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On anticlimaxes..

Up to now we have enjoyed ourselves freewheeling through the highs and lows of
fundamental quantum and relativistic physics whilst slagging off Bohr, Heisenberg,
Pauli, Wheeler, Oppenheimer, Born, Feynman and other physics heroes (last week we
even disagreed with Einstein - an attitude that since the dawn of the 20th century
has been the ultimate sign of gibbering insanity). All tremendous fun.

This week - we shall learn about finite differencing and least squares fitting..!

Cough.

“Dr. Towler, please. You’re not allowed to use the sprinkler system to keep the audience awake.”
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QM computations with trajectories

Computing the wavefunction from trajectories: particle and
wave pictures in quantum mechanics and their relation

P. Holland (2004)

“The notion that the concept of a continuous material orbit is incompatible
with a full wave theory of microphysical systems was central to the genesis of
wave mechanics. Early attempts to justify this assertion using Heisenberg’s
relations were subsequently shown to be flawed, and indeed no credible proof
forbidding the treatment of quantum processes in terms of precisely defined
spacetime trajectories has ever been offered. The idea nevertheless entered
the folklore of the subject and even now is invoked to highlight alleged
paradoxical implications of quantum mechanics (e.g. Schrödinger’s cat). So
great was the philosophical bias that not only was the material orbit ruled
out as an aid to comprehension, but the possibilities of using the trajectory
as a computational tool, or even as the basis of an alternative representation
of the quantum theory - the twin subjects of this paper - were foregone.”

Would-be Bohmians must learn a self-confident tone like this..
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Feynman too has trouble with Bohr..

The Pocono conference (1948)

“Bohr was also at the meeting. After I had tried many times to explain what I was doing

and didn’t succeed. I talked about trajectories, then I would swing back - I was being forced

back all the time. I said that in quantum mechanics one could describe the amplitude of each

particle in such and such a way. Bohr got up and said ‘Already in 1925, 1926, we knew that the

classical idea of a trajectory or a path is not legitimate in quantum mechanics: one could not

talk about the trajectory of an electron in the atom, because it was something not observable.’

In other words, he was telling me about the uncertainty principle. It became clear to me that

there was no communication between what I was trying to say and what they were thinking.

Bohr thought that I didn’t know the uncertainty principle, and was actually not doing QM right

either. He didn’t understand at all what I was saying. I got a terrible feeling of resignation. ”

Feynman was of course talking about his path-integral formulation of quantum
mechanics, whose connections with pilot-wave theory we shall discuss in this lecture.
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Recall ‘Classical mechanics’ slide from lecture 2

Given a set of initial conditions - the theory allows us to calculate deterministic
trajectories of particles obeying Newton’s laws. There are various equivalent
mathematical formulations of this i.e. different equations leading to same trajectories:

Fi(q1, q2, . . . , qN) = miq̈i Newtonian mechanics

↓
q̇ = ∂H

∂p (q,p) ṗ = −∂H
∂q (q,p) Hamiltonian dynamics → standard QM

Solve a canonical system of 1st-order ODEs (2n equations for 2n functions of a parameter t

in which all variables’ first derivatives are given by partial derivatives of the same function).

δ
∫ t1

t0
L (q(t), q̇(t)) dt = 0 Lagrangian dynamics → path-integral QM

Solve the basic calculus of variations problem of finding n functions q1, . . . , qn of a

parameter t that make stationary a line integral (i.e. solve n 2nd-order ODEs).

∂S
∂t (q, t) + H(q, ∂S

∂q) = 0 Hamilton-Jacobi dynamics → pilot-wave theory

Solve a single 1st-order PDE in which the unknown function does not occur explicitly.
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Feynman’s path integral method (required later)

Feynman proposed the following postulates:

1. Probability for event given by square modulus of a
complex amplitude Ψ.

2. Amplitude for event given by summing contributions of
all histories which include that event.

3. Amplitude contributed by a particular history proportional
to eiScl/h̄ where Scl is classical action of that history
i.e. time integral of classical Lagrangian T − V along
corresponding phase space path of system.

Dirac and Feynman

Overall amplitude for process from summing amplitudes of the infinite number of all possible histories

between initial and final states. Path integral gives all histories (even barmy ones) amplitude of same

magnitude but different phase. Contributions wildly different from classical suppressed by interference

of similar cancelling histories.

Feynman showed this is equivalent to standard QM. An amplitude computed according to Feynman’s

principles also obeys the Schrödinger equation for the Hamiltonian corresponding to given action.

In limit of action large compared to h̄, path integral dominated by solutions in neighbourhood of

stationary points of the action, as there amplitudes of similar histories tend to constructively interfere.

For paths far from such stationary points, complex phase varies rapidly for similar paths and amplitudes

tend to cancel. Important parts of integral - the significant possibilities - in limit of large action consist

simply of solutions of Euler-Lagrange equation, and classical mechanics is correctly recovered.
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What are we looking at today?

• Historical discussion concerning ‘hidden-variables’ (such as the particles in pilot-
wave theory) has tended to concentrate on their existence and properties as
theoretical entities underlying the quantum formalism. Benefits perceived largely in
terms of insight they provide into quantum reality i.e. they are primarily concerned
with quantum foundations.

