
Pilot-wave theory, Bohmian metaphysics,
and the foundations of quantum mechanics

Lecture 2

Pilot waves and the classical limit. Derivation and justification of the theory.

Mike Towler

TCM Group, Cavendish Laboratory, University of Cambridge

www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html

mdt26@cam.ac.uk

– Typeset by FoilTEX – 1



Acknowledgement

The material in this lecture is largely a summary of standard works (books and
articles) by Peter Holland, David Bohm, Basily Hiley, Detlef Dürr, Stefan Teufel,
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Where we ended up last week..

Pilot-wave theory self-consistent, intuitive, agrees with all QM predictive-observational
data but typical response [Encyclopedia Britannica 2007 ] not encouraging:

“Attempts have been made by Broglie, David Bohm, and others to contruct theories based on

hidden variables, but the theories are very complicated and contrived. For example, the electron

would definitely have to go through only one slit in the two-slit experiment. To explain that

interference occurs only when the other slit is open, it is necessary to postulate a special force

on the electron which exists only when that slit is open. Such artificial additions make hidden

variable theories unattractive, and there is little support for them among physicists”.

But there is hope! In fact the above misrepresents pilot-wave theory in several ways:

• Saying ‘electron [goes] through only one slit’ merely endows theory with a clear ontology (what

exists?) - something missing from the standard theory - and is hardly a basis for complaint.

• Manifestly not ‘very complicated ’ or ‘contrived ’. Schrödinger equation is as usual. Velocity field

for particle trajectories is usual probability current density vector over density. So from established

mathematical ingredients of the standard theory the pilot-wave approach just tries to make sense

of the orthodox talk about ‘particles’. Hardly contrived to then contemplate them having positions.

• Does not ‘postulate special force on electron which exists only when [both slits] open’ to ‘explain that

interference occurs’. Just say electron guided by velocity field implicit in solution to Schrödinger’s

equation. Ψ develops interference only when both slits are open, with obvious consequences for

how Ψ guides the electron.

“If we cannot disprove Bohm, then we must agree to ignore him.” [J.R. Oppenheimer]
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Today’s questions

(1) How do we justify or even ‘derive’ pilot-wave approach mathematically?

(2) How is pilot-wave approach related to classical physics?

• Unfortunate common criticism: hidden variables approaches like pilot-wave theory
just ‘an attempt to return to classical physics’. In fact it invokes a concept not
anticipated in classical physics - that of a ‘state’ of a mechanical system that lies
beyond the material points. Role of trajectory is to bring out this new concept so
sharply that it can’t be ignored.

• This essentially non-classical programme differs from Niels Bohr who strove to
leave classical concepts intact as far as possible by restricting their applicability.
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The classical and quantum worlds

How does classical world emerge from quantum one?

Classical world : the world of objects of familiar experience that obey Newtonian laws.

• Standard QM: only wave function or results of measurements exist, so answer to
question is difficult. Validity of classical concepts presupposed, since only in terms
of these can one unambiguously communicate experimental results in quantum
domain. Correspondence principle then demonstrates consistency of quantum
theory with this presupposition.

Standard QM is not a precise microscopic theory as the division between the
microscopic and macroscopic world is not made precise. Can therefore say that
QM does not contain the means for describing the classical world in any approximate
sense. Need to go beyond standard QM. Two possibilities known for amending
QM: either wave function is not all there is (→ hidden variables) or Schrödinger’s
equation is wrong (→ objective collapse - GRW etc.).

• Pilot-wave theory: Like classical mechanics, this is a theory about real objects and
therefore we expect it can be used to formulate the problem of the classical limit
within QM. Today we shall see - amongst other things - how this might be done.
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The classical limit in standard QM

Correspondence principle: vague notion stating that, in effect, the behaviour of
quantum systems reproduces classical physics under suitable conditions (e.g. in limit
of large size or large quantum numbers or as h̄→ 0 - whatever that means).

With Schrödinger equation interpreted probabilistically, Ehrenfest showed Newton’s
laws hold on average, in that the quantum statistical expectation value of position
and momentum operators obey Newton’s laws (if V varies slowly over wave packet):

d

dt
〈A〉 =

1
ih̄
〈[A,H]〉+

〈
∂A

∂t

〉
⇒ e.g.

d

dt
〈p〉 = 〈−∇V (x, t)〉 = 〈F 〉

Which operators correspond to physical quantities or measurements? Correspondence
principle limits the choices to those that reproduce CM in the limit.

As standard QM only reproduces CM statistically and because statistical interpretation
only gives probabilities of different classical outcomes, Bohr argued that CM does not
emerge from QM in the same way that e.g. CM emerges as approximation of special
relativity at small v. He argued that CM exists independently of QM and cannot be
derived from it - it is inappropriate to understand observer experiences using purely
QM notions like wave functions as different states of experience of an observer are
defined classically and do not have a QM analog.
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Classical mechanics

Given a set of initial conditions - the theory allows us to calculate deterministic
trajectories of particles obeying Newton’s laws. There are various equivalent
mathematical formulations of this i.e. different equations leading to same trajectories:

Fi(q1, q2, . . . , qN) = miq̈i Newtonian mechanics

↓
q̇ = ∂H

∂p (q,p) ṗ = −∂H
∂q (q,p) Hamiltonian dynamics → standard QM

Solve a canonical system of 1st-order ODEs (2n equations for 2n functions of a parameter t

in which all variables’ first derivatives are given by partial derivatives of the same function).

