
CASINO

User’s Guide Version 2.13 (2022)

Richard Needs, Mike Towler, Neil Drummond and Pablo López Ŕıos

September 2019

Contents

1 Introduction 1

2 The quantum Monte Carlo method 2

3 Miscellaneous issues 2

3.1 Support . 2

3.2 Legal stuff . 3

3.3 Getting the latest version of the code . 3

4 Functionality of CASINO 3

5 Installation 5

5.1 Detailed instructions . 6

5.2 The CASINO ARCH system . 9

5.3 Further installation notes . 10

5.4 Note for Windows users . 11

5.5 Note for Apple Mac users . 12

5.6 Discussion forum . 13

6 Introductory user’s guide: how to use CASINO 13

6.1 Getting started . 13

6.2 How to do a VMC calculation . 17

6.3 Wave function optimization . 19

6.4 How to do a DMC calculation . 22

6.5 How to perform QMC calculations for periodic systems 25

6.6 How to run the code: RUNQMC . 26

6.7 How to run coupled DFT-DMC molecular dynamics calculations: the runqmcmd script 31

7 Files used by CASINO 33

7.1 Complete list of the input files . 33

7.2 Complete list of the output files . 35

7.3 Basic input file: input . 36

7.4 Optimizable-parameter file: correlation.data . 66

7.5 Pseudopotential file: xx pp.data . 86

7.6 MPC-interaction file: mpc.data . 87

7.7 The CASL file format . 89

7.8 Wave function parameter file: parameters.casl . 90

7.9 Compressed multi-determinant expansions: mdet.casl and cmdet.casl 104

7.10 Orbital files: awfn.data, bwfn.data, dwfn.data, gwfn.data, pwfn.data and
stowfn.data . 105

7.11 External-potential file: expot.data . 117

7.12 Raw QMC data files: vmc.hist and dmc.hist . 122

7.13 Expectation-value file: expval.data . 123

8 Generating CASINO trial wave functions with other programs 131

8.1 ABINIT . 132

2

8.2 ADF . 132

8.3 ATSP2K . 133

8.4 CASTEP . 133

8.5 CFOUR . 134

8.6 CRYSTAL . 134

8.7 DALTON . 139

8.8 GAMESS-US . 139

8.9 GAUSSIAN94/98/03/09 . 139

8.10 GP . 145

8.11 MCEXX . 145

8.12 MOLPRO . 145

8.13 ORCA . 146

8.14 PSI-4 . 146

8.15 PWSCF/Quantum Espresso . 146

8.16 TURBOMOLE . 148

8.17 2DHF . 149

8.18 Unsupported programs . 149

8.19 Request for help . 149

9 Using CASINO with blip functions 150

10 Utilities provided with the CASINO distribution 151

11 Making movies with CASINO 155

11.1 How to make movies . 156

11.2 Visualization . 156

12 Detailed information: the VMC method 157

12.1 Evaluating expectation values . 157

12.2 The sampling algorithm . 158

12.3 Two-level sampling . 158

12.4 Optimal value of the VMC time step . 159

13 Detailed information: the DMC method 159

13.1 Imaginary-time propagation . 159

13.2 The ensemble of configurations . 160

13.3 Drift and diffusion . 160

13.4 Branching and population control . 161

13.5 Modifications to the Green’s Function . 162

13.6 Modifications to the DMC Green’s function at bare nuclei 163

13.7 Evaluating expectation values of observables . 165

13.8 Growth estimator of the energy . 166

13.9 Automatic block-resetting . 166

13.10Determinant locality approximation and T moves . 167

14 Evaluation of Gaussian orbitals in the Slater wave function 171

3

15 Constructing real orbitals 171

16 Cusp corrections for Gaussian orbitals 172

16.1 Electron–nucleus cusp corrections . 172

16.2 Cusp correction algorithm . 173

17 General-purpose cusp corrections 174

18 Wave-function updating 175

19 Evaluating the local energy 176

19.1 Evaluating the kinetic energy . 176

19.2 Evaluating the nonlocal pseudopotential energy . 177

19.3 The core-polarization potential energy . 178

19.4 Evaluation of infinite Coulomb sums . 179

20 Model interactions 184

20.1 Manual interactions block . 184

20.2 Square-well interaction . 184

20.3 Modified Pöschl-Teller interaction . 184

20.4 Hard sphere . 184

20.5 Polynomial . 185

20.6 Interactions between charges in 2D semiconductors . 185

20.7 Dipolar interaction . 189

20.8 Pseudodipolar interaction . 189

20.9 Clifford interaction . 190

21 Multi-determinant expansions 190

21.1 Compressed multi-determinant expansions . 190

22 The Jastrow factor 190

22.1 General form of CASINO’s Jastrow factor . 191

22.2 The u, χ and f terms in the Jastrow factor . 191

22.3 The p and q terms in the Jastrow factor . 192

22.4 The three-body W term . 192

22.5 The ucyl term . 193

22.6 The χcyl term . 193

23 Backflow transformations 193

23.1 The generalized backflow transformation . 194

23.2 Constraints on the backflow parameters . 195

23.3 Improving the nodes of ΨT . 196

24 Statistical analysis of data 197

24.1 The reblocking method . 197

24.2 Estimate of the correlation time given by CASINO . 198

24.3 Estimating equilibration times and correlation periods 199

4

25 Wave-function optimization 199

25.1 Variance minimization: the standard method . 199

25.2 Variance minimization: the ‘varmin-linjas’ method . 202

25.3 Energy minimization . 203

26 Alternative sampling strategies 208

26.1 Summary . 208

26.2 Alternative sampling . 209

27 Use of localized orbitals and bases in CASINO 211

27.1 Theoretical background . 211

27.2 Using CASINO to carry out ‘linear-scaling’ QMC calculations 212

28 Twist averaging in QMC 214

28.1 Periodic and twisted boundary conditions . 214

28.2 Using twisted boundary conditions in CASINO . 215

28.3 Monte Carlo twist averaging within CASINO . 216

29 Finite-size correction to the kinetic energy 222

29.1 Finite-size correction due to long-ranged correlations 222

29.2 Fourier transformation of CASINO’s two-body Jastrow factor 224

29.3 Fitting form for the long-ranged two-body Jastrow factor (3D) 225

29.4 Applying the correction scheme in practice . 226

30 Finite-size correction to the interaction energy 226

31 Electron–hole systems 227

32 Mahan wave function module 228

33 Relativistic corrections to energies 229

34 Expectation values computable by CASINO 230

34.1 Basics . 232

34.2 Density and spin density . 234

34.3 Reciprocal-space and spherical real-space pair-correlation functions 238

34.4 Structure factor and spherically averaged structure factor 241

34.5 One-body density matrix, two-body density matrix and condensate fraction 243

34.6 One- and two-body momentum densities . 247

34.7 Localization tensor . 247

34.8 Dipole moment (molecules only) . 249

34.9 Population . 249

35 Atomic forces 250

35.1 Forces in the VMC method . 250

35.2 Forces in the DMC method . 250

35.3 The mixed DMC forces . 251

35.4 The pure DMC forces . 251

5

35.5 Implementation of forces in CASINO . 252

35.6 Explanation of the force estimators printed by CASINO 253

36 The future-walking method 253

36.1 Derivation of the FW method . 254

36.2 The FW algorithm . 255

36.3 Some practical advice . 255

37 Noncollinear-spin systems 256

37.1 Wave functions for noncollinear-spin systems . 256

37.2 Spiral spin-density waves in the HEG . 256

38 Magnetic fields and the fixed-phase approximation 257

38.1 Hamiltonian when an external magnetic field is present 257

38.2 VMC in the presence of an external magnetic field . 257

38.3 DMC in the presence of an external magnetic field . 257

38.4 Importance sampling . 258

38.5 Applying magnetic fields in CASINO . 258

39 CASINO on parallel computers 259

39.1 VMC in parallel . 259

39.2 Optimization in parallel . 260

39.3 DMC in parallel . 260

39.4 Shared memory support . 265

39.5 Using CASINO on the Knights Landing manycore processor 267

39.6 OpenMP support . 267

39.7 OpenACC support . 269

Appendices 269

A Appendix 1: Programming guide for CASINO 269

