case of two-electron atoms.

In general we find that the Jastrow factors which recover
a large fraction of the correlation energy have a correspond-
ingly low variance. However, the variance obtained for Ne8+

using SMJ=true is surprisingly high, even though the varia-
tional energy is about the same as the corresponding result in
which the full variational freedom off is used.

B. All-electron Ne and pseudo-Ne

The results of optimizing different Jastrow factors for the
all-electron Ne atom are given in Table III. The importance
of the f terms is clear: less than 60% of the correlation en-
ergy can be retrieved using onlyu andx, whereas more than
90% can be retrieved iff terms are used as well.

We find that usingC=2 gives slightly better results than
C=3: it does not cause our optimization procedure any dif-
ficulties, and the extra variational freedom can be exploited
in this case. The discontinuities in the local energy do not
appear to cause any population-control problems for the
DMC algorithm either.

The optimal values of the cutoff lengthsLu, Lx, andLf lie
between 2 and 3 a.u. in most cases. In our best wave func-
tions Lu is the longest of the three. Wherex is absent, how-
ever, f has the greatest cutoff length. We tried optimizing
more than onef function in order to allow separatesr i ,r j ,r ijd
correlations for the core and valence electrons, but this did
not lower the variational energy.

TABLE I. Optimized Jastrow factors and VMC energies for He. The HF energy is −2.86167999 a.u., the
exact energy is −2.903724 a.u., and the DMC energy is within error bars of the exact value. In each case
Su=Sf =Sx=0, Nu=Nx;Nu,x, andNf

eN=Nf
ee;NF

eN,ee.

C Nu,x Nf
eN,ee D SMJ NT EVMC (a.u.) h sE

2 (a.u.)

3 8 0 18 −2.900010s9d 91.17(2)% 0.0237(4)

3 6 3 T T 33 −2.903555s2d 99.598(5)% 0.002450(6)

2 8 3 F F 40 −2.903596s2d 99.696(5)% 0.00246(6)

3 6 3 F F 36 −2.903660s3d 99.848(7)% 0.00083(1)

3 6 3 T F 41 −2.903693s1d 99.926(2)% 0.000653(4)

TABLE II. Optimized Jastrow factors and VMC energies for
Ne8+. The HF energy is −93.86111347 a.u., the exact energy is
−93.906806 a.u., and the DMC energy is within error bars of the
exact value. Duplication ofu andx by f is permitted. In each case
Su=Sf =Sx=0, Nu=Nx;Nu,x, andNf

eN=Nf
ee;Nf

eN,ee.

C Nu,x Nf
eN,ee SMJ NT EVMC (a.u.) h sE

2 (a.u.)

2 4 0 10 −93.90387s3d 93.57(7)% 0.645(4)

2 8 0 18 −93.90390s5d 93.6(1)% 0.645(4)

3 8 0 18 −93.90390s5d 93.6(1)% 0.645(1)

2 4 3 T 29 −93.90672s1d 99.81(2)% 0.0810(3)

2 4 3 F 37 −93.90672s2d 99.81(4)% 0.0138(8)

3 6 3 F 41 −93.906801s6d 99.99(1)% 0.00276(7)

JASTROW CORRELATION FACTOR FOR ATOMS,… PHYSICAL REVIEW B 70, 235119(2004)

235119-7



If Nf
eN=Nf

ee=2 andx is absent then it is important to allow
f to duplicateu and x. 62(2)% of the correlation energy is
retrieved when duplication is disallowed whereas 84(2)% is
retrieved when duplication is permitted. However, the differ-
ence is far less pronounced whenNf

eN=Nf
ee=3: about 85% is

retrieved irrespective of whether duplication is allowed. Us-
ing Nf

eN=Nf
ee=2 and allowing duplication ofu andx gives a

more efficient parametrization of the Jastrow factor, for the
number of parameters is substantially less than is the case
when Nf

eN=Nf
ee=3. In these calculations the optimal cutoff

length of f sLf .3.7 a.u.d is greater than that ofu sLu

.1.0 a.u.d. Isolated atoms are a special case in which thex
function can be long ranged. In the absence ofx, f is forced
to be long ranged so that it can describe the electron-nucleus
correlations. Henceu, rather thanf, has to describe all the
short-ranged electron-electron correlations.

We obtain slightly better results when we include the
terms in f that are neglected in the Schmidt-Moskowitz Ja-
strow factor. The VMC energy is fairly insensitive to the spin
dependence off.