• Less consideration has been given to possible practical value of hidden variables
theories in solving technical problems in QM. For example, can they help in
solving the Schrödinger equation in a way analagous to, say, the computation of
thermodynamic relations from microstates in statistical mechanics?

• In short, how do we calculate things from quantum trajectories?

Other questions

• What sort of problems can be addressed with quantum trajectory methods?

• Are they expensive with computer time, and how do they scale with system size?

• How are they related to other methods apparently involving trajectories such as
Feynman’s path-integral approach?

• How are they related to state-of-the-art techniques such as quantum Monte Carlo
involving electrons hopping around and sampling the many-body wave function?
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To be more specific..

What we want to do today is to integrate the time-dependent Schrödinger equation:

ih̄
∂Ψ(x, t)

∂t
= − h̄2

2m
∇2Ψ(x, t) + V (x, t)Ψ(x, t) = ĤΨ(x, t)

where x = {x1,x2, . . . ,xN}. Usually use atomic units: h̄ = 1,m = 1.

To be specific, given a starting wave function Ψ0(x, t) known only on a mesh of M
grid points at time t, we want to find a numerical approximation to the real solution
at later times using some physically meaningful and not too disastrously inaccurate
approximation.

Direct numerical solution of many-body

time-dependent Schrödinger equation in fact

feasible only for simple few-body quantum

systems (quasi-exponential scaling). We

shall see how pilot-wave theory can help

by transporting grid points along quantum

trajectories.. Solution unfolds in a Lagrangian

(‘moving-with-the-fluid’) reference frame,

eliminating need to solve the problem on a

large grid or mesh - a sort of grid ‘importance

sampling’.
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Some preliminaries - finite differencing
Finite-difference methods approximate solutions to differential equations by replacing derivatives with
approximately equivalent difference quotients, i.e.

f
′
(a) = lim

h→0

f(a + h)− f(a)

h
−→ f

′
(a) ≈

f(a + h)− f(a)

h
≈

f(a)− f(a− h)

h
≈

f(a + 1
2h)− f(a− 1

2h)

h

Expressions to right of arrow - respectively forward difference, backward

difference, and central difference - are all reasonable approximations to

the derivative for some small value of h. With these can approximate

solutions to differential equations with no calculus.

For approximate solution first discretize problem’s domain - usually by

dividing into uniform grid. Finite-difference methods give sets of discrete

numerical approximations to derivative, often in ‘time-stepping’ manner.

Example 1: u′(x) = 3u(x)+2. Solve this ODE by substituting finite difference quotient u(x+h)−u(x)
h

for u′(x). We find u(x + h) = u(x) + h(3u(x) + 2) - a finite-difference equation giving us

approximate solutions to the ODE.

Example 2: 1D heat equation ∂U/∂t = ∂2U/∂x2. Approximate both derivs by finite differences:

uniform mesh in x (step h) and in t (step k). Points u(xj, tn) = un
j give numerical approximation to

U(xj, tn). Explicit method: forward difference at tn and 2nd-order central difference at position xj

gives un+1
j = (1− 2r)un

j + run
j−1 + run

j+1 with r = k/h2. Using backwards or central difference

for t deriv gives implicit or Crank-Nicholson methods (which differ in stability, accuracy, and cost).

In three dimensions complications evidently arise (too many grid points, bad scaling and cost).
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Quantum trajectory calculations

Schrödinger equation for both stationary and nonstationary states may be solved
exactly by propagating quantum trajectories, at least in principle. Probability
amplitude and phase of Ψ transported along trajectories and observables computable
directly in terms of this information. Investigations that employ quantum trajectories
may be broadly divided into two classes:

The analytic approach:

First solve TDSE using conventional techniques (fixed grids/basis set expansions).
Individual ‘particles’ then evolved along quantum trajectories x(t) with velocities
generated by Ψ-field via guidance equation ẋ = h̄

m Im∇ lnΨ = ∇S/m. Patterns
developed by trajectories emanating from ensemble of ‘launch points’ exactly define
evolving system history. Used as means of understanding and exploring quantum
behaviour i.e. point is not to solve TDSE but to provide insight.

The synthetic approach:

Rather than guiding quantum trajectories with a precomputed wave function, the
trajectories and wave function are computed concurrently, on the fly. Wave packets
are evolved by propagating ensembles of quantum trajectories, which become the
computational tool for solving the ‘quantum hydrodynamic’ equations of motion.

Today we concentrate on the latter approach.
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The synthetic approach to quantum trajectory calculations

Flow of quantum-mechanical probability density
through configuration space is that of a compressible
fluid. The evolution of this fluid is to be described in
terms of a relatively small number of correlated fluid
elements evolving along quantum trajectories.

• Initial wave packet (assumed known) discretized in terms of N fluid elements -
small chunks of the probability fluid. The equations of motion for the set of
elements are integrated in lockstep from one time step to the next. Along each
trajectory the probability density and phase function (and thus the complex-valued
wave function) are computed by integrating two coupled equations of motion.

• Fluid elements correlated with one another through global action of wave function
(or, if you like, through the quantum potential). Each evolving fluid element
influenced by motion of the other elements, even when external potential vanishes
(source of quantum effects in the dynamics).