A.1 Making changes to the CASINO source code . 269

A.2 Languages . 269

A.3 Style . 269

A.4 Content . 272

A.5 Testing and debugging CASINO . 273

A.6 Performance . 274

A.7 Bug reports . 275

A.8 Requests for new features . 275

B Appendix 2: Automatic testing of CASINO 275

B.1 Overview . 275

B.2 Running the set of examples . 275

B.3 Adding a new example . 276

B.4 Using git-bisect with autotest . 276

C Appendix 3: Converting CASINO v1.x input files to CASINO v2.x format 277

6

D Appendix 4: Specification of the format of the correlation.data file 278

E Appendix 5: CASINO system-specific data files 279

F Appendix 6: Switching between double- and single-precision arithmetic in
CASINO 289

Bibliography 290

7

1 Introduction

casino is a computer program system for performing quantum Monte Carlo (QMC) electronic struc-
ture calculations that has been developed by a group of researchers initially working in the Theory of
Condensed Matter group in the Cambridge University physics department, and their collaborators,
over more than 20 years. It is capable of calculating incredibly accurate solutions to the Schrödinger
equation of quantum mechanics for realistic systems built from atoms.

Other highly accurate methods are known that can do this of course, but what makes casino impor-
tant is that given a big enough computer it can carry on doing this for systems containing hundreds or
even thousands of atoms. These many atoms can form isolated giant molecules or groups of molecules,
or they can be the repeating unit in an infinite crystal periodic in one, two, or three dimensions. Be-
cause of their inferior scaling with system size, competing methods of comparable accuracy generally
struggle to handle more than a few tens of atoms. casino is also important because QMC is one of
the few methods genuinely capable of exploiting the power of modern computer hardware. Modern
versions of casino, by contrast, have been shown to exhibit essentially perfect parallel efficiency on
machines with hundreds of thousands of cores in all of its various modes of operation.

The QMC research program that culminated in casino as we know it today was begun in the early
1990s by Richard Needs, who had obtained inspiration from a short period working in the United
States. He developed his initial ideas in collaboration with Guna Rajagopal and Matthew Foulkes
and a number of early postdocs and students. Their initial test codes were gathered together and
generalized into the first QMC program capable of treating any arbitrary system (named ‘casino’
after a suggestion from Paul Kent) by Mike Towler, who had arrived in Cambridge in late 1996.
The first public version of casino was published in 1999. Absolutely fundamental improvements and
generalizations of the code were made by Neil Drummond (from 2002) and Pablo López Ŕıos (from
2004). Needs, Towler, Drummond and López Ŕıos are now considered to be principal authors of the
code, and all four of them continue to be at the heart of the project today. Sadly, CASINO was
thrown off the Cambridge TCM group computer systems in September 2019 at the insistence of local
computer management, despite Richard still working in the group, and as a result it is no longer
possible to refer to it as the ‘Cambridge quantum Monte Carlo code’.

Over the years, valuable additional contributions to the software base have been made by students,
postdocs, and other people working in collaboration with us. A reasonably complete set would in-
clude Andrew Porter, Randy Hood, Andrew Williamson, Dario Alfè, Gavin Brown, Chris Pickard,
Rene Gaudoin, Ben Wood, Zoltán Radnai, Andrea Ma, Ryo Maezono, John Trail, Paul Kent, Nick
Hine, Alexander Badinski, Matthew Brown, Ken Esler, Andrew Morris, Norbert Nemec, Robert Lee,
Priyanka Seth, Bohshiang Jong, Lucian Anton, Katie Schwarz, Pascal Bugnion, Jonathan Lloyd-
Williams, Elaheh Mostaani, Mike Deible, Vladimir Konjkov, Albert Defusco, Blazej Jaworowski,
Marcin Szyniszewski, Ryan Hunt, David Thomas, Chung-Yuan Ren, Darryl Foo, Graham Spink, John
Jumper, Katharina Doblhoff-Dier, Kayahan Saritas, Kevin Gasperich, Lars Schonenberg, Richard
Dawes, Rodrigo Vargas-Hernández, Thomas Whitehead, Tom Poole and Yassmin Asiri. There may
be others. We are very grateful for their contributions.

The following citation (quoted in full) is required in any publication describing results obtained with
casino:

R. J. Needs, M. D. Towler, N. D. Drummond, P. López Ŕıos and J. R. Trail,
J. Chem. Phys. 152, 154106 (2020).

Further public information and resources—including forms for downloading the code—are available
at the casino web page:

https://vallico.net/casinoqmc/

1

https://vallico.net/casinoqmc/

2 The quantum Monte Carlo method

The correlated motion of electrons plays a crucial role in the aggregation of atoms into molecules
and solids, in electronic transport properties and in many other important physical phenomena. Ab
initio electronic structure calculations, in which the properties of such correlated electron systems are
computed from first principles, are a vital tool in modern condensed matter physics and molecular
quantum chemistry. Currently the most popular way to include the effects of electron correlation in
these calculations is density functional theory (DFT). This method is in principle exact, in reality fast
and often very accurate, but does have a certain number of well-known limitations. In particular, with
only limited knowledge available concerning the exact mathematical form of the so-called exchange–
correlation (XC) functional, the accuracy of the approximate form of the theory is nonuniform and
nonuniversal, and there are important classes of materials for which it gives qualitatively wrong
answers.

An important and complementary alternative for situations where accuracy is paramount is the quan-
tum Monte Carlo (QMC) method, which has many attractive features for probing the electronic
structure of real systems. It is an explicitly many-body method, applicable to both finite and periodic
systems, which takes electron correlation into account from the outset. It gives consistent, highly ac-
curate results while at the same time exhibiting favourable scaling of computational cost with system
size. This is in sharp contrast to the accurate methods used in mainstream quantum chemistry, such
as configuration interaction or coupled-cluster theory, which are impractical for anything other than
small molecules, and cannot generally be applied to condensed matter problems.

The use of QMC was greatly hampered over its first two decades of existence by a combination
of insufficient computer power and a lack of available, efficient QMC computer programs general
enough to treat a similar range of problems to regular DFT codes. Fast parallel computers are now
widespread, and you are now in possession of just such a computer program, which is capable of
carrying out QMC calculations for a wide range of interesting chemical and physical problems on
a variety of computational hardware. As a bonus, casino is capable of exploiting with essentially
perfect parallel efficiency as many processors as you like (within reason)—a great asset in this era
of petascale computing where machines with hundreds of thousands or even millions of cores are
beginning to appear. casino has been designed to make the power of the QMC method available to
everyone and we hope you enjoy using it.