δ
∫ t1
t0
L (q(t), q̇(t)) dt = 0 Lagrangian dynamics → path-integral QM

Solve the basic calculus of variations problem of finding n functions q1, . . . , qn of a

parameter t that make stationary a line integral (i.e. solve n 2nd-order ODEs).

∂S
∂t (q, t) +H(q, ∂S∂q) = 0 Hamilton-Jacobi dynamics → pilot-wave theory

Solve a single 1st-order PDE in which the unknown function does not occur explicitly.
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What have Hamilton and Jacobi got to do with Schrödinger?

Consider classical particle - the position of which is not known with certainty. We
must deal with statistical ensemble in which only probability density ρ(x, t) is known.

• Probability must be conserved, i.e.
∫
ρd3x = 1 for each t. Therefore must satisfy

continuity equation ∂ρ/∂t = −∇· (ρv) where v(x, t) is the velocity of the particle.

• In Hamilton-Jacobi formulation of CM, velocity given by v(x, t) = ∇S(x,t)
m where

S(x, t) is a solution of the Hamilton-Jacobi equation, −∂S
∂t = (∇S)2

2m + V .

• Can write the two green equations in more elegant form as single complex

equation. Introduce a complex function Ψ =
√
ρe

iS
h̄ where h̄ is arbitrary constant

with dimension of action so exponent is dimensionless. Then, the two equations
are equivalent to

ih̄
∂Ψ
∂t

=

(
− h̄2

2m
∇2 + V −Q

)
Ψ with Q = − h̄2

2m
∇2√ρ
√
ρ
.

This is the time-dependent Schrödinger equation with extra term Q, and |ψ(x, t)|2
has same interpretation as in QM: a probability density of particle positions.

Analogy with classical stat mech? We shall understand this in more detail presently..
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Hamiltonian dynamics
Introduce phase space variables

(q,p) = (q1, . . . ,qN ,p1, . . . ,pN).

Hamilton’s evolution equations are

q̇ = ∂H
∂p (q,p) ṗ = −∂H

∂q (q,p)

with the Hamiltonian function defined as

H(q,p) = 1
2

∑N
i=1

p2
i
mi

+ V (q1, . . . ,qN).

Differential equation a relation between flow and (time-dependent) vector field. Flow is the mapping

along integral curves for vector field i.e. curves whose tangent vector (time derivative) at each point

along curve is vector field itself at that point. Intuitively, integral curve traces out path in phase space

that imaginary particle moving in vector field would follow. Vector field encodes the physical law.

Vector field generated by function H on phase space: vH(q,p) =

(
∂H
∂p
−∂H
∂q

)
.

Hamiltonian dynamics then given simply by

(
q̇
ṗ

)
= vH(q,p).

For fixed H-hypersurfaces (fixed energy, taking H time-independent), the trajectories
remain within the hypersurface, in accordance with energy conservation.
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Properties of Hamiltonian flow

Fundamental properties are:
(1) Conservation of energy - the value of the Hamiltonian function does not change
along trajectories.

Implies that if Poisson bracket {f,H} = 0 then f is a constant of the motion (where
f is any function on phase space, and {f,H} = ∂f

∂t = ∂f
∂qq̇ + ∂f

∂pṗ = ∂f
∂q
∂H
∂p −

∂f
∂p
∂H
∂q ).

(2) Conservation of volume - Flow lines have neither sources nor sinks, i.e. the vector
field is divergence free (an ‘incompressible fluid’).

Any phase space subset getting transported via Hamiltonian flow remains unchanged.
This is essentially Liouville’s theorem - basis of classical statistical mechanics.
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Analogy of mechanics and optics

Can we find an analogy of mechanics with
wave optics and/or its short-wavelength limit -
geometrical optics?

Geometrical optics views light as having a corpuscular nature; its propagation can be defined in terms

of rays, which are the trajectories of these corpuscles. Interference and other pure wave phenomena

are neglected. Involves Fermat’s extremal principle and Huygens’ principle according to which light

rays/corpuscles take the path of shortest time and moreover they follow the normals of wave fronts.

Yes, we can!

•Extremal principle replacing Fermat’s is least action principle of Lagrangian dynamics.

•Equivalent of Huygens’ principle involves definition of waves which guide mechanical
trajectories - leads to Hamilton-Jacobi theory.

Then natural to speculate that classical mechanics might describe the short-wavelength
regime of a wave mechanics (which is just what de Broglie and Schrödinger did!).
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Lagrangian dynamics

•Mechanical trajectories between t0,a and t1,b given by extremals of the action S

S =
∫ t1

t0

L (q, q̇, t) dt

•Standard calculus of variations treatment gives 2nd-order Euler-Lagrange equations.

d

dt

∂L

∂q̇i
− ∂L

∂q i
= 0

For Newtonian mechanics, Lagrangian L(q, q̇) = 1
2q̇ ·mq̇ − V (q) which yields the

Newtonian equations as Euler-Lagrange equations.