Natural language for theory through analogy with fluid mechanics or hydrodynamics. Probability

density proportional to fluid density, and phase of Ψ is a velocity potential. Novel feature of quantum

fluid is appearance of ‘quantum stresses’ (usually represented through quantum potenial Q).
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The quantum hydrodynamic equations of motion

∂ρ

∂t
= −ρ∇ · v (continuity equation)

∂S

∂t
= L(t) =

1
2
mv2 − (V + Q) (quantum H− J equation)

m
∂v
∂t

= −∇(V + Q) (Bohm) or v =
∇S

m
(de Broglie)

First-order de Broglie form preferred since no ∇Q (a 3rd-order derivative of the wave
amplitude R). Solve equations of motion using various ‘finite-differencing’ schemes:

Eulerian: Fluid elements (grid points) are stationary. Less useful.

Lagrangian: Grid points move along trajectories with velocities matching flow velocity
of probability fluid (allows compact description of Ψ).

ALE (arbitrary Lagrangian-Eulerian): Arbitrary grid point velocity. Numerical advantages.

Wave mechanics might be said to correspond to Eulerian picture and trajectory theory
to Lagrangian picture. Watch fluid go by, or ‘go with the flow’.

Historical note: Computer implementation of synthetic approach to hydrodynamic
formulation of QM first done as late as 1999 e.g. quantum trajectory method (QTM)
of Lopreore and Wyatt, and quantum fluid dynamics (QFD) of Rabitz et al.
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The problem with spatial derivatives

Given wave function of form Ψ(x, t) = R(x, t)e
iS(x,t)

h̄ then at each t state of system
is specified by the descriptor:

D(t) = {xi(t), Ri(t), Si(t)}N
i=1.

This lists location of each fluid element along with amplitude and phase function at
position of each element. Full wave function can be constructed from this information.

• Spatial derivatives appearing in functions ∇S, Q and ∇ · v make equations of
motion difficult to integrate since information (‘hydrodynamic fields’ R and S) only
available at positions of fluid elements, and locations of these elements dictated by
equations of motion i.e. they form an unstructured (non-Cartesian) grid.

• Spatial derivatives in equations of motion bring nonlocal effects into the dynamics;
it is through the spatial derivatives that each fluid element is influenced by the
surrounding hydrodynamic fields.

• Evaluation of accurate derivatives on unstructured grids is one of most challenging
and important problems in numerical analysis, but many good approximate
techniques have been developed for specific applications.
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Wave function synthesis along quantum trajectory

Ψ = R(x, t)e
iS(x,t)

h̄

Propagation of the amplitude

Along trajectory x(t) from (x0, t0) to (x1, t1) rate of change of density ∂ρ
∂t = −ρ∇·v.

Amplitude R = ρ
1
2 so ∂R

∂t = −R
2∇·v. Integrate to get new R in terms of value at t0.

dR

R
= −

1

2
∇ · v dt

integrate
−−−−−−→ ln R + c = −

1

2

Z t1

t0
∇ · v dt

exponentiate
−−−−−−−−→ A exp(ln R) = exp

"
−

1

2

Z t1

t0
∇ · v dt

#

R(x1, t1) = exp
[
−1

2

∫ t1

t0

(∇ · v)x(t) dt

]
R(x0, t0)

To propagate R we integrate the divergence of the velocity field along the trajectory.

Propagation of the exponential of the phase

Quantum H-J eqn is
∂S

∂t
= L(t) =

1

2
mv

2 − (V + Q). From S(t1) = S(t0) +

Z t1

t0

∂S

∂t
dt

× i
h̄

and exponentiate
−−−−−−−−−−−−−−−→

e
iS(x1,t1)

h̄ = exp
[

i

h̄

∫ t1

t0

L(t) dt

]
e

iS(x0,t0)
h̄

To propagate e
iS(x,t)

h̄ we integrate the quantum Lagrangian along the trajectory.
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Wave function synthesis along quantum trajectory

We multiply the expressions for the R propagator and the e
iS(x,t)

h̄ propagator to obtain
an expression for updating the full wave function along the trajectory:

Ψ(x1, t1) = exp
[
−1

2

∫ t1

t0

(∇ · v)x(t) dt

]
exp

[
i

h̄

∫ t1

t0

L(t) dt

]
Ψ(x0, t0).

Hydrodynamical wave function propagator (HWFP): KQ(x1, t1;x0, t0)

An alternative derivation

Evolving along quantum trajectory from t to t + dt, new wave function given by

Ψ(t + dt) = Ψ(t) +
∂Ψ
∂t

dt + (v · ∇Ψ)dt.

Now use TDSE to evalute ∂Ψ
∂t , use v = ∇S

m , and use polar form of Ψ throughout,
then we find after some algebra:

Ψ(t + dt) =
{

1− 1
2
(∇ · v) dt +

i

h̄

[
1
2
mv2 − (V + Q)

]
dt

}
Ψ(t).

Term in braces {. . .} is wave function propagator for time increment dt. After a
number of these small time steps, composite propagator identical to HWFP above.
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Wave function propagation and the Jacobian

R(x1, t1) = exp

"
−

1

2

Z t1

t0

(∇ · v)x(t) dt

#
R(x0, t0) What does ∇ · v mean here?

At time t have volume element dV (t). Element corners defined by

trajectory positions {a, b, c, d}. Increment time by dt and equations of

motion shift corners to {a′, b′, c′, d′} and volume element changes to

dV (t+dt). Ratio of new to old volumes is the Jacobian: dV (t+dt) =

J(t + dt, t)dV (t). Can be shown Jacobian is:

J(t1, t0) = exp

"Z t1

t0

∇ · v dt

#
.

• Implies if velocity field has positive divergence (velocity vectors ‘point away from
each other’) then Jacobian increasing and local volume element expanding along
flow. So velocity divergence locally measures rate of change of geometric quantity.