3 Miscellaneous issues

3.1 Support

casino has documentation and examples, etc., but it is a research code, and learning how to use it
is a significant task. This is particularly the case if the user does not have relevant experience, such
as familiarity with the theory of variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC)
calculations and knowledge of DFT or Hartree–Fock (HF) methods for atoms, molecules and solids.
We have found that supporting users can take up a large amount of our time and so we have to
limit the number of groups that we work with directly. Most users need quite a lot of help and their
projects turn into collaborations, but of course we cannot enter into too many projects of this type
as our time is limited. We often have people visiting Cambridge to learn about the codes and how to
do calculations, and this seems to work well.

Beginning in 2006 we also organize annual summer schools at MDT’s Tuscan monastery (see https:

//vallico.net/tti/tti.html). The scientific side of these week-long events involves over 20 hours
of lectures from the main authors of the code with plenty of hands-on tuition, and people who have
attended these events have generally found them to be beneficial.

Since June 2013, the best place for asking questions about casino is over at the casino discussion
forum https://vallico.net/casino-forum. Unless you have a good reason for thinking some par-
ticular individual can help you, this forum should be the first place you ask for help. As of June
2014, around 500 CASINO users and developers belong to it, and so there is a very good chance your
question will be answered.

There used to be a CASINO Users’ mailing list (casino-users ‘at’ tcm.phy.cam.ac.uk) mainly
used by the casino administrators for announcements of, e.g., events and new versions of the code,
but this was discontinued in June 2014. All such announcements are now made in the ‘General

2

https://vallico.net/tti/tti.html
https://vallico.net/tti/tti.html
https://vallico.net/casino-forum

Announcements’ subforum of the CASINO Forum site; a subscription to email notifications from that
subforum is entirely equivalent to the old mailing list.

3.2 Legal stuff

casino is given away for free to any academic or individual wishing to use it for non-profit mak-
ing purposes (commercial companies should make a specific email enquiry). The software may be
downloaded from our public website at https://vallico.net/casinoqmc/download-casino/. The
download procedure involves ticking a checkbox agreeing to certain legal conditions, the practical
upshot of which is that users may not redistribute the code, they may not incorporate any part of it
into any other program, nor may they modify it in any way whatsoever without prior agreement of
the Cambridge group (though this is usually very easy to obtain). You may not use or even retain a
copy of casino if you have not recorded your agreement to these conditions. A copy of the agree-
ment can be found in the casino distribution in the file CASINO/doc/academic consent form.pdf

or CASINO/doc/commercial consent form.pdf (the latter should be used only in the case of profit-
making companies).

3.3 Getting the latest version of the code

New versions of casino are produced on a regular basis (nightly builds for the beta version). People
downloading the software for the first time should fill in the form on the following web page: https:
//vallico.net/casinoqmc/download-casino/. After filling in the form you will be able to download
the standard version of the code immediately, and a request for a casino login ID and password will
be triggered. This ID is required to update your copy of casino with later updates. It may also be
used to access the casino online discussion forum, and to publish ‘Blog’ or ‘Project’ posts on the
casino website. Tickboxes requesting these services, as well as ones for attending the annual summer
school, or for offering your services for development work, are all part of the online registration form.

In the initial download, users have the option of downloading either the most recent stable version
or the ‘current beta version’. The current beta is a build with the latest changes released as they
happen, which may or may not be suitable for production work, but is required for development work.
Subsequent updates to the code may be downloaded from the site https://vallico.net/casinoqmc/
update-casino using your casino login ID and password.

Users in the Cambridge TCM group who belong to the Unix group ‘casino’ may additionally copy
the latest source from the directory ~casino/PUBLIC/current beta, and access the git repository
at ~casino/git/CASINO.

If you have been accepted as a developer (see https://vallico.net/casinoqmc/

how-to-become-a-developer/) then your casino login ID will also give you access to the
developer version of the code, which you can download from https://vallico.net/casinoqmc/

download-developer/. The developer version is identical to the standard version in all respects,
except that the standard version has ‘obfuscated’ source code which has deliberately been made very
difficult to read. The developer version has the full documented source code.

Note that there exists a mailing list through which all licensed casino developers (who are listed on
the page https://vallico.net/casinoqmc/things-to-do/) are encouraged to communicate with
each other. Ask MDT if you wish to be added to or removed from this list.

The casino authors use the git revision control system, and it is possible for external developers to
have (read-only) access to our git repository. git-formatted patches may be sent to Mike Towler
who will (probably) incorporate them into the master repository.

It would be greatly appreciated if you could forward a copy of any article published using the results
of casino calculations to us, both for our interest and so that we can add references to the casino
web pages. If you wish, you may add blog posts to the casino public website using your casino login
ID; this is a good way to publicize your research to the QMC community.

4 Functionality of CASINO

The casino program continues to be actively developed and many improvements and revisions are
envisaged, but in its present state its capabilities are as follows:

3

https://vallico.net/casinoqmc/download-casino/
https://vallico.net/casinoqmc/download-casino/
https://vallico.net/casinoqmc/download-casino/
https://vallico.net/casinoqmc/update-casino
https://vallico.net/casinoqmc/update-casino
https://vallico.net/casinoqmc/how-to-become-a-developer/
https://vallico.net/casinoqmc/how-to-become-a-developer/
https://vallico.net/casinoqmc/download-developer/
https://vallico.net/casinoqmc/download-developer/
https://vallico.net/casinoqmc/things-to-do/

• Methods:

– Variational Monte Carlo (including optimization of wave functions by minimization of vari-
ance, energy, or the mean absolute deviation of local energies from the median (madmin);
there is a super-fast variance-minimization method available for optimizing linear Jastrow
parameters).

– Diffusion Monte Carlo (branching DMC and pure DMC).

• Systems:

– Atoms, molecules, polymers, slabs and solids (the latter three having periodic boundary
conditions in one, two, and three dimensions, respectively).

– 1D/2D/3D electron and electron–hole phases with fluid or crystal wave functions, with
arbitrary cell shape/spin polarization/density (including excited-state capability). Can
simulate 2D bilayers and 1D biwires.

– Pseudopotentials or all-electron calculations.

– Can use particles of any charge or mass.

• Wave functions:

– Slater-Jastrow wave functions, where the Slater part may consist of multiple determinants
of spin orbitals and the Jastrow factor is a sum of selectable, very flexible terms capable of
describing complicated electronic correlations. Alternative specially-crafted wave function
forms are available for excitonic and positronic systems.

– Orbitals expanded in Gaussian basis sets (s, sp, p, d, f or g functions centred on atoms or
elsewhere) produced by the following programs (using DFT, HF, or various multidetermi-
nant methods): crystal9X/03/06/09/14 [1, 2], gaussian9X/03/09 [3, 4], gamess-us,
molpro, cfour, psi4, and turbomole. Optimizable functions may be added to these.

– Orbitals expanded in plane waves produced by pwscf/quantum espresso [5], abinit
[6], gp, castep [7], mcexx, and k207.

– Orbitals expanded in ‘blip’ (B-spline) functions, usually generated by post-processing plane-
wave orbitals though they can be produced directly by pwscf/quantum espresso.

