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Why is the parallel spin hole wider and deeper than the antiparallel one? Nobody
knows, other than to say ‘because of the Pauli exclusion principle’, or ‘due to statistical
repulsion’, or ‘because fermions cannot be in the same state’, or whatever.
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The Exclusion Principle

Long standing, unsolved theoretical problem of atomic physics: why is that electrons within an atom do

not all collect in the lowest energy orbital? In 1925 Pauli published a limited version of the Exclusion

Principle from studies of fine structure of atomic energy levels and earlier suggestions of E.C. Stoner:

Pauli’s Principle: In an atom there cannot be two or more electrons with the same quantum numbers.

Then realised that the Principle applies not just to electrons but to all fermions of same type. If

we say quantum particles are identical when they have same mass, charge, spin, etc., then fermions

are sometimes defined to be those identical quantum particles that, when part of a quantum system

consisting of two or more of the same particles, the system has a wavefunction that is antisymmetrical

in its form. Consequent generalization of Pauli’s Principle:

Exclusion Principle: In a quantum system, two or more fermions of the same kind cannot be in the

same (pure) state.

The antisymmetrical form of the wavefunction is generally taken as a ‘brute fact’, i.e. as a defining

characteristic of fermions or as a feature of nature that cannot be otherwise explained. The exclusion

principle acts primarily as a selection rule for non-allowed quantum states and cannot be deduced as a

theorem from the axioms of Orthodox Quantum Theory.

References:

Quantum Causality by P. Riggs (2009)

Pauli’s Exclusion Principle - the origin and validation of a scientific principle, by M. Massimi (2005)

“The reason why the Pauli Exclusion Principle is true and the physical limits of the principle are still

unknown.” (NASA website)
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Indistinguishability
Standard approach: justify Exclusion Principle by appealing to assumed ‘indistinguishability’ of identical

particles. Consider two spinless non-interacting identical particles at x1 and x2 with wave functions

ψA(x1) and ψB(x2). Assume composite system wave function ψ(x1, x2) = ψA(x1)ψB(x2).

Claim since particles indistinguishable, coords are just labels whose exchange is not meaningful. Thus

require the 2-particle wave function to give same probability density after such exchange, i.e.

|ψ(x1, x2)|2 = |ψA(x1)ψB(x2)|2 = |ψA(x2)ψB(x1)|2 = |ψ(x2, x1)|2

Not true in general! So use technique of linearly combining wave functions. Since ψA(x1)ψB(x2)

and ψA(x2)ψB(x1) are both solutions of Schrödinger equation, so is any linear combination. Two

possibilities for composite system wave function:

Ψ(x1, x2) =
1
√

2
[ψA(x1)ψB(x2)± ψA(x2)ψB(x1)]

If± is positive, Ψ said to be symmetric with respect to coord exchange since Ψ(x1, x2) = Ψ(x2, x1).

If ± is negative, Ψ said to be antisymmetric since Ψ(x1, x2) = −Ψ(x2, x1).

Observed fact: only symmetrical and antisymmetrical wave functions are ‘found’ in nature. Both types

satisfy required probability density equality, but only antisymmetrical ones entail the Exclusion principle

(if x1 = x2 then Ψ = 0, i.e. there is no corresponding quantum state.)

Conclusion: Exclusion Principle arises from the wave function of system of fermions being

antisymmetric (Dirac 1926, Heisenberg 1926). However, note the Exclusion Principle is not equivalent

to the condition that fermionic systems have antisymmetrical wave functions (as commonly asserted)

but follows from this condition. Thus, indistinguishability is not enough.
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The spin-statistics theorem and relativistic invariance
Often claimed antisymmetric form of fermionic Ψ arises from relativistic invariance requirement, i.e.

it is conclusively established by the spin-statistics theorem of quantum field theory (Fierz 1939, Pauli

1940). Not so - relativistic invariance merely consistent with antisymmetric wave functions. Consider:

Postulate 1: Every type of particle is such that its aggregates can take only symmetric states (boson)

or antisymmetric states (fermion).

All known particles are bosons or fermions. All known bosons have integer spin and all known fermions

have half-integer spin. So there must be - and there is - a connection between statistics (i.e. symmetry

of states) and spin. But what does Pauli’s proof actually establish?