We have investigated whether it is better to include the
electron-nucleus cusp in the Jastrow factor or in the orbitals
in the Slater wave function. Calculations were carried out
using orbitals expanded in a Gaussian basis set, generated by
the CRYSTAL code.28 The x term in the Jastrow factor satis-
fied the electron-nucleus cusp condition. The results obtained
were significantly poorer than those shown in Table III. In
order to get reasonable variational energies, a very large
number ofx parameters was required, withNxù15. Even
with Nx=15, only about 25% of the correlation energy was
retrieved. It is clearly preferable to use orbitals that satisfy
the electron-nucleus cusp condition.

There is a significant fixed-node error in the DMC energy:
our DMC energy is 0.0138s7d a.u. higher than the exact non-
relativistic ground-state energy.26,27 We have verified that
population-control biases are negligibly small and we have
performed an extrapolation to zero time step, so the only
remaining bias in our DMC energy is the fixed-node error.
The best all-electron VMC energy reported in the literature is
that of Huanget al.,21 who optimized parameters in their
orbitals at the same time as their Jastrow factor, giving them
extra variational freedom, including the opportunity to re-

duce the fixed-node error. Using a Jastrow factor containing
the same types of correlation as ours(electron-electron,
electron-nucleus, and electron-electron-nucleus), and opti-
mizing the orbitals as well as the Jastrow factor, Huanget al.
obtain a VMC energy of −128.9008s1d a.u., which is only
slightly lower than our best energy of −128.8983s2d a.u.

The results of optimizing Jastrow factors for pseudo-Ne
are shown in Table IV.f is much less important in the
pseudo-atom than in all-electron Ne. 86.3(5)% of the corre-
lation energy is retrieved usingu andx only, while 95.7(4)%
is retrieved whenf is used too. A greater fraction of the
correlation energy can be retrieved in the pseudoatom than in
the all-electron atom.

IX. EXAMPLE II: SiH 4 MOLECULE

We used a bond length of 2.8289 a.u. for the SiH4 (silane)
molecule, in which the Si4+ ion was represented by a relativ-
istic HF pseudopotential30 and the full Coulomb potential
was used for the hydrogen nuclei. The orbitals forming the
Slater determinants were obtained from HF calculations us-
ing a large Gaussian basis set and theGAUSSIAN code.31

Results for some of the Jastrow factors tested for SiH4 are
given in Table V. We find that a large fraction of the corre-
lation energy can be obtained using rather simple Jastrow
factors. Usingu and x functions only, and with a total of
only seven parameters, we are able to obtain almost 90% of
the correlation energy. Our best Jastrow factors obtain about

TABLE III. Optimized Jastrow factors and VMC energies for all-electron Ne. The HF energy is
−128.54709807 a.u., the exact energy is −128.9376 a.u.(Refs. 26 and 27) and our DMC energy is
−128.9238s7d a.u. In all casesSu=1, Sx=0, Nu=8, andNf

eN=Nf
eN;Nf

eN,ee.

C Nx Nf
eN,ee Sf D SMJ NT EVMC (a.u.) h sE

2 (a.u.)

2 8 0 26 −128.757s9d 56(2)% 3.17(6)

2 0 2 0 F F 23 −128.781s9d 62(2)% 3.2(1)

3 0 2 0 T F 26 −128.850s7d 80(2)% 2.14(6)

2 0 2 0 T F 26 −128.863s7d 84(2)% 2.2(1)

2 0 3 0 F F 39 −128.868s7d 85(2)% 2.03(1)

2 4 3 0 T T 41 −128.876s2d 87.3(6)% 1.92(1)

2 0 3 0 T F 44 −128.877s6d 88(2)% 1.49(3)

2 4 3 0 T F 49 −128.886s2d 90.0(6)% 1.27(2)

2 4 3 1 T F 75 −128.8983s2d 93.2(2)% 1.12(2)

TABLE IV. Optimized Jastrow factors and VMC energies for
pseudo-Ne. An HF pseudopotential was used to represent the
Ne8+ ion (Ref. 29). The HF energy is −34.6105 a.u. and the DMC
energy is −34.9220s4d a.u. In all casesC=2, Su=1, Sx=Sf =0, Nu

=Nx=8, andNf
eN=Nf

ee;Nf
eN,ee.

Nf
eN,ee D NT EVMC (a.u.) h sE

2 (a.u.)