– Orbitals interpolated from a radial grid for atomic calculations. Optimizable functions may
be added to these.

– Slater-type orbitals produced by adf [8]. Optimizable functions may be added to these.

– Use of flexible inhomogeneous backflow functions to give highly accurate trial wave func-
tions.

– Localized orbitals and basis functions for improved scaling with system size. casino scales
quadratically with system size to evaluate the total energy to a specified error bar (a
capability sometimes referred to as ‘linear scaling’ in the literature).

– Complex wave functions and twisted boundary conditions can be used to reduce single-
particle finite-size errors. Twist averaging can be performed wholly within casino for
electron(–hole) fluid phases (and with the aid of other codes to regenerate the wave function
files it can be done for real systems containing atoms).

• Expectation values:

– Computation of excitation energies corresponding to the promotion, addition or subtraction
of electrons.

– Computation of various expectation values: density, spin-density, noncollinear spin-density
matrix, one-body and two-body density matrices, condensate fraction, reciprocal space
and spherical real space pair correlation functions, localization tensor, structure factor,
spherically averaged structure factor and ionic populations.

– Calculation of electron–electron interactions using either Ewald and/or our model periodic
Coulomb interaction, which is faster and has smaller Coulomb finite-size effects.

– Corrections to the finite-system kinetic energy from the long-ranged two-body Jastrow
factor and to the interaction energy from the structure factor can be calculated for periodic
systems.

4

• Other:

– Grossman–Mitas DMC-DFT molecular dynamics [9] (requires access to pwscf/quantum
espresso for the DFT parts of such calculations).

• Design:

– Parallelized using MPI-2 message-passing library (this can be downgraded to MPI-1 on the
very few machines which do not support the later version). MPI libraries are not required
for compiling and linking on single-processor machines.

– Second level of parallelization using OpenMP.

– Support for accelerators such as graphics processing units (GPUs) using OpenACC.

– Shared memory support (System V, Posix, and er. . . Blue-Gene/Q ‘Posix’)

– Keyword input handled using highly flexible electronic structure data format.

– Self-documenting help system.

• Resources

– Comprehensive participatory website: https://vallico.net/casinoqmc/

– Helpful online discussion forum: https://vallico.net/casino-forum/

– Online library of Hartree–Fock and Dirac–Hartree–Fock pseudopotentials (some with cor-
responding Gaussian basis sets)

5 Installation

casino was designed to run on machines running a Linux/Unix operating system (this in principle
includes Macs, since Mac OSX is based on BSD Unix and has a functioning bash command line).
As will be explained, casino can also be run on Windows machines (in principle for all modern
versions of Windows from XP onwards) if you first install the ‘Cygwin’ software which emulates a
Linux-like environment to compile and run in. The following instructions assume you have your Linux
environment correctly setup; Windows users who haven’t already done this should first read the note
in Sec. 5.4.

casino determines what kind of computer you are running on by looking at the value of the Unix
environment variable CASINO ARCH, which must be defined in your shell session. This tells casino to
look into a particular file in a set of ‘arch’ files—permanently stored in the arch/data directory of the
casino distribution—which contains instructions that the ‘make’ shell command and various casino
utilities can follow both for compiling the code and running calculations on the machine in question.

The various ways of setting this up—both for currently supported architectures/machines and for new
unsupported ones—are described below.

The most convenient way to do this is to use the automatic utility—called ‘install’—which can help
you to setup and compile casino on any given machine. It may be run by typing ‘./install’ then
pressing Enter in the base directory of the casino distribution, after which you should follow the
prompts. You can re-run this installer any time you like to amend your configuration.

To give you an idea of what it does, note that the install script will present you with the following
options:

[c] Compile CASINO for already-configured CASINO_ARCHs

[s] Sort/remove configured CASINO_ARCHs

[a] Auto-detect valid CASINO_ARCHs for this machine

[p] Pick a specific CASINO_ARCHs for this machine

[n] Create a new CASINO_ARCH for this machine interactively

[y] Install CASINO syntax highlighting for various text editors

[i] Install required software using package manager (requires root access)

[r] Restore the CASINO distribution directory to its original state

[q] Save configuration and quit the installer

[x] Quit the installer without saving

5

https://vallico.net/casinoqmc/
https://vallico.net/casino-forum/

These options will be discussed in what follows.

Note for sysadmins: casino is not currently designed to be installed system-wide by the root user;
rather, a separate copy should be installed by the user under his or her home directory. Amongst
other reasons, this is because the casino distribution contains a huge number of utilities (with large
numbers of executable files and scripts which most users of a multi-user machine will not require)
along with examples and documentation which the user will wish to access.

5.1 Detailed instructions

5.1.1 Downloading the distribution

Get the casino distribution from https://vallico.net/casinoqmc/download-casino/.

You can obtain either the latest stable release version, or the ‘current beta’ (a nightly build containing
all the latest modifications).

Most people are ‘standard users’ whose casino distribution does not contain the full documented
source code; people who need to read the source with a view to developing new features will require
a ‘developer’ version with the full documented source. For that, go here:

https://vallico.net/casinoqmc/download-developer/

5.1.2 Unpacking the distribution

• Change to the directory where you want the distribution to live (this is usually assumed to be
your home directory, but it need not be).

• Remove/rename any existing CASINO directory.

• Unpack the CASINO vxxx.tar.gz distribution (‘tar xvfz CASINO vxxx.tar.gz’). This will
result in a new directory called CASINO containing the casino distribution.

• If you want to maintain different versions of the code, it may be useful to rename the CASINO

directory to be something like CASINO v2.11.378 and set up a symbolic link called CASINO

which points to it (‘ln -s CASINO v2.11.378 CASINO’). There is a casino utility update src
which will do this for you—just type, e.g., update src 2.11.378 in a directory containing a
CASINO v2.11.378.tar.gz archive.

5.1.3 Preliminary configuration of the machine

You need to ensure that the machine has all the relevant software installed (Fortran, C, and possibly
C++ compilers, an MPI library etc.) For machines administered by other people, this should have
been done for you.

Refer to the CASINO/FAQ file for notes on the preliminary configuration of machines that you administer
yourself. This advice is duplicated online at https://vallico.net/casinoqmc/faqs/.

The install script can help you with installing required software using the package manager (choose
the [i] option).

5.1.4 Finding or creating the arch file

AUTOMATIC PROCEDURE

The install script can largely do this for you. The options which concern finding or creating the arch
file are [a], [p], [n] and [s].

First of all, try the ‘Auto detect’ [a] option. The install script may detect an exact match for the
particular machine you’re running on (i.e., someone else has already set casino up on it)—in which
case, after you accept its recommendation, casino will simply work. The script can also suggest
generic similar machines on which you can base your installation.

Alternatively, if you know which CASINO ARCH you want, you can simply type in its name after selection
of the [p] option.

6

https://vallico.net/casinoqmc/download-casino/
https://vallico.net/casinoqmc/download-developer/
https://vallico.net/casinoqmc/faqs/

Choosing the [n] option will take you through a guided procedure for creating your own personalized
arch file (make sure you have the machine’s documentation handy so you can answer the questions
the script will ask you). The result of this will be the arch file describing your machine that will be
placed in the CASINO/arch/data directory (see below); new arch files can be emailed to the casino
developers for permanent inclusion in the distribution. On extremely complicated machines the arch
file produced by install may need to be tweaked by hand.