• Non-integer-spin particles (fermions) cannot consistently be quantized with symmetrical states (i.e.

field operators cannot obey boson commutation relationship)

• Integer-spin particles (bosons) cannot be quantized with antisymmetrical states (i.e. field operators

cannot obey fermion commutation relationship).

Logically, this does not lead to Postulate 1 (even in relativistic QM). If particles with integer

spin cannot be fermions, it does not follow that they are bosons, i.e. it does not follow that

symmetrical/antisymmetrical states are the only possible ones (see e.g. ‘parastatistics’). Pauli’s result

shows that if only symmetrical and antisymmetrical states possible, then non-integer-spin particles

should be fermions and integer-spin particles bosons. But point at issue is whether the existence of

only symmetrical and antisymmetrical states can be derived from some deeper principle.

Actually, fact that fermionic wave function is antisymmetric - rather than symmetric or some other

symmetry or no symmetry at all - has not been satisfactorily explained. Additional postulate of

orthodox QM. Furthermore, antisymmetry cannot be given physical explanation as wave function only

considered to be an abstract entity that does not represent anything physically real.
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Does Pauli exclusion principle need a physical explanation?

“..[the Exclusion Principle] remains an independent principle which excludes a class
of mathematically possible solutions of the wave equation. .. the history of the
Exclusion Principle is thus already an old one, but its conclusion has not yet been
written. .. it is not possible to say beforehand where and when one can expect the
further development..” [Pauli, 1946]

“ I was unable to give a logical reason for the Exclusion Principle or to deduce it
from more general assumptions. .. in the beginning I hoped that the new quantum
mechanics [would] also rigorously deduce the Exclusion Principle.” [Pauli, 1947]

“It is still quite mysterious why or how fermions with common values in their internal
degrees of freedom [i.e spin] will resist being brought close together, as in the dramatic
example of the formation of neutron stars, this resistance resulting in an effective
force, completely different from the other interactions we know..” [Omar, 2005]

“..The Pauli Exclusion Principle is one of the basic principles of modern physics and,
even if there are no compelling reasons to doubt its validity, it is still debated today
because an intuitive, elementary explanation is still missing..” [Bartalucci et al., 2006]

“The Exclusion Principle plays an important role in quantum physics and has effects
that are almost as profound and as far-reaching as those of the principle of relativity...
[the Exclusion Principle] enacts vetoes on a very basic level of physical description.”
[Henry Margenau]

– Typeset by FoilTEX – 6



An example: electron degeneracy pressure

When a typical star runs out of fuel it collapses in on itself and eventually becomes

a white dwarf. The material no longer undergoes fusion reactions, so the star has

no source of energy, nor is it supported against gravitational collapse by the heat

generated by fusion. It is supported only by electron degeneracy pressure. This is

a force so large that it can stop a star from collapsing into a black hole, yet no-one

seems to know what it is.. Which of the four fundamental forces is responsible for

it? None of them seems to have the right characteristics..

Degenerate matter: At very high densities all electrons become free as opposed to just conduction

electrons like in a metal. When this happens, degeneracy pressure (which is essentially independent of

temperature) becomes bigger than the usual thermal pressure.

Usual explanation: Electron degeneracy pressure is a quantum-mechanical effect arising from the

Pauli exclusion principle. Since electrons are fermions, no two electrons can be in the same state, so

not all electrons can be in the minimum-energy level. Rather, electrons must occupy a band of energy

levels. Compression of the electron gas increases the number of electrons in a given volume and raises

the maximum energy level in the occupied band. Therefore, the energy of the electrons will increase

upon compression, so pressure must be exerted on the electron gas to compress it. This is the origin

of electron degeneracy pressure. [Wikipedia]

All explanations apparently boil down to “because of the Pauli Exclusion Principle”, or “because

fermions can’t be in the same state”. The origin of the Pauli repulsion which prevents particles being

in the same state (that is, having identical probability distributions) is thus not understood.
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Required characteristics of ‘Pauli repulsion’ force supporting a white dwarf?

All discussions of degeneracy pressure talk about electrons as objectively-existing point particles, so we

shall also make this assumption (it then follows that the electrons must have trajectories).

Strategy: Work with statistical distribution ρ since particle positions unknown. Assuming classical

Newtonian trajectories, derive differential equation giving time evolution of ρ. Can we deduce from

this anything about form of force in quantum case?