•Lagrange function and Hamiltonian function are Legendre transforms of one another
(essentially reparametrizing a function in terms of its slope). Replace (q,p) by (q, q̇)
using the implicitly-given function q̇ = ∂H(q,p)

∂p where the equation is solved by p as

a function of q̇, i.e. H(qi, pi, t) =
∑
i piq̇i − L(qi, q̇i, t).
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Hamilton-Jacobi theory

“Don’t worry, young man: in mathematics, none of us really understands
any idea -we just get used to them”
John von Neumann, after explaining (no doubt very quickly!) the method of characteristics

(i.e. Hamilton-Jacobi theory) to a young physicist, as a way to solve his problem; to which

the physicist had replied: “Thank you very much; but I’m afraid I still don’t understand

this method.”

−∂S
∂t

= H

(
q,
∂S

∂q
, t

)
=

(∇S)2

2m
+ V

In mechanics, HJT represents particle motion as a wave motion.

•Is action S in Lagrange formulation same as S (‘Hamilton’s principal function’) in
the Hamilton-Jacobi equation?

Nearly. S is related to the usual action S by fixing initial time t1 and endpoint
q1 and allowing upper limits t2 and second endpoint q2 to vary; these variables are
the arguments of the S function. In other words, Hamilton’s principal function S
is indefinite integral of the Lagrangian with respect to time. The action S is a
particular definite integral for fixed endpoints.
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Properties of the S field
From the calculus of variations to the Hamilton-Jacobi equation

We will no longer consider just a single line integral
∫
L dt, but a whole field of

solutions i.e. line integrals along all curves of a space-filling congruence, defined thus:

•Define family of hypersurfaces S(qi, t) = σ covering region of interest (i.e. single
unique hypersurface runs through each point). S is twice continuously differentiable.

•Define family of curves C given by qi = qi(t) that intersect each hypersurface once
(and are nowhere tangent to them). Then σ is function of t along C, and

∆ =
dσ
dt

=
∑
i

∂S

∂qi
q̇i +

∂S

∂t
(∆ 6= 0).

•Tangential displacement along C from (qi, t) to (qi+dqi, t+dt) induces an increment
dσ in σ, and an increment dI = L(qi, q̇i, t)dt in I =

∫
L dt.

•Now connect to calculus of variations: what curve q̇i makes dI/dσ a minimum? (for
fixed dσ). Given dI/dσ = L/∆, we require

∂

∂q̇i

(
dI
dσ

)
= 0, i = 1, . . . , n =⇒ ∂L

∂q̇i
=
L

∆
∂S

∂qi

•Curve satisfying above RHS is the one you want. Such a curve said to be in the
direction of the geodesic gradient determined by the family of surfaces.
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Properties of the S field II

From the calculus of variations to the Hamilton-Jacobi equation

•Extra condition on surfaces implies minima of dI/dσ defined by geodesic gradient
equation below are also minima of dI/dt i.e. extremals of the variational problem.

∂L

∂q̇i
=
L

∆
∂S

∂qi

•Two equivalent forms of this condition (recall ∆ = dσ/dt):

(i) L/∆ = dI/dσ is constant on each surface, or

(ii) S solves the Hamilton-Jacobi equation (see next slide).

•Condition (i) implies we can reparametrize the family of surfaces such that L = ∆
everywhere, in which case

(iii) the geodesic gradient now given by ∂L/∂q̇i = pi = ∂S/∂qi, and

(iv) Each point has unique curve passing through it (set of curves = ‘congruence’).

(v) increment dI in
∫
L dt along curve of the family obeys dI = Ldt = ∆dt = dσ.

•Integral of dI along curve from any point P1 on surface S(qi, t) = σ1 to a point P2

on same curve on S(qi, t) = σ2 is same for any P1 i.e.
∫ P2

P1
L dt =

∫ P2

P1
dS = σ2− σ1.
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Properties of the S field III

From the calculus of variations to the Hamilton-Jacobi equation

L = ∆ and the definition of ∆ as a total derivative give

L(qi, q̇i, t) = ∆ =
dσ
dt

=
∑
i

∂S

∂qi
q̇i +

∂S

∂t
.

where q̇i refers to direction of geodesic gradient, i.e. q̇i = q̇i(qi, ∂S/∂qi, t). Thus

−∂S
∂t

=
∑
i

∂S

∂qi
q̇i(qi, ∂S/∂qi, t)− L(qi, q̇i(q,i , ∂S/∂qi, t), t)

RHS Legendre transform of Lagrangian i.e. Hamiltonian (with pi replaced by ∂S/∂qi)

∂S
∂t +H(qi, ∂S∂qi, t) = 0 Hamilton-Jacobi equation

Connection with mechanics

The isosurfaces of the function S(qi, t) can be determined at any time t. The motion
of an S-isosurface as a function of time is defined by the motions of the particles
beginning at the points qi on the isosurface. The motion of such an isosurface can be
thought of as a wave moving through q space.
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Hamilton-Jacobi theory and the calculus of variations
Choose region small enough so there is unique extremal curve C between any two
points. Value of fundamental integral along C is well-defined fn. of endpoint coords.