Multiple alternative configurations are supported. This includes setting up casino for use with
multiple compilers—each of which will have its own arch file. One may also create set-ups where
multiple machines share the installation directory, such as different-architecture queues on the same
cluster, or workstations sharing their home directories over a networked file system. For the latter
case, run the installer on one machine of each relevant type to set it up.

Once you have all your CASINO ARCHs defined, you may sort them into a preferred order (perhaps to
indicate a preferred compiler) or remove them using the [s] option.

Your defined setup can then be permanently saved using the [q] option. If you’re running in a bash
shell, the list of defined CASINO ARCHs will be stored in a hidden .bashrc.casino file in your home
directory, which will be sourced from your .bashrc every time you log in. The install script also works
if you use the tcsh or csh shells—though without the facility to change CASINO ARCHs described below.
Support for other shells is not provided.

The .bashrc.casino file defines a ‘casinoarch’ function, which will allow you to switch between
defined CASINO ARCHs. For example, on the current (Jan 2013) fastest machine in the world—the
Cray XK7 ‘Titan’ at Oak Ridge National Laboratory—there are four defined CASINO ARCHs:

• linuxpc-gcc-pbs-parallel.titan.arch (397.20 sec.)

• linuxpc-cray-pbs-parallel.titan.arch (456.63 sec.)

• linuxpc-ifort-pbs-parallel.titan.arch (477.75 sec.)

• linuxpc-pgf-pbs-parallel.titan.arch (490.10 sec.)

referring to the four different available compilers (Gnu, Cray, Intel, Portland), and where the time
quoted is the time required to run a test DMC run (you can see it’s worth paying attention to doing
tests to see which compiler produces the fastest executable!). You can switch between these four arch
files by typing ‘casinoarch gcc’, ‘casinoarch cray’, ‘casinoarch ifort’, or ‘casinoarch pgf’.

As an example of what using casino’s automated utilities saves you, note that Titan requires ‘modules’
to be loaded and unloaded to set up particular programming environments with different compilers.
Both ‘make’ and the casino run script ‘runqmc’ will do this automatically on detecting the current
‘CASINO ARCH’, so there is no need for the user to understand or interact with the module system at
all.

More details of all the above procedures are given in the section ‘The CASINO ARCH system’ below.

MANUAL PROCEDURE

If you don’t wish to use a magic script (though we strongly suggest you do), then you may attempt
the following manual installation.

For most machines, a suitable CASINO ARCH data file will already exist in the /arch/data directory.
If you have installed casino before, you likely know which one it is. You may also look through the
data files manually to see which one is likely to correspond to your machine. If your machine is similar
to, but not identical, to one already set up, then you may borrow one of the data files and suitably
modify it (see the instructions below and in Appendix 5).

Assuming, for example, that your CASINO ARCH is ‘linuxpc-ifort’, then you need to set this as a
permanent environment variable in your shell. If you use, for example, the bash shell then you need
to add something like

export CASINO_ARCH=’linuxpc -ifort ’

to your .bashrc file, and then source ∼/.bashrc.

7

5.1.5 Compiling the code

Once you have sorted out the arch file, you may compile the code and the utilities in two different
ways.

AUTOMATIC PROCEDURE

Run the install script as before and this time select the [c] option (‘Compile casino for
already-configured CASINO ARCHs’). The script will respond with a list of defined CASINO ARCHs
and the following text (using the Titan machine as an example):

The following CASINO_ARCHs are configured (it is possible that not all of them

can be compiled from this machine depending on your set-up):

[1] linuxpc-gcc-pbs-parallel.titan

[2] linuxpc-cray-pbs-parallel.titan

[3] linuxpc-ifort-pbs-parallel.titan

[4] linuxpc-pgf-pbs-parallel.titan

At the prompt below enter the numbers corresponding to the CASINO_ARCHs you

would like to compile, separated by spaces.

You can specify which optional compile-time features to enable appending

’:<feature>’ to each number. Available <features> include:

- ’Openmp’ for building OpenMP support

- ’Openacc’ for building OpenACC support

- ’Shm’ for building the SMP shared-memory facility (of most use for

calculations with blip or Gaussian basis sets)

- ’OpenmpShm’ for building a version with both features enabled

One may thus type ‘1’ to compile with the gcc compiler, ‘2’ to compile with the Cray compiler, etc.
One may compile special versions such as the shared-memory version of casino with the gcc compiler
by typing ‘1:Shm’.

We recommend that this automatic procedure is used, essentially for three reasons:

• One can build multiple casino executables with a single typed command such as ‘1 1:Shm

1:Openmp 1:OpenmpShm 2 3:debug 4:Shm’.

• The install script will run make in parallel as far as it can over multiple cores (this can of course
be done on the command line, but the user may not know how).

• On some obscure Unix machines, the default version of ‘make’ will work with a sufficiently
different syntax that the casino Makefile is not interpreted correctly. The install script will
know to run an alternative version of make which we know works, such as GNU’s ‘gmake’
whereas just typing ‘make’ on the command line will not work.

MANUAL PROCEDURE

The alternative manual procedure is to sit in the base casino directory and type ‘make’.

Different versions of the code may be compiled, e.g., by:

make : standard version with optimizing compiler flags

make debug : standarc version with debug compiler flags

make Shm : shared memory version with optimizing compiler flags

make Shm/debug : shared memory version with debug compiler flags

make Openmp : OpenMP version with optimizing compiler flags

make Openacc : OpenACC version with optimizing compiler flags

make Openmp/debug : OpenMP version with debug compiler flags

make OpenmpShm : OpenMP and Shm version with optimizing compilerflags

etc.

Note that the Makefile also supports all-lower-case versions of the above (e.g., make shm, make
openmpshm, etc.), even though these are less legible.

The make procedure is fully documented in the preamble of the file src/Makefile. More generally,
src/Makefile works as follows:

8

Generic form of target:

<features>/<version>.<action>

where <version> can be:

- opt : use full optimization (default).

- debug: use debugging compiler flags.

- dev : use full optimization, but keep object files and binary

separate from ’opt’ version.

- prof : use profiling compiler flags (if a profiler is available).

<features> can be:

- NoFeatures: no special features (default).

- Openmp : build OpenMP support.

- Openacc : build OpenACC support.

- Shm : build SHM support.

- OpenmpShm : build OpenMP and SHM support (currently broken).

and <action> can be:

- <empty>: perform compilation (default).

- clean : remove object files.

- vclean : remove object files and binaries.

E.g., one can type:

make

make opt

make NoFeatures

make NoFeatures/opt

make nofeatures/opt

to the same effect.

For the ’clean’ and ’vclean’ targets, ’all’ can be used to refer

to all features or versions, e.g.:

make all.clean # same as ’make NoFeatures/all.vclean’

make all/dev.vclean

make Openmp/all.vclean

make openmp/all.vclean

make all/all.vclean

NOTE: the above clean targets only work if sitting in the CASINO/src

directory. Typing ’make clean’ in the CASINO base directory is equivalent to

’make all/all.clean’ (remove all object files for all features and versions)

and ’make all/all.vclean’ (remove all object files and all binaries for all

features and all versions). Or at least it as after version 2.13.279. Hope

that’s clear.