• Probability distribution ρ must obey usual continuity equation ∂ρ/∂t = −∇ · (ρv) so that it

remains normalized as it changes shape over time (here v is velocity vector).

• Assume particles obey classical dynamics. To calculate trajectories, don’t use Newtonian F = ma

formulation; instead use the entirely equivalent Hamilton-Jacobi equation −∂S
∂t = (∇S)2

2m + V -

where S is related to the ‘action’.

For convenience, combine continuity and classical Hamilton-Jacobi equations (two real equations, note)

into a single complex equation. To do this, introduce general complex function Ψ = reiθ =
√
ρe

iS
h̄

with h̄ an arbitrary constant giving a dimensionless exponent. Complex equation that results is:

ih̄
∂Ψ

∂t
=

 
−
h̄2

2m
∇2

+ V −Q
!

Ψ with Q = −
h̄2

2m

∇2√ρ
√
ρ
.

This is the time-dependent Schrödinger equation - straight out of QM - with one difference: something

like a potential (‘Q’) is subtracted off the Hamiltonian. Note Ψ has same interpretation as in QM: a

particle probability density. Tells us that if particles are to follow Newtonian trajectories, must subtract

off an extra ‘quantum force’ −∇Q (apparently due to a ‘wave field’ pushing the particles) from the

usual classical force. Could this ‘fifth force’ be responsible for Pauli repulsion?
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Electron trajectories? What do we think about this in TCM?
But do electrons really have trajectories? This is really a question of the interpretation of QM, but

since essentially no-one thinks about that here, let’s see what we actually do in practice in TCM.

Density functional theory people:

• Create movies using ab initio molecular dynamics, where the nuclear positions are evolved using

Newton’s equations. We therefore believe that nuclei are point particles with classical trajectories.

• The electrons have a sort of fuzzy charge density which is a ‘solution to the Schrödinger equation’

(in the Kohn-Sham sense) for a sequence of nuclear positions. So - because electrons are very light

- either we don’t believe they have trajectories at all, or we believe they move much faster than the

nuclei and their (presumably non-classical) trajectories are ‘smeared out’.

• Sometimes, for very light atoms such as H, we think that quantum effects such as zero-point

motion or tunnelling are important. We then might do e.g. ab initio path integral molecular

dynamics (e.g. Matt Probert’s implementation in CASTEP).1

• The ‘exchange potential’ - which gives rise to so-called ‘quantum effects that cannot be described

classically’ - is presumably some kind of approximation to Q?

“If we were to name the most powerful assumption of all, which leads one on and on in an attempt to

understand life, it is that all things are made of atoms, and that everything that living things do can

be understood in terms of the jigglings and wigglings of atoms.” [Feynman]

1It can be shown that Feynman path-integral QM - where you sum over the infinite number of possible trajectories each
weighted by an expression involving the classical Lagrangian T − V - is equivalent to just using a single term involving
the trajectory that the electron actually follows along with the new ‘quantum Lagrangian’ T − V − Q. In principle one
could just calculate −∇Q to correct the quantum H atom trajectories.
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Electron trajectories? What do we think about this in TCM?
Quantum Monte Carlo people:

• Both nuclei and electrons are treated as point particles (though the nuclei are usually clamped).

• We can compute forces (albeit with some difficulty) and if we bothered to implement coupled

DMC-MD in CASINO [as Wagner and Mitas did with their code] then we would move the nuclei

along classical trajectories just as with DFT. Widely differing timescales make it difficult to treat

nuclei and electrons on the same quantum footing.

• In QMC the point electrons do not move along trajectories (we instead move them along a

stochastic random walk to sample the distribution). However it can be shown that diffusion Monte

Carlo is in principle a stochastic quantum trajectory method in imaginary time (this would be more

apparent if we ever used time-dependent probability distributions).

Conclusions:

• Neither DFT people or QMC people are Copenhagenists, since such people explicitly state - as

part of the ontology - that quantum particles do not have positions unless they are measured. It is

explicitly understood that hidden variables descriptions (and particle positions and their consequent

trajectories are hidden variables) are impossible.

• The ‘quantum force’ depends inversely on the mass. So when we decide whether particles follow

classical trajectories, we appear to have developed a mental facility for estimating the size of Q.