• If flow is incompressible (∇ · v = 0) Jacobian is invariant. Not usually the case in
QM, but note classical flow in phase space is incompressible (Liouville’s theorem).

• Fact that ρ(x, t)J(t, t0) = ρ(x0, t0) shows conservation of the product ρJ along
quantum trajectory. As dV changes along flow, density adjusts such that ρJ
retains value specified by initial condition.

• Note the R-propagator exp
[
−1

2

∫ t1
t0
∇ · v dt

]
is thus just J(t)−

1
2.
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Towler takes pity on the students

OK, look - I was only joking about the least squares fitting - I won’t bore you with it.
However, it is the crucial step in evaluating the spatial derivatives required to use the
propagators we have just derived for solving the TDSE. To get a feel for the issues,
see Deckert, Dürr and Pickl’s paper in J. Phys. Chem. A 111, 10325 (2007) where
they show least squares fitting allows pilot-wave trajectories to cross, and that one
should use polynomial fitting instead. Robert Wyatt’s book ‘Quantum dynamics with
trajectories’ has a comprehensive overview of the various techniques.
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But here’s something interesting..

Quantum trajectories and Feynman path integrals

• In the expression Ψ(x1, t1) = KQ(x1, t1;x0, t0)Ψ(x0, t0) that propagates the wave
function along the quantum trajectory, the propagator KQ may - expressing the
R-propagator in terms of the Jacobian - be written as

KQ(x1, t1;x0, t0) =
1

J(t)
1
2

exp
[

i

h̄

∫ t1

t0

L(t) dt

]
.

• In Feynman’s path integral formulation of quantum mechanics the equivalent
propagator may be written as

KF (x1, t1;x0, t0) = N
∑

all paths

exp
[

i

h̄

∫ t1

t0

Lcl(t) dt

]
.

Here propagator linking two spacetime points calculated by linearly superposing
amplitudes eiS/h̄ (obtained by integrating classical Lagrangian Lcl(t) = 1

2mv2−V )
associated with infinite number of all possible paths connecting the points.

In pilot-wave approach, achieve same effect by integrating the quantum Lagrangian
L(t) = 1

2mv2 − (V + Q)along precisely one path. Bet you didn’t know that..
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Paths in Feynman’s theory

How to construct the wave function

Feynman: Sum over infinite number of independent but interfering paths, the phase for each path
determined by a classical Lagrangian. Nonlocality from explicitly summing over every point in universe.

de Broglie-Bohm: Use one unique pilot-wave trajectory influenced by underlying hydrodynamic fields

(i.e. the global wavefunction). Nonlocality since trajectory ‘aware’ of Ψ in surrounding region through

influence of amplitude curvature (Q = h̄2

2m
∇2R

R ) and curvature of the phase ∇ · v = ∇2S
m .

What are Feynman’s paths?

We really mean all paths - including the one heading off (very quickly) into space, orbiting three times

around Alpha Centauri, popping down the road for some chips, before arriving, exhausted, at x1, t1.

Is it perhaps one of these paths that a particle actually follows?

If path integral formalism provided probability distribution ρ on space of all paths could assume Nature

chooses one at random from ρ. Same ontology as pilot-wave theory but different law of motion.

Unfortunately there is no probability measure on path space that is a real number, so this suggestion

cannot be taken literally. Status of paths more like “possible paths along which a part of the wave

may travel” to the extent that waves travel along paths.

Feynman’s paths are mathematical tools for computing the evolution of Ψ, while one among de

Broglie paths is actual motion of particle, which exists in addition to Ψ. Keep in mind path integrals

not exclusive to QM; can write any linear field equation (e.g. Maxwell) in terms of path integrals.
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Feynman stage 2
The Feynman propagator KF is a many-to-many mapping i.e. all points are linked
by all possible paths. So full Ψ(x1, t1) found from Huygen’s principle by summing
contributions coming from all possible start points - multiply amplitude at x0, t0 by
transition amplitude KF for ‘hopping’ to x1, t1. Then sum (integrate) over all x0.

Ψ(x1, t1) =
∫

KF (x1, t1;x0, t0)Ψ(x0, t0) dx0

• Note Feynman propagator (a Green’s function) is a kind of wave function; if initial wave function

Ψ(x0, t0) spiked at point x0 = a, i.e. Ψ(x0, t0) = δ(x0 − a) is a Dirac delta function then

resulting wave function at point x1 is the propagator Ψ(x1, t1) = KF (x1, t1; a, t0). Classical

trajectory linking endpoints gives stationary phase contribution to integrand in definition of KQ.

• In quantum trajectory method achieve same end as path integral - computation of Ψ given initial

value - in quite different and conceptually simpler manner with two spacetime points connected by

at most a single path. Two steps in Feynman’s approach (propagator then Huygens) condensed

into one. Ψ generated from initial form by single-valued continuum of trajectories. Pilot-

wave theory thus not just interpretation but an alternative mathematical representation of QM.