You can also type ‘make info’ in the base directory to get a print out of all the compilers and compiler
flags that casino will use, without invoking any actual compilation.

To run the code you need to add the $HOME/CASINO/bin qmc directory to your shell path, e.g., through
(bash):

export PATH="$PATH :/ YOUR_HOME_DIRECTORY/CASINO/bin_qmc"

so that your shell can pick up all the executable casino utilities. (The install script will do this
automatically).

5.1.6 Running the code

You run the code using the ‘runqmc’ script (see Sec. 6.6). This script is able to access all the run
time information in the arch file to determine how to run jobs on your machine—even to the extent
of loading modules, writing batch scripts, and submitting them for you.

You can run the various utilities just by typing their name.

5.2 The CASINO ARCH system

In this section, we give further details of how some of these things work.

9

As already stated, casino determines what kind of computer you are running on by looking at the
value of the Unix environment variable CASINO ARCH, which must be defined in your shell session.
The ‘arch/data’ subdirectory of the casino distribution contains architecture data files which define
system-specific parameters for compiling and running the code. Include files in this directory are
named CASINO ARCH.arch, and contain information about which set of parameters to use, including
compiler name, compiler flags, library locations, how to submit jobs, etc. CASINO ARCH should be set
permanently on your machine, and will be re-used when installing future versions.

While there is no fundamental difference between CASINO ARCHs, we define two conceptual types for
convenience, which simply differ in purpose and naming convention:

• ‘Generic’ CASINO ARCHs are intended to represent a class of systems. Their name is typically of
one of these forms:

- Single-processor workstations:

<system>-<compiler> e.g. linuxpc-ifort

- Multi-processor workstations:

<system>-<compiler>-parallel e.g. linuxpc-ifort-parallel

- Clusters with queueing systems:

<system>-<compiler>-<queueing-system>-parallel e.g.linuxpc-ifort-pbs-parallel

• ‘Extended’ CASINO ARCHs are intended to represent specific systems, and are usually modifica-
tions to existing generic CASINO ARCHs. Their name is of the form:

<generic-name>.<specific-system-name> e.g. linuxpc-ifort.berts-weird-computer

The corresponding .arch file is typically intended to ‘include’ its generic counterpart, if it exists,
but again this is just a guideline.

See the files in the CASINO/arch/data directory for the range of both generic and extended
CASINO ARCH names. If you end up generating your own unique .arch file then you may send it
to Mike Towler (mdt26 at cantab.net) who can incorporate it permanently into the distribution.

Very large machines in national computer facilities often have specialized setups and requires Extended
CASINO ARCHs. Some examples of current top-of-the-range hardware:

• Titan (Oak Ridge, USA): linuxpc-<compiler>-pbs-parallel.titan where compiler is pgf,
cray, ifort or gcc.

• Hector (UK national facility): linuxpc-〈compiler〉-pbs-parallel.hector3 where 〈compiler〉
is pgf, path, cray or gcc.

• Darwin (Cambridge HPCF facility, UK): linuxpc-ifort-pbs-parallel.darwin2 (Westmere
partition) or linuxpc-ifort-pbs-parallel.darwin3 (Sandy Bridge partition)

• Intrepid (IBM Blue Gene/P, Argonne, USA): bluegene-xlf-cobalt-parallel.intrepid.

• Blue Joule (IBM Blue Gene/Q, Hartree Centre, U.K.) bluegene-xlf-ll-parallel.bluejoule

.

The full syntax of .arch files is explained in the file CASINO/arch/README. This information is dupli-
cated in Appendix 5 of this manual.

5.3 Further installation notes

• The [r] option of the install script will restore the casino distribution directory to its original
state for compilation purposes. This involves removing all binary executables, links to scripts,
and compiler object files, which is achieved practically by removing the following directories:
bin qmc, lib/zlib, src/zlib and utils/zlib.

10

• If you use the vim, emacs, gedit or nano text editors then it is possible to configure them to
highlight the syntax of casino’s arch files and the various input files. See the README file in
CASINO/data/syntax or just select the [y] option of the install script to automatically do the
configuration.

• For versions of casino prior to 2.10, a different setup system was used, involving environment
variables QMC ARCH and QMC ID (the latter for customization on specialized machines). These
may be retained if you wish to continue to use older versions of the code, but the setup will need
to be redone for version 2.10 and later.

5.4 Note for Windows users

casino was written for UNIX/Linux systems and is not supported directly under Windows. Neverthe-
less, it runs well enough under Windows using Cygwin, an emulation layer that provides a Linux-like
compilation and execution environment for applications. Under Cygwin, casino works as if it’s
running on a Linux workstation using the GCC compiler suite. Although Cygwin is considered an
emulation layer, this only concerns system calls. The calculation speed of casino is native, and its
performance is quite acceptable.

These instructions do not cover the installation and general use of Cygwin; please refer to Cygwin’s
documentation for that. The instructions were tested under Windows 7 Ultimate 64-bit and Windows
8.1 Enterprise 64-bit, using Cygwin 1.7.28, with all Cygwin packages up-to-date as of March 2014,
and again on a Windows 10 virtual machine using Cygwin 3.1.2 (July 2020).

Installation and compilation:

1. Download and install Cygwin from https://www.cygwin.com (either the 32-bit or 64-bit ver-
sion).

2. Install at least the following packages and all their dependencies using Cygwin’s setup program
(which is also its package manager) in addition to those packages that are installed by default
(switch View to ‘Category’; in order to mark a package for installation, click on ‘Skip’ to cycle
to the newest version): gcc-core, gcc-g++, gcc-fortran, libgcc1, libgfortranXXX, make, bc,
bzip2, zlib, zlib-devel and python3.

• Make the version numbers for the packages consistent, in particular choosing the same
version for the libgfortranXXX package as for gcc-core, gcc-fortran, etc. At present
(July 2020) this requires XXX = 4.

3. If you want to run in parallel (which believe me, you do, if your machine has more than 1
CPU core) then you should also install the following to get MPI support: libopenmpi-devel,
libopenmpifhYYY and openmpi.

• Again, ensure that the version numbers YYY are consistent.

• MPI should just work on Cygwin straight out of the box. . .

4. The casino manual will fail to compile unless you also install various LaTeX
packages. The manual is not really needed (after all you have somehow man-
aged to read this!), but if you care deeply about compiling the manual then
please install the texlive, texlive-collection-basic, texlive-collection-latex,
texlive-collection-latexrecommended and texlive-collection-plaingeneric packages.

5. If you want to use casino’s shared-memory facility (to enable large blip calculations) then you
should install the cygrunsrv package. After completing the installation of packages, open the
Cygwin terminal as administrator (right-click on the icon and select ‘Run as administrator’).
In the Cygwin terminal, type ‘cygserver-config’. Then open the /etc/cygserver.conf file
with your favourite text editor, and uncomment and change the kern.ipc.shm allow removed

value to ‘yes’. Finally, start Cygserver as a local service by typing ‘net start cygserver’. It
may be necessary to reboot your machine at this point.