Clearly for heavier particles, Q will be small and the trajectories approximately classical. For lighter

particles, this is not so and we must use quantum methods to calculate their dynamics.

• There is no justification for saying that in TCM we do not believe in the reality of particle

trajectories (either for electrons or nuclei). We may therefore proceed with a clear conscience to

understand the Exclusion Principle using an argument based on particle trajectories.
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Indistinguishability and wave field overlap
Unfortunately, if particles have a continuous existence, then the usual way of arguing in terms of

permutation invariance and so on becomes invalid. We can no longer assume identical particles are

always indistinguishable, since they may be distinguished by their spatial relations (trajectories).

Permutation invariance postulate: If Ψ is the state of a composite system whose components are

identical particles, then expectation value of any obervable A is the same for all permutations of Ψ.

This allows for quantum states that are symmetric, antisymmetric, and of higher symmetry, and so we

must supplement this with the following (experimentally-derived) postulate:

Symmetrization postulate: The only possible states of a system of identical particles are described by

state vectors (wave functions) that are either completely symmetrical or completely antisymmetrical.

In a realist approach the wave function antisymmetry is a conceptual problem since, if the wave field

is a physical field that propagates through space, it should be representable by functions without any

particular symmetry. In our arguments we instead use the criterion that particles are indistinguishable

if their individual wave fields spatially overlap (either now or at some particular time in the past).

Justification: work out expectation value of square of distance between two particles for product wave

function ψA(x1)ψB(x2) and for an antisymmetrized one 1√
2
[ψA(x1)ψB(x2)− ψA(x2)ψB(x1)]:

〈(x1 − x2)
2〉 = 〈x2〉A + 〈x2〉B − 2〈x〉A〈x〉B + 2|〈x〉AB|2

where 〈x〉AB =
R

xΨ∗A(x)ΨB(x) dx is measure of overlap between wave fields ΨA and ΨB, and

e.g. 〈x〉 is the expectation value of x in the (single particle) state denoted A. If no overlap, then the

antisymmetrized result (blue + green) reduces to the product one (blue only). The fermions are then

distinguishable, in which case particles must be widely separated and have remained so.

– Typeset by FoilTEX – 11



Spin
To do this properly we need a realistic explanation of spin, since the Exclusion Principle prescribes

that if the fermions of a particular physical system share the same set of quantum numbers (and this

includes the spin quantum number) then they cannot be at the same location.

Initial concept of spin had its origin in the experiments of Stern

and Gerlach in which a beam of silver atoms was split in two by

passage through a non-uniform magnetic field. In 1925 Uhlenbeck

and Goudsmit proposed that an electron had a magnetic dipole

moment which they explained using the classical idea of an

extended particle (in this case, an electron) spinning about an

axis through its centre. They used this idea to explain the results

of the Stern-Gerlach experiments.

It has become clear that what is called the ‘spin of a quantum particle’ cannot be the rotational

angular momentum of a spinning particle. In other words, spin cannot be due to an extended body

rotating about an axis through its centre of mass. The reasons against the axial rotation explanation

are readily provided:

• the rotation of an extended particle would not require an additional variable for its specification;

• the spin’s vector does not depend on the particle’s position and momentum;

• angular momentum due to rotation about the centre of mass cannot take half-odd-integer values;

• the rate of rotation required to give results in agreement with experiment would need tangential

velocities exceeding the speed of light in vacuum.

– Typeset by FoilTEX – 12



Pauli theory of spin
In order to meet the need for incorporating spin into Orthodox QM, much attention was given to

developing spinor representations and spin algebra as a way of dealing with an aspect of quantum

systems (i.e. spin) that was not properly understood. E.g., the Pauli equation ih̄(∂Ψ/∂t) = HΨ)

for a single spin-1
2 particle has a two-component spinor wavefunction Ψ and the following Hamiltonian:

H =
−h̄2

2m

»
∇−

ie

h̄c
A
–2

+ µB · σ + eA0 + V

with A and A0 being the electromagnetic potentials, B = ∇× A an external magnetic field and V

a (classical) scalar potential. The vector quantity σ has Pauli’s ‘spin matrices’ as its components:

σx =

„
0 1

1 0

«
, σy =

„
0 −i
i 0

«
, σz =

„
1 0

0 −1

«
where σ2 = σ2

x + σ2
y + σ2

z. These matrices are operators that represent the spin observables, e.g.

z-component of spin given by sz = 1
2h̄σz. Eigenfunctions of spin representing ‘up’ and ‘down’ spin

given by following two-component spinor wave functions: χ1 =
`

1 0
´

and χ2 =
`

0 1
´

.