Stationary phase argument
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• “A phenomenon which is impossible, absolutely
impossible, to explain in any classical way, and
which has in it the heart of quantum mechanics.
In reality it contains the only mystery.”

• “Do not keep saying to yourself, if you can possibly
avoid it, ‘But how can it be like that?’ because
you will get ‘down the drain,’ into a blind alley
from which nobody has yet escaped. Nobody
knows how it can be like that.”

• “Many ideas have been concocted to try to explain
the curve for P12 [that is, the interference
pattern] in terms of individual electrons going
around in complicated ways through the holes.
None of them has succeeded.”

• This experiment “has been designed to contain
all of the mystery of quantum mechanics, to put
you up against the paradoxes and mysteries and
peculiarities of nature one hundred per cent.”

• “How does it really work? What machinery is
actually producing this thing? Nobody knows
any machinery. Nobody can give you a deeper
explanation of this phenomenon than I have given;
that is, a description of it.”
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Quantum trajectory methods: summary
• Association of pilot-wave approach with fluid mechanics yields significant computational benefit

(appreciated only recently): (i) pilot-wave trajectories can be computed independently of Ψ (only

initial Ψ required), and (ii) they exhibit sufficient structure to provide a method to generate the

time-dependence of Ψ.

• Note this is not standard pilot-wave theory as it uses only the trajectories and not its theory

of matter (where one path is labelled preferentially and occupied by a material corpuscle). We

recover pilot-wave theory if we add ‘dust particles’ to the fluid flow. Shows us trajectories are not

“superfluous ideological superstructure”.

• In hydrodynamic analogy, wave mechanics corresponds to the Eulerian picture, and the particle

theory (as outlined here) to the Lagrangian picture. Ψ encodes the temporal history of a space

point, while v encodes its ‘spatial’ history. Given the wave function, the time-dependence of either

state function can be computed and implies the other - a kind of wave-particle duality !

• For full mathematical equivalence of the models, the hydrodynamic variables must satisfy conditions

inherited from Ψ, which in turn provide physical insight into the original conditions. For example,

single-valuedness requirement on Ψ corresponds to appearance of quantized vortices in the fluid.

• I have skipped essentially all modern developments of this theory. For relatively up-to-date references

in rapidly changing field see Wyatt’s talk listed below.

Relevant things to read

R.E. Wyatt, Overview: dynamics with quantum trajectories. Talk slides at http://cnls.lanl.gov/qt/Agenda.html
P. Holland, Computing the wavefunction from trajectories, Ann. Phys. 315, 505 (2005) and quant-ph/0405145.
R.E. Wyatt, Quantum dynamics with trajectories, Springer (2005)
P. Holland, Schrödinger dynamics as a two-phase conserved flow, J. Phys. A: Math.Theor. 42, 075307 (2009).
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An example
Disclaimer: Much more difficult than I thought to find pretty 3D pictures to show you for applications

(we did prettier 2D analytic trajectories last week). This is best I could come up with in a short search..

Pictures by Guzman et al.‘Visualizing energetics of dissociation of a metastable molecule’. Used

model molecule composed of two fragments, A and B. Starting from the molecular state AB, what is

probability that AB will dissociate into separated components A + B? Solution unfolds in Lagrangian

(‘moving-with-the-fluid’) frame, eliminating need to solve problem on large grid. Fluid in pictures is

probability density discretized into small elements. Visualize outcome: number of particles escaping

from system at lower right, for example, represents overall probability of dissociation at a given energy.

Tendency of molecular system to remain intact represented by high-probability-density particles (colored

red) that remain in center of picture; low-probability-density particles colored blue.

Ensemble of probability densities at various times as the AB system dissociates into A+B.
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Propagators and the implicate order

Bohm in his Indian guru mode sometimes used to take propagators a bit further, in terms of his

concepts of the implicate order and his concepts of enfolding and unfolding (see Lecture 8):

All laws of movement in QM correspond to enfoldment and unfoldment. In particular, relation between

wave function at one time and its form later determined by propagator or Green’s function K through

Ψ(x, t) =
R

K(x, t; x′, t′)Ψ(x′, t′) dx′. Simple picture of movement is that waves from whole

space enfold into each region and waves from each region unfold back into whole space. Propagator

ultimately derived from Cartesian order by solving differential equations. But if we question this order

holds fundamentally can adopt view that propagator is more basic than the differential equation.

See Bohm and Hiley’s “The Undivided Universe”, p. 354.
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Quantum trajectories and quantum Monte Carlo

What connection, if any, is there between quantum trajectory methods and the various
state-of-the-art techniques - like quantum Monte Carlo (QMC) - that accurately
solve the time-independent Schrödinger equation sampling the full many-electron Ψ?

Quantum Monte Carlo methods

The most highly-evolved QMC variant with broad scope is diffusion Monte Carlo (DMC). It is probably

the most accurate method known for solving the many-electron Schrödinger equation that also scales

reasonably with the number of particles. It remains tractable (and highly accurate) for large system

sizes; simulations of periodic systems with over 2000 electrons per cell have been reported.

It propagates an arbitrary starting wave function using a (Green’s function) propagator just like the

ones we have been discussing. The main difference is that the propagation occurs in imaginary time

τ as opposed to real time t. This has the effect of ‘improving’ the wave function i.e. making it look

more like the ground state as imaginary time passes (see later).