0 26 −34.879s1d 86.2(3)% 0.74(2)

3 F 48 −34.904s1d 94.2(3)% 0.45(1)

2 F 32 −34.905s1d 94.5(3)% 0.51(3)

2 T 35 −34.908s1d 95.5(3)% 0.460(4)
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93(1)% of the correlation energy. We find the optimal cutoff
lengths(Lu.10 a.u. andLxSi.LxH.5 a.u.) to be fairly in-
dependent ofNu andNx. There is no detectable benefit from
going beyondNu=Nx=4, or from introducingf functions.
Both the results obtained and the behavior of the optimiza-
tion procedure are very similar forC=2 andC=3, so that in
this case there is no benefit from having a continuous local
energy.

X. EXAMPLE III: Ni ATOM AND NiO DIMER

We investigated the Ni atom and the NiO dimer with a
bond length of 3.075 a.u., using HF pseudopotentials29 to
represent the Ni10+ andO6+ ions. The orbitals were obtained
from HF calculations using a large Gaussian basis set and the
CRYSTAL code.28 We find that thef functions are significant
for both the Ni atom(Table VI) and the NiO dimer(Table
VII ) in spite of the use of pseudopotentials.

Note that Ni and NiO are partially spin polarized, so that
it may be advantageous to have differentx functions for
spin-up and spin-down electrons, and differentu and f func-
tions for parallel spin-up and parallel spin-down pairs of
electrons, unlike the other systems studied in this work. Our
results show that the spin dependences of theu, x, and f
functions do indeed have a significant effect on the quality of
the wave functions for Ni and NiO, although including
sr i ,r j ,r ijd terms in the Jastrow factor has a greater effect. An

additional 1–2 % of the correlation energy can be retrieved
when x and u are allowed to differ for spin-up and spin-
down electrons. Using differentf functions for antiparallel,
parallel spin-up, and parallel spin-down pairs also lowers the
variational energy slightly, although it greatly increases the
number of parameters which have to be optimized. These
calculations are the only ones for which we have retrieved
less than 90% of the correlation energy.

XI. EXAMPLE IV: SI SOLID

A. 16-atom simulation cell

We modeled crystalline Si in the diamond structure using
a 16-atom, face-centered cubic simulation cell subject to pe-
riodic boundary conditions. We used a cubic lattice constant
of 5.12966 a.u., and the Si4+ ions were represented by
pseudopotentials.30 The orbitals were obtained from HF cal-
culations using a large Gaussian basis set and theCRYSTAL

code.28 The results of optimizing the our Jastrow factor are
shown in Table VIII.

Lx adjusts itself to sizes of the order of the interatomic
spacing(Lx.6.4 a.u., whereas the nearest-neighbor distance
is 4.4424 a.u.), while Lu tends to the largest possible value,
which is the Wigner-Seitz radius of the simulation cell
s7.2544 a.u.d. It is much easier to optimize the cutoff lengths
whenC=3 than whenC=2. It seems that the discontinuities
in the local energy that are present whenC=2 cause serious

TABLE V. Optimized Jastrow factors and VMC energies for
SiH4. The HF energy is −6.118 a.u. and the DMC energy is
−6.3064s2d a.u. In each caseSu=1, Sx=Sf =0, Nu=Nx;Nu,x, and
Nf

eN=Nf
ee;Nf

eN,ee. Duplication ofu andx by f is prohibited.

C Nu,x Nf
eN,ee NT EVMC (a.u.) h sE

2 (a.u.)

2 1 0 7 −6.284s2d 88(1)% 0.096(2)

2 12 0 51 −6.291s2d 92(1)% 0.066(4)

3 4 0 19 −6.291s2d 92(1)% 0.07(1)

3 4 2 31 −6.292s2d 92(1)% 0.08(2)

2 4 0 19 −6.293s2d 93(1)% 0.067(5)

TABLE VI. Optimized Jastrow factors and VMC energies for
pseudo-Ni. The HF energy is −38.6670 a.u. and the DMC energy is
−39.2310s5d a.u. In each caseC=3, Nu=Nx=8 and Nf

eN=Nf
ee

;Nf
eN,ee.

Nf
eN,ee Su Sx Sf D NT EVMC (a.u.) h sE

2 (a.u.)