General expression for system not in eigenstate is the superposition χ = aχ1 + bχ2 where a, with

complex b. These functions give required measured values of spin, i.e. ±(h̄/2) with certainty when

system is in an eigenstate, or with probability |a|2 for up and |b|2 for down when in a superposition.

Although it is the case that spinor methods have been formally successful, they are really a technical

means of not addressing the underlying nature of the spin phenomenon. Indeed, the Pauli equation

does not provide any insight into the origin or characteristics of spin:

Pauli’s theory does not explain the origin of the spin, nor does it give any reason for its magnitude. It

merely provides a method for incorporating it into quantum mechanics. [Lindsay and Margenau, 1957]
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Spin with trajectories
• We have seen that if we accept particles have a continuous objective existence, then in QM it

appears as if they are acted on by a force −∇V − ∇Q, with the Q bit having its origin in an

accompanying wave field mathematically represented by Ψ. The wave field ought therefore to be a

reservoir of potential energy, and can receive or impart energy and momentum to the particles.

• Q is the potential energy of the wave field and represents the amount of energy available to the

particle/configuration at its specific position in the field.

• There is no spin in the non-relativistic Schrödinger theory. However, if we take the non-relativistic

limit of the relativistic trajectory equations, we find that Q develops a spin dependence.

“In classical physics the aim of research was to investigate objective processes occurring in space

and time. In the quantum theory, however, the situation is completely different. The very fact that

the formalism of quantum mechanics cannot be interpreted as visual description of a phenomenon

occurring in space and time shows that quantum mechanics is in no way concerned with the objective

determination of space-time phenomena” [Heisenberg, 1965]. Hmmm..
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An important inference about the nature of spin

• We have seen that spin cannot arise from electron rotation, nor do electrons appear
to have internal structure. Moreover, the fact that the quantum potential Q (which
represents a portion of the wave field’s energy) has a spin dependence implies that
spin must be a property of the wave field.

• Is there a precendent for this? Yes! In electromagnetic theory - spin is part of an
electromagnetic wave’s angular momentum, the part which is dependent on the
wave’s polarization (see e.g. Jackson electromagnetism textbook 1975, p. 333,
Ohanian 1986 - see next page).

Consider, for example, a circularly-polarized plane electromagnetic wave with a vector
potential A given by:

A = (x̂± iŷ)
(
i
E0

ω

)
exp

[
iω
(
t− x

c

)]
where E0 is the electric field strength, ω is the angular frequency, and x̂ and ŷ
are Cartesian unit vectors. The polarization-dependent part of the wave’s angular
momentum (i.e. its spin s) is:

s = ± 1
µ0c2

∫
E2

0

ω
ẑ d3x
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Nice paper

See also “What is spin?”, A. Gsponer, arXiv:physics/0308027v3 (2003).
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Spin and polarization
“The lack of a concrete picture of the spin leaves a grievous gap in our understanding of quantum

mechanics ... spin could be regarded as due to a circulating flow of energy, or a momentum density in

the electron wave field ... this picture of the spin is valid not only for electrons ...” [Ohanian, 1986]

• In this picture wave fields must have states of polarization, similarly to the case
of an electromagnetic wave. However, it is obvious that in non-relativistic QM
wavefunctions are scalar waves describing spinless quantum states. It might
thus be objected that if wave fields have states of polarization, then QM wave
functions would have to represent vector waves, and this might conflict with the
representation of quantum systems with spin by spinors.

• However, there is more than one formal way to achieve this representation. In
particular, either vector waves or scalar waves plus spinors can be used. Indeed,
spinors are used this way in classical wave theory [see e.g. Rogalski/Palmer
Advanced University Physics p.401-403 (2006)]. As previously noted, the
representation of spin by spinors is only a method of dealing with the spin
phenomenon without needing an understanding of its fundamental nature.