Ψ(x, τ + δτ) =

Z
K(x, x′, δτ)Ψ(x′, τ) dx′

Evolving wave function represented by distribution in space and time of randomly-diffusing electron

positions over an ensemble of copies of the system. From pilot-wave perspective, this is something like

calculating expectation values by ‘sampling trajectories’ (from ensemble of different launch points).

Further reading

Quantum Monte Carlo simulations of solids, W.M.C. Foulkes, L. Mitas, R.J. Needs and G. Rajagopal, Rev. Mod. Phys 73, 33 (2001).
The quantum Monte Carlo method, M.D. Towler (cough), Phys. Stat. Solidi 243, 2573 (2006).
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Why do we propagate Ψ in imaginary time in DMC?

Consider Schrödinger equation (in a.u.) with constant offset ET to zero of potential:

−∂Ψ(x, t)
i∂t

=
(
Ĥ − ET

)
Ψ(x, t).

For eigenstate, general solution is clearly

φ(x, t) = φ(x, 0)e−i(Ĥ−ET )t.

Then expand an arbitrary (‘guessed’) Ψ(x, t) in complete set of eigenfunctions of Ĥ.

Ψ(x, t) =
∞∑

n=0

cnφn(x)e−i(En−ET )t

Substitute it with imaginary time τ = it. Oscillatory behaviour becomes exponential.

Ψ(x, τ) =
∞∑

n=0

cnφn(x)e−(En−ET )τ

Get imaginary time independence by choosing constant ET to be ground state
eigenvalue E0. As τ →∞, Ψ comes to look more and more like the ground state φ0.

Ψ(x, τ) = c0φ0 +
∞∑

n=1

cnφn(x)e−(En−E0)τ
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How do we propagate Ψ in imaginary time in DMC?

• We use a Green’s function propagator K(x,x′, δτ):

Ψ(x, τ + δτ) =
∫

K(x,x′, δτ)Ψ(x′, τ) dx′

• How do we find an expression for the propagator K? Consider imaginary-time
Schrödinger equation in two parts:

∂Ψ
∂τ

=
1
2
∇2

xΨ (diffusion equation)

∂Ψ
∂τ

= −V Ψ (rate equation)

• Propagator for diffusion equation well-known: it is a 3N -dimensional Gaussian with
variance δτ in each dimension. Propagator for rate equation known - gives so-
called ‘branching factor’ which can be interpreted as a position-dependent weight
or stochastic survival probability for a member of an ensemble.

K(x,x′, δτ) =
1

(2πδτ)
3N
2

exp
(
−|x− x′|2

2δτ

)
× exp

[
−δτ

(
V (x) + V (x′)− 2ET

2

)]
Multiplying the two together to get the propagator for the imaginary-time

Schrödinger equation is an approximation valid in the limit of small δτ .
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A Diffusion Monte Carlo simulation
• Interpret Ψ as a probability density, then diffusion equation ∂Ψ

∂τ = 1
2∇

2
xΨ represents

movement of N diffusing particles. Turning this around, can represent Ψ(x, τ) by
ensemble of such sets of particles. Member of ensemble called a ‘configuration’.

• Interpret propagator K(x,x′, δτ) as probability of configuration moving from x′

to x in a time δτ . Branching factor determines population of configurations: in
regions of high V configurations will be killed off; in low V regions configurations
will multiply. It is this that ‘changes the shape of the wave function’ as it evolves.

• Propagate distribution in imaginary time, and after sufficiently long time excited
states will have decayed away to leave the ground-state Ψ. Can then continue
propagation and accumulate averages of observables.

Guess that the ground-state wave function for a single electron in a
harmonic potential well is a constant over some range (stupid!). Start
with seven copies of the system over which ensemble the electrons are
distributed according to this constant probability distribution. Propagate
the particle distribution in imaginary time according to the prescription
above, and watch the electrons become distributed according to the proper
Gaussian shape of the exact ground-state wave function. The change
in shape is produced by the branching factor occasionally eliminating
configurations in high V regions and duplicating ones in low V regions..

V(x)

Ψinit
(x)

Ψ0
(x)

t

τ {

x
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Importance sampling and the fixed-node approximation in DMC
The basic DMC algorithm sounds nice but doesn’t work in practice. This is because:

• Ψ can only be a probability distribution if of one sign everywhere (e.g. H atom,
boson system). For multi-particle fermion systems it necessarily has positive and
negative bits. Obvious ways of getting round this (e.g. separate probabilities for
different signs) fail on account of signal-to-noise problems (‘fermion sign problem’).

• Branching factor exp
[
−δτ

2 (V (x) + V (x′)− 2ET)
]

contains potential V varying
from −∞ to +∞. Sampling of points e.g. near nucleus leads to massive
fluctuations in branching factor and significant numerical instabilities.

Fix problem by introducing importance sampling via a guessed trial function ΦT

(from a HF or DFT calculation, say). Require propagation to produce distribution
f(x, τ) = Ψ(x, τ)ΦT (x) - forced to be of one sign by demanding fixed ΦT and variable
Ψ functions have same nodal surface i.e. same zeroes (‘fixed-node approximation’).