0 1 0 26 −39.0598s4d 69.65(9)% 1.148(2)

0 1 1 34 −39.0673s4d 70.098(9)% 1.114(3)

0 2 1 42 −39.0719s4d 71.8(1)% 1.098(4)

3 1 0 0 F 48 −39.1045s3d 77.57(9)% 0.721(3)

3 1 1 0 F 56 −39.1074s3d 78.09(9)% 0.695(1)

3 2 1 0 F 64 −39.1231s3d 80.87(9)% 0.734(1)

3 2 1 1 F 85 −39.1247s3d 81.15(9)% 0.743(2)

3 2 1 2 F 106 −39.1247s3d 81.15(9)% 0.727(4)

3 2 1 2 T 121 −39.1469s2d 85.09(8)% 0.571(1)

TABLE VII. Optimized Jastrow factors and VMC energies for
the NiO dimer. The HF energy is −54.31362 a.u. and the DMC
energy is −55.1558s6d a.u. In each caseC=3, Su=1, Sx=Sf ;Sx,f,
Nu=Nx=8, andNf

eN=Nf
ee;Nf

eN,ee. Duplication of u and x by f is
forbidden.

Nf
eN,ee Su Sx,f NT EVMC (a.u.) h sE

2 (a.u.)

0 1 0 35 −54.9031s5d 69.99(8)% 2.144(4)

0 1 1 51 −54.9069s5d 70.45(8)% 2.132(4)

3 1 0 77 −54.9984s4d 81.31(7)% 1.521(3)

3 1 1 157 −55.0104s4d 82.74(8)% 1.451(2)

3 2 1 165 −55.0105s4d 82.75(8)% 1.439(2)

TABLE VIII. Optimized Jastrow factors and VMC energies for
pseudo-Si (16-atom simulation cell). The HF energy is
−7.63946 a.u. per primitive cell and the DMC energy is
−7.90600s6d a.u. per primitive cell. In each caseSu=Sp=1, Sx=Sf

=Sq=0, Nu=Nx;Nu,x, Nf
eN=Nf

ee;Nf
eN,ee, and Np=Nq;Np,q. Du-

plication of u andx by f is allowed.

C Nu,x Nf
eN,ee Np,q NT EVMC (a.u.) h sE

2 (a.u.)

2 1 0 0 5 −7.8583s5d 82.1(2)% 1.551(3)

2 10 0 0 32 −7.8714s4d 87.0(2)% 0.863(2)

3 1 0 0 5 −7.8761s4d 88.8(2)% 1.010(6)

3 10 0 0 32 −7.8809s4d 90.6(2)% 0.842(6)

3 4 0 5 29 −7.8816s3d 90.8(1)% 0.81(1)

3 4 2 0 23 −7.8832s3d 91.4(1)% 0.846(2)
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problems for our optimization procedures. For example, a
flexible Jastrow factor withC=2 gives a lower variance, but
higher energy, than a simple Jastrow factor withC=3. Such
problems were not apparent in our calculations for atoms and
small molecules. The discontinuities do not appear to lead to
any problems within DMC calculations, however.

The use of thep and q terms does not bring about a
statistically significant lowering of the VMC energy. The op-
timal value ofLu is a little less than the Wigner-Seitz radius
whenp terms are included, so thep term must describe the
long-ranged correlations, as expected. The sinusoidalp andq
functions are considerably more expensive to evaluate than
the polynomialu andx functions, so it is anticipated thatp
andq will rarely be used in practice, except in strongly an-
isotropic systems such as graphite, where Prendergastet al.32

have demonstrated that plane-wave expansions in the Ja-
strow factor have an important role to play.

B. 54-atom simulation cell

Similar calculations to those reported in Sec. XI A were
carried out using a 54-atom simulation cell. The HF energy is
−7.6792 a.u. per primitive cell and the DMC energy is
−7.9555s2d a.u. per primitive cell. The VMC energy ob-
tained using our Jastrow factor withNu=Nx=4, Su=1, and
Sx=0 (giving 14 free parameters) is −7.9331s6d a.u. per
primitive cell, so 91.9(2)% of the correlation energy is re-
trieved. A very similar fraction of the correlation energy is
retrieved in the 16-atom cell(see Table VIII). The VMC
energy variance is 2.92s5d a.u., so the variance per electron
is about the same as for the 16-atom simulation cell. The
optimal value ofLu is again equal to the Wigner-Seitz radius
of the simulation cells10.882 a.u.d. The optimal value ofLx

remains of order the atomic size, atLx.4.7 a.u. These re-
sults indicate that cutting off thex function at sizes of order
the inter-atomic spacing is a valuable improvement to the
Jastrow factor.