• The explanation of spin as the polarization-dependent part of the wave field’s
angular momentum has not only not been accepted by most physicists who are
aware of this explanation, it is almost universally ignored. The principal reason for
this is probably that, in orthodox QM, the wave field is generally not considered to
be a real field, but to be a representation of our knowledge (or something similar).
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The exclusion principle in a trajectory theory

• Let’s delay discussion of why fermionic wave functions are antisymmetric, and for
the moment just accept that they are. What then is the causal mechanism which
explains the Exclusion Principle?

• Normally ones says things like “A system in an antisymmetric state exhibits what
is called statistical repulsion” [Park, 1974]. Strange notions such as ‘statistical
repulsion’ come from dismissing any possibility of a realistic, causal description of
quantum phenomena and leaves this kind of correlated particle motion completely
unexplained. However, if we accept that electrons have trajectories..

“The symmetrization or antisymmetrization of the wavefunction has nothing to
do with the ‘indistinguishability’, but in fact, implies the introduction of forces
between the particles making up the system, which bring about correlations in their
motion.” [Holland, 1993]

• When we analyze possible trajectories, we find they cannot pass through the nodal
surface of the wave field (where the wave amplitude is zero) because the quantum
force is always directed away from these nodes. Antisymmetrical wave fields have
nodal surfaces, symmetrical ones do not. This is the basis of the exclusion principle
for fermions.

Let’s try to show this mathematically!
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Fermionic repulsion in a trajectory theory
A total antisymmetrical wave function for a many-electron system can occur in a number of ways. For

2 electrons there are 3 states of interest where the electrons ‘avoid each other’. Collectively called the

‘triplet state’ with total z-components of spin h̄, −h̄, 0. Their wave functions (which are products of

space and spin) all have antisymmetrical spatial components so Ψ = 0 if x1 = x2 and are given by:

Ψ = {ψA(x1)ψB(x2)− ψA(x2)ψB(x1)}α(1)α(2)

Ψ = {ψA(x1)ψB(x2)− ψA(x2)ψB(x1)} β(1)β(2)

Ψ = {ψA(x1)ψB(x2)− ψA(x2)ψB(x1)} {α(1)β(2) + α(2)β(1)}

Now let the spatial part be written in complex polar form: ψA(x1)ψB(x2)−ψA(x2)ψB(x1) = Rei
S
h̄ .

When this is zero the amplitude R must be zero (since ei
S
h̄ cannot be zero by definition). Thus, as a

nodal region of the wave field is approached, the value of R will tend to zero. The (repulsive) quantum

force on each particle is Fi = (dpi/dt) = −∇iQ where Q = −h̄2/2mR(∇2
1R + ∇2

2R)+

spin-dependent terms. Finding the negative gradient of Q (ignoring the spin-dependent terms since

the spatial terms will dominate as R tends to zero) gives:

Fi =
h̄2

2mR2

2X
j=1

h
R∇i(∇2

jR)− (∇2
iR)(∇jR)

i
It can be seen that as R −→ 0 then Fi −→ ∞. The ‘Pauli repulsion’ force Fi exerted by the

wave field on the two fermions prevents them coming into close proximity of each other when their

‘spins are the same’ (i.e. in cases where the spatial part of Ψ is antisymmetric). More generally, the

dynamics as shown by this trajectory theory prevent fermions occupying the same quantum state.
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Towards a fundamental basis for the exclusion principle

Must now explain why Ψ in a fermionic system takes an antisymmetric form. Some
considerations:

• In a realist theory where the wave field objectively exists, the antisymmetrical form
should be explicable in terms of the well-established behaviour of physical waves. If
fermions are localized particles as we postulate, then the Exclusion Principle must
also be a non-local effect.

• The Exclusion Principle is normally assumed to apply to all physical situations
involving fermions of the same kind, but it has been argued that its applicability
should be restricted; there are certain kinds of non-stationary state for which it
produces paradoxical results. Reasonable statement: Exclusion Principle applies
to a system of identical fermions that has constraints imposed upon it which are
necessary but not always sufficient for the establishment of a stationary state.

Physically, a stationary state results when two travelling waves that are propagating
in opposite directions superpose (due to restriction in a finite spatial region such as a
box or an atom). Clearly the Exclusion Principle does not apply to widely-separated
fermions of the same kind; need wave-field overlap.