New ‘imaginary time Schrödinger equation’ (Fokker-Planck)

−
∂f(x, τ)

∂τ
= −

1

2
∇2

xf(x, τ) +∇x · [F(x)f(x, τ)]− (EL(x)− ET) f(x, τ)

F(x) ≡ ∇xΦT
ΦT

‘drift vector’ EL = ĤΨ
Ψ ‘local energy’

f(x, τ + δτ) =
R

K(x′, x, δτ)f(x, τ) dx′
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Problem solved - more or less
Final propagator consists of diffusion, drift and branching processes:

K(x′, x, δτ) =
1

(2πδτ)
3N
2

exp

"
−

(x′ − x−δτF(x))2

2δτ

#
exp

»
−

δτ

2

`
EL(x) + EL(x

′
)− 2ET

´–
To be compared with the original propagator without importance sampling:

K(x, x′, δτ) =
1

(2πδτ)
3N
2

exp

 
−

(x− x′)2

2δτ

!
exp

»
−

δτ

2

`
V (x) + V (x′)− 2ET

´–

• Mixed distribution f = ΨΦT of one sign everywhere so no more sign problem (at
cost of reducing flexibility by fixing the nodes).

• Branching term now contains local energy EL = ĤΨ/Ψ which fluctuates much less
than the potential V (for an eigenstate, EL is constant everywhere in configuration
space). No more numerical instability in the branching.

• Importance sampling from drift term F(x) = ∇ΦT/ΦT enhancing density of
configs where ΦT is large i.e. there is a drift or osmotic velocity directed towards
large ΦT on top of the random diffusion - like electric field on Brownian motion.

Fixed-node approximation most serious error in DMC, but still recover 95-100% of
the total energy error made in a Hartree-Fock calculation (the ‘correlation energy’)
for typical systems. Error typically increases with increasing atomic number.
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Stochastic pilot-wave theories

To put DMC in de Broglie-Bohm context, must first understand concept of stochastic
pilot-wave theories. Additional random motion introduced in 1954 by Bohm and
Vigier in context of why particles distributed as |Ψ|2 (though no need - see lecture 5).

Imagine a deeper ‘sub-quantum’ level which imparts additional intrinsic randomness
to particle motion (like in Brownian motion with pollen grains being hit by clouds of
atoms). Velocity of individual particle is v = ∇S

m +ξ(t) with ξ(t) a chaotic contribution

to the velocity fluctuating randomly with zero average. Usual ∇S
m trajectory produced

by guiding equation thus average velocity rather than actual one.

• Assume - whatever its origin - stochastic process treatable as simple diffusion. With

prob density P , diffusion constant D, there is diffusion current j = −D∇P and

a conservation equation ∂P/∂t = −D∇2P . Leads clearly to uniform distribution

(change in P stops at zero density curvature, like ink drop spreading in water).

• If want non-uniform final distribution there must be another field giving rise to an osmotic velocity.

Example: Einstein showed if add gravitational field in z-direction this velocity is u = Dmg
kT z, the

conservation equation becomes ∂P
∂t = −D∇

ˆmg
kT zP +∇P

˜
. In equilibrium when ∂P

∂t = 0 we

have ∇P
P = mg

kT z + c or P = A exp(−mgz
kT ) which is just the Boltzmann factor.

• In stochastic pilot-wave theory require random diffusion process whose equilibrium state corresponds

to prob density P = |Ψ|2 = ρ and mean current j = ρv = ρ(∇S
m ). Consistent possibility if

Ψ =
√

ρ exp(iS
h̄ ) as this implies conservation equation ∂ρ

∂t +∇ · j = 0. Can be shown suitable

osmotic velocity is u = D∇ρ
ρ - then follows there is an equilibrium state with P = ρ in which the

osmotic velocity is balanced by the diffusion current so the mean velocity is ∇S
m .
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DMC vs. stochastic pilot-wave theories
In the various theories at each timestep get change in particle position dr from some combination of

guided velocity, random diffusion and a drift (osmotic) velocity. The χ in the diffusion part is a random

variable with zero mean and unit variance. Atomic units are dispensed with (h̄ and m are back).

Standard pilot wave dr = ∇S
m dt

Stochastic pilot wave dr = ∇S
m dt + χ

√
h̄
mdt + h̄

2m
∇|Ψ|2
|Ψ|2 dt

DMC dr = χ
√

h̄
mdt + h̄

m
∇|ΦT |
|ΦT |

dt

DMC2† dr = ∇S
m dt + χ

√
h̄
mdt + h̄

m
∇|ΦT |
|ΦT |

dt

† If use complex ΦT and retain imaginary part of complex drift vector ∇ΦT /ΦT (since for Ψ = ReiS/h̄ have h̄
m
∇Ψ
Ψ

= h̄
m∇ ln Ψ =

h̄
m
∇R
R

+ i∇S
m ). In this view, ∇S/m is that part of osmotic velocity accounting for target distribution changing shape in real time.

So methods have practically identical Langevin-type equations describing particle motion as result of

drift and diffusion, and similar propagators K (one in real, one in imaginary time).

Notes

• In DMC complex Ψ hardly used: real arithmetic faster and real Ψ easier to map into probabilities.

• Where complex Ψ have been used one employs fixed-phase approximation instead of fixed-node i.e.

you say phase S is fixed and equal to phase of trial function ΦT . DMC algorithm used to solve for

modulus of Ψ. Discussions in literature generally unclear (at least to me).