S(q1, t1; q2, t2) =
∫ t2

t1

Ldt =
∫ t2

t1

(∑
i

piq̇i −H

)
dt =

∫ t2

t1

(∑
i

pidqi −Hdt

)

Make small arbitrary displacements at each endpoint. Using fact that integral is
along an extremal, the variation in S is

δS =
∂S

∂t1
δt1 +

∂S

∂t2
δt2 +

∑
i

∂S

∂q1i
δq1i +

∑
i

∂S

∂q2i
δq2i =

[∑
i

piδqi −H(qj, pj, t)δt

]t2
t1

Independent displacements =⇒ can identify coeffs on both sides =⇒ HJ equation:

∂S

∂t2
= − [H(qi, pi, t)]t=t2 ,

∂S
∂q2i

= [pi]t=t2

∂S

∂t1
= [H(qi, pi, t)]t=t1 ,

∂S
∂q1i

= −[pi]t=t1

Interesting! If know S can get all extremals (possible motions) of the system without
solving any differential equations (no integrations just differentiation and elimination).
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Hamilton-Jacobi theory and canonical transformations
HJ theory normally presented as follows, rather than via calculus of variations

•In Hamiltonian formulation of CM, can replace qi, pi by new set of 2n
independent variables Qi, Pi - with new Hamiltonian K(Q,P, t) - through coordinate
transformation in phase space. New set of coords is canonical if Hamilton’s equations
retain their form under the transformation i.e. Q̇i = ∂K/∂Pi and Ṗi = −∂K/∂Qi.
•Both sets of variables must obey Hamilton’s principle

δ

∫ t1

t0

[piq̇i −H(q, p, t)]dt = 0 δ

∫ t1

t0

[PiQ̇i −K(Q,P, t)]dt = 0

where integrands differ by a total time derivative dF/dt of a ‘generating function’
(doesn’t affect location of extremals). Implies transformation equations:

dF
dt

=
∂F

∂t
+
∂F

∂q
q̇ +

∂F

∂Q
Q̇ =⇒ pi =

∂F

∂qi
, Pi = − ∂F

∂Qi
, K = H +

∂F

∂t

•Turns out S is generating function of canonical transformation which makes new
Hamiltonian K zero. Problem of motion solved since new coords constant along a
trajectory. K = 0 if F satisfies H(q, p, t) + ∂F/∂t = 0 i.e. it satisfies HJ equation:

∂S(q,Q,t)
∂t +H

(
q, ∂S(q,Q,t)

∂q , t
)

= 0
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Hamilton-Jacobi theory and the theory of characteristics

Characteristics of first-order PDE x∂u∂x − 2y∂u∂y = 0. Shaded

region shows where solution to equation defined, given an

imposed boundary condition at x = 1 between y = 0 and

y = 1, shown as a bold vertical line.

If the boundary curve crosses any characteristics more than

once then this can overdetermine the problem solution and

generally results in there being no solution.

•The method of characteristics is a technique for solving PDEs. Idea is to reduce
a PDE to a family of ODEs along which the solution can be integrated from some
initial data given on a suitable hypersurface.

•For a first-order PDE, the method of characteristics defines curves (called
characteristics) along which the PDE becomes an ODE. Once the ODE is found, it
can be solved along the characteristic curves and transformed into a solution for the
original PDE.

•In the case of classical mechanics, the mechanical paths are the characteristics of
the Cauchy problem associated with the Hamilton-Jacobi equation. The S function
generates a canonical transformation to coordinates and momenta that are constant
along a trajectory. This establishes an equivalence between the 2n 1st-order Hamilton
ODEs and the single 1st-order Hamilton-Jacobi PDE.
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An example mechanical problem and the nonuniqueness of S

•Solution is complete integral of HJ 1st-order PDE (depends on n constants αi).
Such solutions not unique (different functional dependence of S on qi, t, αi). Extra
set of constants βi implied by transformation equation for Pi (recall Pi = −∂S/∂Qi).
•S connected with infinite set of potential trajectories pursued by ensemble of identical
particles. Get this set by varying the constants βi for fixed αi.

Example : single free particle (for which HJ eqn is ∂S/∂t+ (∇S)2/2m = 0)

Solve by separation of variables:
S(x, y, z, P1, P2, P3, t) =

− 1
2m(P 2

1 + P 2
2 + P 2

3 )t+ P1x+ P2y + P3z

• αi is initial momentum vector Pi
• Trajectory ∂S/∂Pi = Qi ⇒ uniform

motion −(P/m)t + x = Q or x(t) =
x0 + vt starting at x0, velocity v.

• Ensemble: vary x0 ⇒ plane wave S

Solve by integrating L along trajectory :

S(x, t;x0, 0) = m
2t(x− x0)2

• αi is initial position vector x0i

• Trajectory ∂S/∂x0i = −Pi ⇒ uniform
motion −m(x− x0)/t = −P or x(t) =
x0 +vt from x0, range of momenta P

• Ensemble: vary P ⇒ spherical S

Propagation of plane and spherical HJ wave surfaces

which have common tangent at one point x0. Both

functions imply same motion for particle starting from

x0 with momentum P. Trajectory with momentum

P′ generated by spherical wave but not plane wave.
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Story so far

• Problem of dynamics as defined by Hamilton’s equations can be formulated in
terms of a partial differential equation determining the evolution of a field S(q, t).

• The role of the function S(q, t) is to generate a (momentum) vector field on
configuration space through the relation pi = ∂S/∂qi. Integral curves along the
field are possible trajectories of the N -particle system. For one body the basic law
of motion is ẋ = ∇S/m.

• S is thus connected with an ensemble of identical systems rather than a single
trajectory as in Lagrangian theory. It is in this way that the S functions may be
physically distinguished.