XII. CONCLUSIONS

We have developed and tested a form of Jastrow factor
consisting of electron-electronsud, electron-nucleussxId, and
electron-electron-nucleussf Id terms, and additional electron-
position-dependentsqd and electron-electron-separation-
dependentspd terms. Theu, xI, and f I terms are expanded in
polynomials and are forced to go to zero at some cutoff radii.
The p and q terms are expanded in plane waves. We have
tested our Jastrow factor on atoms, molecules, and solids,
including both all-electron and pseudopotential atoms. In
most cases our VMC calculations have retrieved over 90% of
the fixed-node correlation energy.

The variable parameters appear linearly in our Jastrow
factor, except for the cutoff radii ofu, xI, and f I. The linear-
ity in the variable parameters aids the computational effi-
ciency of the optimization algorithm. We have found that it is
often beneficial to make the local energy continuous at the
cutoffs when optimizing the cutoff radii, but that a lower
variational energy can be achieved in some cases when dis-
continuities are allowed at the cutoffs.

We have investigated the importance of terms in the Ja-
strow factor that were neglected by Schmidt and
Moskowitz,17,19 but we found them to be unimportant in the
systems studied here. The electron-electron-nucleusf I terms
were found to be important in all-electron simulations of the
He, Ne8+, and Ne atoms. Thef I terms are generally less
important for pseudo-atoms than all-electron atoms. For ex-
ample, they account for nearly 40% of the correlation energy
in all-electron Ne, but only about 10% in pseudo-Ne. We
found the f I terms to be significant for pseudo-Ni and the
NiO dimer, but they had little effect in SiH4 or crystalline Si.
The plane-wave termsp andq were found to be unimportant
in crystalline Si.

We have found that it is preferable to use orbitals which
satisfy the electron-nucleus cusp condition and to require the
Jastrow factor to be cuspless at nuclei rather than to enforce
the electron-nucleus cusp condition through the Jastrow fac-
tor. Overall we found that optimizing the cutoff radii is very
important. In crystalline Si the cutoff foru adjusted itself to
the largest possible value, which is the Wigner-Seitz radius
of the simulation cell. This indicates that there are significant
correlations in Si extending over many atoms. We have ar-
gued that the long-ranged parts of thexI and f I terms do not
give useful variational freedom, and in support of this we
found that the corresponding cutoffs adjusted themselves to
sizes of the order of the interatomic spacing.

Although we have optimized our Jastrow factors by mini-
mizing the variance of the energy, we have measured the
accuracy of the Jastrow factors in terms of the variational
energy itself. If we were to minimize the variational energy
directly then we might get even better results. Recently there
has been much interest in developing energy-minimization
methods for optimizing trial wave functions,32–34 and we in-
tend to pursue this avenue further.
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APPENDIX: IMPOSING THE CONSTRAINTS ON g

Consider a particular set of ionsI and a particular spin-
pair type. To impose the symmetry off under interchange of
electrons we work withglmnI, where l ùm, and then com-
plete theg array by settingglmnI=gmlnI for l ,m. Let x be a
vector whose components are each of theg coefficients with
l ùm. The remaining constraints(no-cusp conditions and,
optionally, no-duplication-of-u-and-x conditions) may then
be written in matrix form asAx=0. The total number of
constraints determines the number of rows ofA.

There are 2NfI
eN+1 constraints(one for each value ofk

= l +m) associated with the imposition of the electron-

DRUMMOND, TOWLER, AND NEEDS PHYSICAL REVIEW B70, 235119(2004)

235119-10



electron no-cusp condition. Using the symmetry ofg, Eq.
(24) can be rewritten so that only elements ofx are involved:
∀kP h0, . . . ,2NfI

eNj,

o
l,m:

l+m=k

l.m

2glm1I + o
l:2l=k

gll1I = 0. sA1d

For eachk, this equation defines a row ofA.
There areNfI

eN+NfI
ee+1 constraints(one for each value of

k8= l +n) associated with the imposition of the electron-
nucleus no-cusp condition. Equation(27) can be rewritten so
that only elements ofx are involved: ∀k8P h0, . . . ,NfI

eN

+NfI
eej,

Cg00k8I − LfIg10k8I + o
l,n:

l+n=k8
lù1

sCgl0nI − LfIgl1nId = 0.

sA2d

For eachk8, this equation defines a row ofA.
If desired, there areNfI

ee constraints imposed to prevent
duplication ofu. sg00nI=0∀n.d

If desired, there areNfI
eN constraints imposed to prevent

duplication ofx. sgl00I =0∀ l .d
Imposing the constraints reduces the number of indepen-

dent variable parameters by ranksAd. The matrixA is trans-
formed into its row-reduced echelon form by Gaussian elimi-
nation, which allows us to identify a suitable set of
independent variable parameters.
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