• Note no-one ever does DMC for time-dependent wave functions - always stationary states.
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Some half-assedly thought-out ideas

Repeat DMC imaginary time analysis with complex time τ = t + it′:

Choose constant offset ET in TDSE to be ground-state energy E0 then, as τ →∞, Ψ
comes to look more like ground state φ0 (as before). Difference is that exponentially-
decaying bit now has t-dependent moving nodal surface. (Recall from lecture 3 how
linear combination of stationary TDSE solutions with different energies, each with its
own t-dependent phase factor, gives overall t-dependence in |Ψ|2.)

Ψ(x, τ) = c0φ0 +
∞∑

n=1

cnφn(x)ei(En−E0)te−(En−E0)t
′

• With t-dependent complex Ψ there are no nodal surfaces, just nodal lines where surfaces of real

and imaginary functions intersect. No barriers to particle motion.

• Last week Valentini’s calculations showed us how particles guided by pilot-waves with rapidly-moving

nodes quickly became distributed according to |Ψ|2. Also saw that nodal lines moving through

particle distribution acted as ‘particle mixers’; trajectories become ‘more chaotic’ with more nodes.

• Might think that while imaginary time propagation improves Ψ, real time propagation allows

nodal surface to relax and Ψ to be optimized more efficiently, unconstrained by fixed nodes. As

excited-state contributions die away and distribution approaches stationary state, ∇S
m (and hence

guided particle velocity) tends to zero (only diffusion and real part of drift velocity remain for

computing statistical data and expectation values).

Is there a way this sort of thing can be useful in developing better QMC algorithms?
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Time-dependent quantum Monte Carlo
Only reference in literature to anything like this is Bulgarian chap
I.P.Christov’s time-dependent quantum Monte Carlo (TDQMC) method from
2007. Involves moving electrons guided by de Broglie-Bohm pilot waves!

Important-sounding claims:

• Particle distribution in configuration space corresponds to |Ψ|2; method thus not sensitive to sign

of many-body wave function (apparently thereby claims to solve fermion sign problem..).

• Guide waves and nodal surface evolve with particles. No initial guess for Ψ required.

• Can do time-dependent problems e.g. involving external electromagnetic fields.

• Easier numerically than QTM and similar methods outlined earlier.

What it does

• Sort of synthesis of QMC and quantum hydrodynamics. Each electron represented by ensemble of

configs moving on quantum trajectory implied by guidance equation (normal or stochastic).

• Guide functions are ‘one-electron orbitals’ evolving according to time-dependent Schrödinger

equation. Time evolution by simple numerical integration (not Green’s function propagators).

• Complex time used in evolution; imaginary part causes guide waves to relax to ground state, real

part gives time-dependent phase which guides configs to stationary positions. Amplitude of random

diffusion part decreasing function of time.

• Nodal structure (and hence symmetry properties of many-electron Ψ) from Slater determinants of

individual time-dependent orbitals. Trajectories never cross nodes and nodes are time-dependent.
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TDQMC - relaxation to ground state
Time evolution of coordinates of two arbitrary

configs for 1D He (a) for DMC and (b) for TDQMC.

Different methods for guiding configs: TDQMC

trajectories tend towards steady-state positions

(distributed as |ΨGS|2 over ensemble), DMC

trajectories undergo random jumps at all times.

Once TDQMC ground state achieved, can switch

to real time and turn on external fields to study t-

dependent dynamics, since P (x, t) = |Ψ(x, t)|2
and will stay that way (e.g. Christov calculates

t-dependent dipole moment for 1D He atom).

Problems

• Calculations (over 4 papers) only for embarassingly trivial systems (1D helium atoms etc..).

• Uses Numerical Recipes-style Crank-Nicholson finite-differencing in Eulerian picture to propagate

pilot-waves. More sophisticated technology required for more complex systems.

• Uses ‘effective Coulomb interactions’ instead of proper ones as he doesn’t like singularities. Ugly

Hartree-style approximation R(x1, x2, . . . , xN) = R1(x1)R2(x2) . . . RN(xN) which means no

non-local quantum correlations (though he has an ‘effective potential correction’ to patch this up).

• Very low tech compared to what is routinely done today in places like TCM. Solutions of fermion

sign problem need to demonstrate explicitly suitable scaling with system size etc. Long way from

1D He to e.g. 1000+ atom solid magnetic NiO calculations currently being done with DMC.

Nevertheless ideas like these may yet prove very interesting. Not many people studying them either!
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A good lesson indeed
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Rest of course
Lecture 1: 21st January 2009

An introduction to pilot wave theory

Lecture 2: 28th January 2009

Pilot waves and the classical limit. Derivation and justification of the theory

Lecture 3: 4th February 2009

Elementary wave mechanics and pilot waves, with nice examples

Lecture 4: 11th February 2009

The theory of measurement and the origin of randomness

Lecture 5: 18th February 2009

Nonlocality, relativistic spacetime, and quantum equilibrium

Lecture 6: 25th February 2009

Calculating things with quantum trajectories

Lecture 7: 4th March 2009

Not even wrong. Why does nobody like pilot-wave theory?

Lecture 8: 11th March 2009

Bohmian metaphysics : the implicate order and other arcana

Followed by a GENERAL DISCUSSION.

Slides/references on web site: www.tcm.phy.cam.ac.uk/∼mdt26/pilot waves.html
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