• For fixed q0, p0 all S functions imply the same time development q(t). This reflects
the fact that the state of a material system is completely exhausted by specifying
its position and momentum - the S function plays no role in either defining the
state or in determining the dynamics.
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Analogy with optics

• Properties of S only capture some of the features of genuine wave motion.
Propagation of S proceeds according to laws of geometrical optics; trajectory
corresponds to a light ray and the Hamilton-Jacobi equation is the eikonal equation.
However, any counterpart of principle of linear superposition is absent. Connection
between canonical extremals and geodesically equidistant hypersurfaces underpins
fact that both corpuscular and wave conceptions of light can account for the
phenomena (reflection and refraction) described by geometric optics.

• Huygens’ principle: Consider characteristic function S to
define family of geodesic hyperspheres S(q1, t1; q2, t2) =
σ with fixed centre P1 = (q1, t1). Let h1, h2 be two
hypersurfaces corresponding to constant values σ1, σ2 of S.
Let P1 be in h1, and the canonical extremal C through P1

intersect h2 in P2 (which is in the geodesic sphere centred
on P1 with radius σ2 − σ1). Huygens’ principle then states
the obvious that h2 is the envelope of the set of geodesic
spheres of radius σ2 − σ1 with centres on the surface h1.

• Fermat’s principle: states (roughly speaking) that a light ray between spatial
points P1 and P2 travels by the path that makes stationary the time taken. Obvious
consequence of Hamilton-Jacobi.
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A heuristic derivation of the Schrödinger equation

De Broglie and Schrödinger proposed that S represented a property of an individual
system - not an ensemble of systems each fully described by its classical state (q, p).

•Apply HJ theory to classical mechanical system. S function defines for each time
t surfaces of constant S in configuration space. By varying t can calculate speed u
with which these ‘wave fronts’ propagate: S(x, t) = c −→ S(x, t+ dt) = c.

•With arbitrary dx and dt the S function changes by dS which we set to zero:

dS = ∇S · dx +
∂S

∂t
dt = |∇S|n · dx +

∂S

∂t
dt = 0

Here n = ∇S/|∇S| is the unit vector perpendicular to surface S = c at point x, and
n · dx = ds is the component of dx lying along normal to surface. Thus wave front
speed at point x is u(x, t) = ds/dt = −(∂S/∂t)/|∇S| This implies relation between
wave and particle velocities (since vector |∇S| characterizes both).

•Use conservative system with energy E. Can integrate HJ equation ∂S/∂t+E = 0
to give S(x, E, t) = S∗(x,E)−Et where S∗ - called Hamilton’s characteristic function
- is just the initial S function. Then, since pi = ∂S∗/∂qi, the wave speed is

u =
E

|∇S∗|
=
E

p
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A heuristic derivation of the Schrödinger equation II
•Now postulate that wave fronts are surfaces of constant phase of suitable time-
dependent complex-valued function ψ on the configuration space:

ψ = R(qi, t) exp (−2πi[νt− φ(qi)])= R(qi, t) exp
{
i

h̄
[S∗(qi)− Et]

}
with R and φ real. Then νt− φ is the phase, and (apart from possible t-dependence
of R) ν is the frequency associated with ψ.

•Then postulate there is some constant h (with h̄ = h/2π) such that h [νt− φ(qi)] =
Et − S∗(qi). This must hold for all qi, t and so E = hν and S∗(qi) = hφ(qi).
Furthermore, u = λν = E

p =⇒ λ = h
p .

•For R indept of q; differentiation of ψ wrt qi gives eigenvalue equation ∂ψ
∂qi

= i
h̄
∂S∗

∂qi
ψ

(recalling pi = ∂S∗/∂qi) =⇒ association of operator p̂i = h̄
i
∂
∂qi

with momentum. For

qi-dept R postulate association of operator Ĥ = H(qi, p̂i, t) with system energy.

•For R indept of t; differentiation of ψ wrt t gives eigenvalue equation ih̄∂ψ∂t = Eψ

=⇒ association of operator Ê = ih̄ ∂∂t with system energy.

•If use postulated operators for general R(qi, t) (with h = Planck’s constant) we get:

Schrödinger equation Ĥψ = ih̄∂ψ∂t
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The quantum Hamilton-Jacobi equation

Substitute amplitude-phase decomposition (polar form) of the complex time-
dependent wave function Ψ(x, t) = R(x, t) exp(iS(x, t)/h̄) into the time-dependent
Schrödinger equation. Separate real and imaginary parts to get two coupled evolution
equations, i.e., the continuity equation for ρ = R2:

∂R2

∂t
+∇ ·

(
R2∇S
m

)
= 0

and a modified (quantum) Hamilton-Jacobi equation for S:

−∂S
∂t

=
(∇S)2

2m
+ V+Q where Q = − h̄2

2m
∇2R

R
.

•Phase of quantum-mechanical wave function Ψ and Hamilton’s principal function S
from classical mechanics obey same eqn in limit of vanishing quantum potential Q.

•Postulate that not only is Ψ an objectively existing physical field but S-function is
elevated from a passive to an active role.

CM: particle dynamics =⇒ evolution of field S in configuration space.

QM: Field dynamics of S (and other coupled fields) in configuration space =⇒
particle dynamics.
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Pilot-wave theory : wave particle duality

•New conception of matter through synthesis of wave and particle characteristics.
Matter has intrinisic field aspect, with mass points moving/interacting under influence
of a new kind of ‘internal energy’ as well as the more familiar potentials of classical
dynamics. ‘Internal potential’ is organizational or self-referential form of energy which
brings about ‘inner tension’ in material system to which the mass points respond.