6. If necessary, set up your Cygwin environment so that you are using the bash shell (should be
the default anyway).

11

https://www.cygwin.com

7. Follow the instructions given above for downloading, unpacking, installing and configur-
ing casino using the install script. The option [p] of install allows you to specify
the value of CASINO ARCH manually. The correct value is ‘cygwin-gcc’ under Cygwin, or
‘cygwin-gcc-parallel’ if, as is likely, you want to run casino in parallel. The auto-detect
option of the install script should also be able to figure out the existence of these two
CASINO ARCHs all by itself (though because of a Cygwin bug preventing asynchronous opera-
tions, the auto-detection will run much more slowly than usual).

8. Use the install script’s compilation option to compile casino as usual.

A further note from Marcin Szyniszewski: “X Window Server is useful if you want to use xmgrace
(e.g., in graphdmc). I installed Xming with default settings (https://sourceforge.net/projects/
xming/) and then installed the following packages from Cygwin’s repository: xorg-server, xinit,
xterm and xeyes (for testing purposes). Then I appended ‘export DISPLAY=:0.0’ to my .bashrc

file, restarted Cygwin Terminal, and made sure Xming was running (X icon in the tray). If everything
goes well, running ‘xeyes’ in the terminal should show eyes following the mouse pointer. Some people
use Cygwin/X X Server instead of Xming, but I found it problematic when connecting through ssh.”

Further note from Neil Drummond (July 2020): “When running casino in parallel, Windows Firewall
may ask your permission before proceeding; select both ‘private’ and ‘public’ and click on ‘allow’. I
also found it necessary to create a link using ln -s /usr/bin/python3 /usr/bin/python in order
to use the utilities written in Python. Finally, if you compile the casino distribution with debugging
flags then the louis utility may fail to compile due to some issue with the -pg flag; unless you are
specifically interested in running louis under Cygwin with debugging flags, this issue can safely be
ignored.”

An alternative approach for committed Windows users is to install the distribution of Linux that
you dislike least in a virtual machine, e.g., using VirtualBox (https://www.virtualbox.org/). An
alternative lightweight virtualization option is the Windows Subsystem for Linux (WSL): see Mi-
crosoft’s website for more information. We have verified that casino can be installed and run using
the Ubuntu App from the Microsoft Store in the WSL on Windows 10. Note, however, that casino
may be significantly slower when run on a virtual machine. Furthermore, the use of either a Linux
virtual machine or the WSL still requires the user to use and maintain their Linux installation. We
believe that in most cases Cygwin provides a better solution for running casino under Windows.

5.5 Note for Apple Mac users

Casino can be used straightforwardly under Mac OS X.

• Download and install Homebrew by following the instructions at https://brew.sh. (Other
package managers for Macs exist, but Homebrew seems to be the most popular.)

• If you are willing to switch to bash rather than zsh, type:

chsh -s /bin/bash

in a terminal window.

• To use Homebrew to install the packages needed by casino, type:

brew install gfortran openmpi grace gnuplot xquartz # git # texlive

in a terminal. Notes:

– If you are installing the developer version of casino by cloning casino’s git repository
then obviously you will need git; otherwise you do not need git.

– If you want to compile the manual locally then you will need to install texlive. Unfortunately
the texlive package is massive. There is no need to install it if you are happy to live without
the manual; you can just ignore the error messages about there being no pdflatex in PATH
when you compile casino. You could instead just download the manual as a PDF file from
the casino website. In any case, if you are reading this, you must have got hold of the
manual from somewhere!

12

https://sourceforge.net/projects/xming/
https://sourceforge.net/projects/xming/
https://www.virtualbox.org/
https://brew.sh

• Use the install script as normal to install casino, selecting macos-gcc-parallel as your
CASINO ARCH.

• If you do not wish to switch from zsh to bash then a minimalistic (addition to your) ∼/.zshrc
file is as follows:

export CASINO_ARCH=macos-gcc-parallel

export PATH="$PATH:$HOME/CASINO/bin_qmc/utils/$CASINO_ARCH"

(assuming you have installed casino in your home directory).

5.6 Discussion forum

An online discussion forum https://vallico.net/casino-forum exists, where users may discuss
issues relating to quantum Monte Carlo and the casino code. Expert users of the code are known
to haunt the forum, and thus it may be useful for soliciting advice if problems are encountered in
installing or using casino.

6 Introductory user’s guide: how to use CASINO

6.1 Getting started

This section gives basic practical details for running QMC calculations with casino, and is intended
for new users. It assumes you already know something about the theory of VMC, DMC and wave-
function optimization. If you don’t then please see the standard references for general details about
the methods (e.g., Refs. [10], [11], [12], [13], [14], and the Theoretical Background section at the end
of this manual). You might also like to have some idea of how casino works on parallel machines, a
topic discussed in detail in Sec. 39. Following the instructions in this section will not necessarily lead
to publication-quality results, but should at least allow you to play with the code and get some feel
for how it works.

6.1.1 Trial wave functions

Unless you’re interested in electron or electron–hole phases in the absence of an external potential, in
which case you can start straight away, the first hurdle to doing research with casino is to generate
a trial wave function using, for example, a DFT or HF calculation. Multideterminant quantum
chemistry methods can also be used. This has to be done using an external program, which must
either support casino directly, in that it is capable of writing out the wave function in a format that
casino understands, or it must be supported indirectly by casino, in which case a conversion utility
should be found under ~/CASINO/utils/wfn converters/ which can convert the information in its
standard to output to casino format. Note that ‘writing out the wave function’ basically means
writing out the geometry, the basis set and the coefficients that define the orbitals.

The information defining the trial wave function generated by the external program lives in files whose
name depends on the basis set in which the orbitals in the determinantal part of the wave function
are expanded. These files are called gwfn.data (Gaussians), pwfn.data (plane waves), bwfn.data
(blip functions), awfn.data (atomic orbitals given explicitly on a radial grid), dwfn.data (molecular
orbitals for dimers given explicitly on a radial grid), or stowfn.data (Slater-type orbitals). These files
will often be referred to generically with the name xwfn.data. For the case of blip orbitals, where the
wave function file can get very large, you will often see the bwfn.data in its unformatted binary form
bwfn.data.bin which takes up much less disk space (an older binary format bwfn.data.b1 is also
supported). The choice of basis set has been found to depend largely on personal prejudice, though
some consideration should be given to issues of computational efficiency.

Gaussian, Slater-type, plane-wave and numerical atomic wave functions are taken directly from the
generating code. The plane-wave DFT code pwscf/quantum espresso knows about blips, and is
capable of internally transforming its plane-wave orbitals and writing out blip wave functions directly
(in either binary or formatted forms). With other plane-wave DFT codes, the blip wave function files
are generated by post-processing a plane-wave pwfn.data file by performing a casino calculation
with runtype set to ‘gen blip’. It is desirable to carry out this transformation because plane waves

13

https://vallico.net/casino-forum

are the worst possible basis set you could choose for QMC, since every basis function contributes at
every point in space. Moreover, blips can be used to make the computer time for a casino calculation
scale independently of system size (for energy-per-atom properties) or quadratically with system size
(for total-energy properties). To achieve this, the delocalized orbitals generated by most DFT/HF
programs need to undergo a linear transformation to a localized form, using the localizer utility
before re-expanding in blips using a ‘gen blip’ calculation, though in practice this facility is rarely
used.