But if only one of these waves was π out of phase with the other then wouldn’t their
sum be an antisymmetric function?

– Typeset by FoilTEX – 20



Modelling of fermionic wave fields
Consider system of two neutrons (to avoid electrical interaction) in a large box. Particles initially

moving and well-separated with non-overlapping travelling wave fields. Initial wave function of product

form. Let us make the radical assumption that the antisymmetrical form of the wave function develops

over the course of time, rather than being fundamental.

So what happens when the neutrons come close enough together for wave field overlap? Without

invoking the antisymmetry assumption, there is no obvious expression for the form of the two-neutron

wave function when the individual wave fields first overlap.

Speculation: After some time, the initial wave field ΨI of the two neutron system will be successively

reflected from the ends of the box. In the case of a fermionic wave field, reflection at a rigid wall

causes a change of the wave field’s phase of π radians. This is a well-known effect when a physical

wave is reflected from a fixed boundary. However, it is the polarization of the incident wave field

(and not the total spin) that determines whether there is a change of phase on reflection. (Spin part

of wave field doesn’t change on reflection). Interference between incident and reflected wave fields

produces stationary state within the box, and the total wave function will have an antisymmetric form

due to the negative sign in the reflected wave. (A similar argument can be made for atoms).

Difficult to analytically model this behaviour, since do not yet know valid mathematical description of

the initial overlap of individual non-stationary wave fields. In the literature, it is simply assumed that

the overall Ψ for a combined system is antisymmetric without showing how this is achieved.

Ultimately made difficult by the non-local nature of the interactions between entangled particles, which

is what happens when your wave function is a function of the positions of all the particles. We do not

currently know the ‘means’ by which the non-local connections are actualized. It would help if we did.
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Experimental tests

An explanation of the Exclusion Principle does not seem to be possible within
Orthodox Quantum Theory. In the absence of any theoretical basis for the Exclusion
Principle, a series of further experiments are being planned and conducted by the
Violation of the Pauli Exclusion Principle (VIP) Experimental Group:

“The Pauli Exclusion Principle is one of the basic principles of modern physics and is at the very basis

of our understanding of matter: thus it is fundamental importance to test the limits of its validity ..

the VIP (Violation of the Pauli Exclusion Principle) experiment, where we search for anomalous X-rays

emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a

Pauli-forbidden transition. .. VIP is currently taking data at the Gran Sasso underground laboratories,

and its scientific goal is to improve by at least four orders of magnitude the previous limit on the

probability of Pauli violating transitions..” [Curceanu et al., 2008].

In this talk a basis for the Exclusion Principle has been set out which provides the
intuitive and relatively simple explanation that has been missing since Pauli first
postulated the Principle. Further, this basis clearly allows the possibility that the
Exclusion Principle might be violated in some extreme circumstances.
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Conclusions
All QM textbooks describe the effects of the Exclusion Principle but its explanation is either avoided

or put down to symmetry considerations. The importance of the Exclusion Principle as a foundational

pillar of modern physics cannot be overstated since, for example, atomic structure, the rigidity of

matter, stellar evolution and the whole of chemistry depend on its operation.

In this talk, I have shown that (1) the simple assumption that fermions are point particles with a

continuous objective existence, and (2) the equations of non-relativistic QM, allow us to deduce:

• ..that a mathematically well-defined ‘fifth force’, non-local in character, appears to act on the

particles and causes their trajectories to differ from the classical ones.

• ..that this force appears to have its origin in an objectively-existing ‘wave field’ mathematically

represented by the usual QM wave function.

• ..that indistinguishability arguments are invalid under these assumptions; rather antisymmetrization

implies the introduction of forces between particles.

• ..the nature of spin.

• ..that the action of the force prevents two fermions from coming into close proximity when ‘their

spins are the same’, and that in general, this mechanism prevents fermions from occupying the

same quantum state. This is a readily understandable causal explanation for the Exclusion principle.

If we allow ourselves to assume that antisymmetry of the wave field is not fundamental, but develops

naturally over the course of time, then we can see the character of the reason for fermionic wave

functions having the symmetry behaviour they do. Mathematical details tricky.

Note we get a lot of stuff for a little assumption. Maybe this is rubbish but it’s still very interesting!
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