•Unlike classical physics local motion of a given particle depends on the quantum
state of the entire system. This potentially introduces nonlocal effects. Wave function
on configuration space binds the whole of reality into an ‘Undivided Wholeness in
Flowing Movement’ (Bohm).

•Statistical predictions of QM are restated in terms of the deterministic motion of
a particle whose initial position is statistically distributed, this ensemble distribution
being in turn determined by ψ. This way, the mean values of quantum-mechanical
observables are identified with the average values of a statistical ensemble of particles.
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Pilot-wave theory : the dynamics of particles

•Postulate phase of wave function as generator of trajectories of particles through
p = ∇S. Solution thus requires specifications of initial positions. Gives single valued
trajectory field (‘congruence’) for particles.

•Additional postulate cannot be derived from wave function, but this is expected.
Cannot logically deduce model of substantial matter and its motion from algorithm
which has no such concepts at all (i.e. makes no statements as to what matter is.).

•Deduce postulate reasonable because (1) velocity field is just usual probability
current density vector over density i.e. particles follow stream lines of probability
flow (hydrodynamic analogy) so it is already in the theory, (2) analogy with classical
Hamilton-Jacobi theory, (3) it agrees with experiment, (4) symmetry considerations
[J. Stat. Phys. 67, 843 (1992) p.852]. Basically if particles exist and Ψ2 is their
time-dependent probability distribution then this is what they would do by definition.

•Probability given by R2. Now means probability that the particle is at a precise
location at time t, rather than probability of finding it there in a suitable measurement.
Justified since particles not so distributed become so under pilot-wave evolution.

•R (amplitude of physically real field ψ) gives probability amplitude, and hence R2

gives the particle distribution in the sense of statistical ensembles. Continuity equation
involving R is statement of conservation of probability flow.
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De Broglie formulation (1927)

In nonrelativistic quantum theory of system of
N particles with positions xi(i = 1, . . . , N) it is
now generally agreed that, with appropriate initial
conditions, quantum physics may be accounted for
by deterministic dynamics defined by two differential
equations, the Schrödinger equation:

ih̄
∂Ψ
∂t

=
N∑
i=1

− h̄2

2mi
∇2
iΨ + VΨ

for a ‘pilot wave’ Ψ(x1,x2, . . . ,xN , t) in configuration space, and the de Broglie
guidance equation

mi
dxi
dt

= ∇iS

for particles trajectories xi(t). Phase S(x1,x2, . . . ,xN , t) defined by S = h̄Im lnΨ
of wave function in complex polar form Ψ = |Ψ| exp[iS/h̄]. Easy to show ∇S is
equivalent to probability current j over |Ψ|2. The particles are thus ‘pushed along’ by
the wave along trajectories perpendicular to surfaces of constant phase.
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Bohm’s pseudo-Newtonian reformulation (1952)

Bohm’s 1952 presentation: take first time derivative of guidance equation mẋ = ∇S
then use TDSE to get second-order theory analagous to Newton’s second law:

∂

∂t
∇iS(x, t) = ∇i

∂

∂t
h̄Im lnΨ = ∇iIm

[
h̄

Ψ
∂

∂t
Ψ
]

=

∇iIm

[
i

Ψ

(
h̄2

2mi
∇2
iΨ− VΨ

)]
= −∇i

[
1
Ψ

(
−h̄2

2mi
∇2
iΨ + VΨ

)]
= −∇i [V +Q]

=⇒ miẍi = −∇i(V +Q) where quantum potential Q = −
∑
i
h̄2

2mi

∇2
i |Ψ|
|Ψ| .

May give casual readers impression that Bohm trying to derive quantum mechanics
from Newtonian point mechanics by postulating new special forces derived from new
potential, the quantum potential. Not so of course but people often confused by this.

Presence of Q (or, equivalently, ‘pushing’ by pilot wave) radically modifies trajectory
obtained with usual V , e.g. particle can be accelerated even if V = 0. Conversely Q
may cancel V , yielding no acceleration even if expected on classical grounds.
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Where is the classical limit?

• Conceptually, classical domain is where wave component of matter is passive and
exerts no influence on corpuscular component, i.e. state of particle independent of
state of field. How does state or context dependence characteristic of quantum
domain turn into state independence at classical level? When do the trajectories
look Newtonian? Compare quantum and classical HJ equations:

−∂S
∂t

=
(∇S)2

2m
+ V− h̄2

2m
∇2R

R
vs. −∂Scl

∂t
=

(∇Scl)2

2m
+ V

• Require Q= 0 to get classical dynamics exactly. Since force on particle depends on
gradient of Q - recall miẍi = −∇i(V +Q) - we also require FQ = −∇Q = 0.

• However classical limit is more subtle than this: Q is not a physical parameter but,
through R, a state-dependent function. Though limits like m→∞ or h̄→ 0 may
be required to satisfy Q→ 0, these will be in addition to a proper choice of state.

• Problem is that as the classical world is approached, we do not know the physical
criteria that will unambiguously make the quantum potential vanish and lead to
classical trajectories, irrespective of how the classical limit is defined.
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Comparison of classical and quantum trajectories

Central point : Behaviour of pure-state ensemble of pilot-wave trajectories is
fundamentally different from that of an ensemble of classical trajectories.

• If two classical trajectories ever have identical x and p, then they must always have
identical x and p; they must be the same trajectory.

