NO reduction over noble metal catalysts: Origin of the high N₂O selectivity in the presence of metallic states

Zhi-Pan Liu

Surface Science group Department of Chemistry, University of Cambridge

Dec 2003

Motivation

NO reduction in the presence of O_2

 $NO + O_2 + hydrocarbons \longrightarrow N_2 + CO_2$

Catalysts design

1. Platinum group metals, Ru, Rh, Ir, Pt

O₂ poisoning at high temperatures and oxidative conditions

2. Noble metals, Ag and Au

Reactivity of Ag-based catalysts

Single crystal Ag{111} ~80 K, convert NO to N_2O through a (NO)₂ dimer intermediate

Real catalyst, Ag/Al₂O₃

Why?

Speculative Mechanisms

Fig. 6. The different roles of Ag during the C_3H_6 -SCR over Ag/ γ -Al₂O₃: large Ag^o particles catalyse the decomposition-reduction of NO, whereas Ag⁺ species favours the oxidation of NO to ad-NO_x species which subsequently react through the intermediacy of organo-nitrogen compounds. Adapted from [14].

Burch R. et al. Appl. Catal. B. 39 (2002) 283

Methodology

- **1. Density functional theory**
- 2. Plane wave basis set
- 3. Supercell approach

- CASTEP
- 4. Ultrasoft pseudopotentials
- **5.** Constrained minimisation technique

Searching Transition State

Adsorption of NO monomer and dimer on different Ag surfaces

	CN (Ag)	E _{ad} (Monomer)	E _{ad} (Dimer)
Ag{111}	9	0.36 (1/4 ML) 0.15 (1/9 ML)	1.12 (1/9 ML)
Ag{211}	6	0.61 (1/6 ML)	1.57 (1/6 ML)
Ag-adatom	1	0.57 (1/9 ML)	
Ag ₁₂	6	0.47	1.20
Ag_{12}^{2+}	6	0.71	1.35

Is NO dissociation possible ?

NO
$$\longrightarrow$$
 N + O

 E_{bond} = 6.67 eV

	E _a (eV)	$\Delta H (eV)$
Ag{111}	3.11	+2.47
Ag{211}	2.70	+2.20

N adsorption energy is particularly low

1.50 eV on Ag{111} O: 2.70 eV

1.56 eV on Ag_{12}

1.51 eV on Ag_{12}^{2+}

Why is the binding energy of N atom on Ag so low?

Charge density difference plot showing the N-Ag bonding plane

Charge accumulation towards N atom

Mainly Ionic bonding Weak *p-d* mixing

Ag *d*-states energy change before and after the adsorption of N atom

Ag-based catalysts have no good covalent bonding sites for N atoms.

Pathways initiated from the (NO)₂ dimer

Explain the reactivity

	(NO) ₂	NO	N ₂ O
$E_{ad}(eV)$	1.12	0.15	0.02
Mulliken charge (<i>e</i>)	-0.56	-0.37	-0.04
Electron affinity (eV)	-1.50	-0.50	+0.15

1. Higher bonding ability of $(NO)_2$ on Ag is due to its higher EA

Conclusions

NO dissociation is unlikely on Ag-based catalysts because of the preference of N atoms to the covalent bonding

 $(NO)_2$ decomposition to N₂O is facile intrinsically; The further decomposition of N₂O is kinetically hindered.

The located dimer pathway can explain the experimental observation for the high N_2O selectivity in the presence of Ag metallic state