• Different classical trajectories can share the same x at some time, and therefore
they can cross in configuration space. A unique trajectory is defined only when a
point in phase space is specified.

Consider ensemble of pilot-wave trajectories described by pure quantum state ψ.
Momenta from p = ∇S and S determined by ψ.

• Since S is single-valued function of x, specification of x (and the time) uniquely
determines p for each trajectory in the ensemble. If at any time two trajectories
share same x, must also share same p and must therefore be same trajectory. Pure
state pilot-wave trajectories cannot cross in configuration space, nor can they cross
nodal lines (zeroes of complex ψ) or surfaces (zeroes of real ψ).

• This is an additional difficulty in obtaining classical dynamics from pilot-wave
dynamics. Note that if you use mixed states then the trajectories can cross in
configuration space, but then this no longer describes an individual system.
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Einstein’s critique
“I have written a little nursery song about physics, which has startled Bohm

and de Broglie a little. It is meant to demonstrate the indispensability of

your statistical interpretation of quantum mechanics..”

[Einstein, letter to Max Born (1953)]

Sphere of mass m, diameter 1mm, constant E, trapped between perfectly reflecting walls 1m

apart. Usual particle-in-a-box stationary state ψn(x, t) = (2/a)1/2 sin(knx)e
iEnt/h̄ should represent

possible description of physical state in ‘macroscopic limit’ of this function (x being COM coordinate).

Objection to standard QM: In limit - if ψ all there is - particle not assigned definite properties like

quasi-localization round a point, which it obviously has independently of measurement or observers.

Quite true: Cannot deduce classical theory of matter from a statistical theory of observation i.e. from

any solution of Schrödinger equation in any limit, even well-localized ones (packets) that approximately

remain so over time. Must supplement pure theory of linear fields by physical postulate (like in

pilot-wave theory) or can’t claim material object at definite x independent of measurement as in CM.

Objection to Bohm/de Broglie: In macrolimit should recover classical motion from guidance equation

yet v = 0 always true independently of quantum number. Thus pilot-wave treatment of individual

process cannot be accurate description of reality, hence QM must refer to ensembles.

Not true: Assuming CM emerges in pilot-wave macro-limit for all valid QM states is wrong - good

example! Ensemble interpretation not same as CM: in macro-limit ψn many static nodes where

x-measurement never finds particle - no classical to-and-fro uniform motion. Einstein implies QM fails

not particular interpretation! How static pilot-wave result compatible with p measurement? If not

watching particle move, t→∞ time-of-flight gives classical p (Lecture 1). If particle really moving ψ

is wave packet (continually spreads then reforms) and pilot-wave trajectory approaches classical limit.
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Is Q→ 0, FQ → 0 a good correspondence principle?

1. Free particle motion in x direction: Consider free-particle momentum eigenstate
ψ+ = A exp i(kx− Et/h̄). Corresponds to ensemble of free-particle trajectories with
identical momenta h̄k, and with initial positions uniformally distributed from x = −∞
to x = +∞. Both Q and FQ vanish so pilot-wave trajectories classical.

2. Free particle motion in x and −x directions: How to obtain ensemble of particles
uniformly distributed along x-axis with equal weighting of momenta +h̄k and −h̄k?
Try superposing ψ+ and ψ− = A exp i(−kx − Et/h̄). Get ψ = B cos(kx)e−iEt/h̄

which has ∇S = 0 so every pilot-wave trajectory is motionless! Thus zero Q and FQ
not sufficient for realization of classical limit in pilot-wave theory.

3. Coherent states in the 1-D quantum harmonic oscillator:
Probability distribution is Gaussian of constant width (like the
n = 0 state) whose peak follows the classical trajectory.

Q = −mω2

2 (x− a cos(ωt))2 + h̄ω
2 and FQ = mω2(x− a cos(ωt))

No trajectory can satisfy both Q = 0 and FQ = 0. However, since pilot-wave
trajectories are ‘dragged along’ by the wave packet, we can still claim that this is a
classical state - a claim not now based on satisfaction of conditions on Q and FQ but
only on narrowness of the state and fact that peak follows classical trajectory.
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Narrow packets

• Isolated particle ‘in wave packet’ of usual form for solving Schrödinger equation with V = 0:

ψ(x, t) =

Z
e
i(k·x−ω(k)t)

f̂k0
(k) d

3
k with ω(k) =

h̄k2

2m

Group velocity (∂ω/∂k)(k0) = h̄k0/m. Dispersion relation ensures wave spreads linearly with

t (can show larger mass implies smaller spreading rate).

• Consider packet over short enough t so spreading negligible. Watch evolution of particle position

X(t) = h̄/m Im∇lnψ[X(x, t), t] as it moves with evolving packet. QEH/equivariance ⇒
average 〈X〉ψ(t) =

R
X(x, t)|ψ(x, 0)|2 d3x =

R
x|ψ(x, t)|2 d3x. Intuitively, non-spreading

Schrödinger wave should move classically, and indeed:

d

dt
〈X〉(t) =

Z
x
∂

∂t
|ψ(x, t)|2 d

3
x = −

Z
x∇ · j(x, t) d

3
x =

Z
j(x, t) d

3
x = 〈v(X(x, t))〉

Second derivative gives Newton’s equations in the mean - a version of Ehrenfest’s theorem:

d2

dt2
〈X〉(t) =

Z „
∂

∂t
j(x, t)

«
d

3
x =

1

m
〈−∇V (X)〉(t)

For classical limit require 〈∇V (X)〉(t) = ∇V (〈X〉)(t) ie. want well-localized wave ψ(x, t)

with Var(X) = 〈(X− 〈X〉)2〉 ≈ 0. Can show width of Ψ should obey Var(X) �
q

V ′
V ′′′ .

• Effect of spreading in fact countered by interactions with environment (‘decoherence’ - Lecture 4).

Packet remains localized due to effective collapse. Decoherence thus makes pilot-wave trajectory

approximately classical. At this level argument dodgy but more rigorous maths possible.
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Wide packets
Narrow packet evolution one way to do classical limit - if move classically then trajectories, being

dragged along, do so too. More general answer from opposite: freely moving wave packet that spreads

- ψ scaled to be macroscopic in time and space. Dispersion produces ‘local plane waves’ that don’t

interfere because of decoherence (each gets multiplied by wave function for environment). Left with

one such wave guiding particle along classical trajectory. [Maths in Dürr and Teufel, Section 9.4].

Final remarks on classical limit

• Classical and quantum worlds connected in pilot-wave theory by virtue of an unambiguous relation

between primitive notions of ‘state’ in the two theories. The quantum state is defined by ψ(x, t)
and x(t) which evolve as a unit in a deterministic manner. When the former has no influence on

the latter the classical and quantum states coincide.

• For most practical purposes, can say as follows: pilot-wave evolution approximately classical when

relevant de Broglie wave length much smaller than scale on which potential energy varies. Under

normal circumstances this is satisfied for center of mass motion of macroscopic object. Good

criterion since relates property of state to property of dynamics. Note deviations from Newtonian

behaviour unobservable on classical scale perfectly acceptable within classical limit argument.

• Three levels - (1) quantum trajectories, (2) classical trajectories, (3) what one sees (measures).

These are non-overlapping sets! Not all valid quantum states have a classical limit. Not all classical

trajectories give rise to what one sees. What one sees not necessarily what is happening. Sigh.

• Formal arguments about classical limit turn out to be subtle and difficult (analagous to studying

deviations from thermodynamic behaviour of large but finite system about which not much is

known). More rigorous mathematical results welcome.
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Further reading
Interesting relevant material beyond the level of this course:

Articles

- ‘Hamiltonian theory of wave and particle in quantum mechanics I: Liouville’s theorem
and the interpretation of de Broglie-Bohm theory ’, P.R. Holland (2001).

- ‘Hamiltonian theory of wave and particle in quantum mechanics II: Hamilton-Jacobi
theory and particle back reaction’, P.R. Holland (2001).

- ‘What’s wrong with Einstein’s 1927 hidden-variable interpretation of quantum
mechanics? ’, P.R. Holland (2005).

- ‘On Hamilton-Jacobi theory as a classical root of quantum theory ’, J. Butterfield
(2005).

- ‘Non-commutative quantum geometry: a reappraisal of the Bohm approach to
Quantum Theory ’, B.J. Hiley (2005).

- ‘Quantum back-reaction and the particle law of motion’, P.R. Holland (2006)

Books

- ‘The principles of Newtonian and quantum mechanics: the need for Planck’s
constant, h’, M.A. de Gosson, Imperial College Press (2001).

Links to the articles are provided on the course website.

– Typeset by FoilTEX – 36



Some quotes from Newton’s Opticks (first published 1704)

Newton’s corpuscular theory says that light corpuscles (‘Rays’) generate ‘Waves or
Vibrations’ in an ‘Aethereal Medium’, like a stone thrown into water generates water
waves. In addition, supposed that waves in turn affect motion of the corpuscles which
‘may be alternately accelerated and retarded by the Vibrations’.

In particular he thought that effect of medium on motion of corpuscles was responsible
for interference and diffraction:

“And doth not the gradual condensation of this Medium extend to some distance
from the Bodies, and thereby cause the Inflexions of the Rays of Light, which pass by
the edges of dense Bodies, at some distance from the Bodies?”

i.e. for diffraction to occur, motion of corpuscles must be affected at a distance by
the diffracting body. Also, to account for coloured fringes in diffraction of white light
by opaque bodies (Grimaldi), corpuscles would have to execute an oscillatory motion:

“Are not the Rays of Light in passing by the edges of and sides of Bodies, bent several
times backwards and forwards, with a motion like that of an Eel? And do not the
three Fringes of colour’d Light above mention’d arise from three such bendings?”

‘Science still awaits the mathematical theory of the eel.’ (David Park book 1997)

That’s what he thinks..
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Rest of course
Lecture 1: 21st January 2009
An introduction to pilot-wave theory

Lecture 2: 28th January 2009
Pilot waves and the classical limit. Derivation and justification of the theory

Lecture 3: 4th February 2009
Elementary wave mechanics and pilot waves, with nice examples

Lecture 4: 11th February 2009
The theory of measurement and the origin of randomness

Lecture 5: 18th February 2009
Nonlocality, relativistic spacetime, and quantum equilibrium

Lecture 6: 25th February 2009
Calculating things with quantum trajectories

Lecture 7: 4th March 2009
Not even wrong. Why does nobody like pilot-wave theory?

Lecture 8: 11th March 2009
Bohmian metaphysics : the implicate order and other arcana
Followed by a GENERAL DISCUSSION.

Slides/references on web site: www.tcm.phy.cam.ac.uk/∼mdt26/pilot waves.html
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