Generating trial wave functions almost always requires you to have access to one of the codes listed in
Sec. 8. If you don’t have access to any of these codes and have a specific system in mind, then Mike
Towler is known for being able to generate trial wave functions in record time on payment of a suitable
fee (just to get you started he likes, in no particular order: bright shiny things, books about romance,
poems, authorship on papers for which he hasn’t really done any work, ancient books from long ago
about explorers with nice binding, cute cuddly toys, especially bears, anything sold by United Nuclear
http://www.unitednuclear.com/, and money).

If you are using pseudopotentials you must be able to use the same ones in the orbital-generating code
and in casino: see the note in the next section for details.

6.1.2 Pseudopotentials

casino is capable of running all-electron calculations, where core and valence electrons are explicitly
included in the simulation, or pseudopotential calculations, where the core electrons are replaced by
an effective potential. The latter approach is normally advantageous since the computer time required
for all-electron calculations scales rather badly with atomic number Z; this scaling is improved by
using pseudopotentials.

casino reads pseudopotential data from a file called xx pp.data, where xx is the chemical symbol
of the element in lower-case letters. The file contains a logarithmic radial grid and the values of the
different angular momentum components of the pseudopotential at each grid point.

On the rare occasions when you might want to use two or more different pseudopotentials for atoms
with the same atomic number (say in a surface, and in an atom or molecule absorbed on that surface),
then you may use additional pseudopotentials renamed as, e.g., xx2 pp.data. Different types of
pseudoatom are flagged in xwfn.data by adding multiples of 1000 to the original atomic number,
e.g., atomic numbers 12, 1012 and 2012 correspond to atoms using pseudopotentials mg pp.data,
mg2 pp.data and mg3 pp.data, etc.

A library of pseudopotentials suitable for use with casino is available at:

https://vallico.net/casinoqmc/pplib/

An important point is that exactly the same pseudopotential should be used in the DFT/HF calcula-
tion that generates the trial wave function and in casino. Other programs do not in general under-
stand the casino pseudopotential format, and so the information must somehow be transformed so
that they do.

For programs using Gaussian basis sets such as gaussian9X/0X and crystal, the pseudopotential
must be re-expanded in Gaussian functions multiplied by powers of r. If you are using the Cambridge
pseudopotentials, such expansions (in formats suitable for these two programs) are included in the
on-line library. There is a casino utility—ptm—which can manipulate pseudopotential files on grids
and their Gaussian expansions in various useful ways.

As for plane-wave programs, castep understands the casino grid format and can read such
files directly. Other plane-wave programs require conversion utilities, which are included in the
~/CASINO/utils/pseudo converters/ directory.

For atomic calculations on radial grids, awfn.data files generated with the Cambridge pseudopoten-
tials are available in the on-line library.

6.1.3 The input file

Having prepared a trial wave-function file and (perhaps) a pseudopotential file, you need to tell casino
exactly what to do with them. casino takes its instructions from a file called input, which contains

14

http://www.unitednuclear.com/
https://vallico.net/casinoqmc/pplib/

a flexible list of keywords. These control the behaviour of the calculation, switch on and off various
options and so on. Take a moment to examine the various input files in ~/CASINO/examples/ to get
a feel for what they look like.

A complete list of input keywords, together with their definitions, is given in Sec. 7.3. Further details,
including default values, may be found by using the casinohelp utility. This tends to be more up to
date than the manual, since it interrogates casino directly. Type casinohelp all to get a list of all
keywords that casino knows about, or casinohelp keyword for detailed help on a particular keyword.
Type casinohelp search text to search for the string ‘text’ in all the keyword descriptions.

Although there are many keywords, the beginner can play around by changing only a few of them.
Here’s a (very) rough guide. Advice on good values to use will be given in the subsequent sections
explaining how to do VMC, DMC and optimization calculations.

• General (system-dependent) keywords:

NEU, NED Number of electrons of up and down spin;

PERIODIC Whether the system is periodic or not;

NPCELL Array of primitive cells making up the simulation cell (not required for finite sys-
tems).

• Other vital keywords:

RUNTYPE Type of QMC calculation: ‘vmc’, ‘vmc dmc’, ‘vmc opt’, etc.;

ATOM BASIS TYPE The type of orbitals to be used: ‘plane-wave’, ‘gaussian’, ‘slater-type‘,
‘blip’, ‘numerical’, ‘dimer’, ‘none’ (for HEGs, etc.) and various special wave function types
such as ‘nonint he’, ‘h2’, and ‘h3plus’;

• Important VMC keywords:

VMC EQUIL NSTEP Number of equilibration steps;

VMC NSTEP Number of VMC energy-evaluation steps;

VMC DECORR PERIOD Number of steps between VMC energy-evaluation moves.

VMC NCONFIG WRITE Number of VMC configurations stored for later use in DMC or
optimization;

DTVMC VMC time step (size of trial steps in random walk);

• Important optimization keywords:

OPT CYCLES Number of optimization+VMC cycles to perform.

OPT METHOD Optimization method to use: variance minimization (‘varmin’), energy min-
imization (‘emin’), etc.

• Important DMC keywords:

DMC TARGET WEIGHT Target number of configurations in DMC;

DMC EQUIL NSTEP Number of DMC steps in equilibration;

DMC STATS NSTEP Number of DMC steps in statistics accumulation;

DTDMC DMC time step.

6.1.4 Correlation parameter file

If you run a casino VMC calculation using a trial wave function consisting of only a single determinant
of orbitals (referred to as an ‘HFVMC’ calculation), then the result will be the HF energy. If the
orbitals were generated using a HF calculation, then the HFVMC energy should agree with the
HF energy from the generating code. This is a good check that everything is being done correctly.
Obviously, if the determinant is made up of Kohn–Sham orbitals from a DFT calculation then the total
energies will not agree, because the DFT program adds an XC energy deduced from the self-consistent
charge density; however, the kinetic energies should still be in agreement.

The full Slater-Jastrow trial function normally used in QMC requires the determinantal part of the
wave function stored in xwfn.data to be multiplied by a separate ‘Jastrow factor’, which defines the

15

functional form of explicit interparticle correlations. In a typical VMC calculation one might recover
60–80% of the correlation energy using such a wave function. This is not really enough to be generally
useful, and in practice the main use of VMC is to prepare an accurate trial wave function to be given
as input to a DMC calculation. The DMC energy does not in principle depend on the Jastrow factor,
since the Jastrow factor is positive definite and the DMC energy depends only on the nodal surface
(the set of points in configuration space where the many-electron wave function is zero). However, it
makes the calculation vastly more efficient, and in general Jastrow factors should always be used.

The Jastrow factor is stored in a file called correlation.data. Again, you should look at the
examples to see what these look like. The various parameters in the files are defined in Sec. 7.4.2.
The adjustable parameters in the file must be optimized for a specific system, and this is the purpose
of the variance-minimization procedure.

The correlation.data files may also contain other optimizable parameters not contained in the
Jastrow factor (for example, ‘backflow’ parameters, or the coefficients in a determinant expansion)
but you don’t need to know about these yet.

6.1.5 The MPC data file

If, for a two- or three-dimensionally periodic system, you want to use the model periodic Coulomb
(MPC) interaction to calculate the electron–electron energies instead of (or as well as) the standard
Ewald interaction, then you need to generate an extra file for the given geometry before you start
doing VMC/DMC calculations. This is called mpc.data and contains the Fourier transform of the 1/r
interaction and the Fourier transform of the charge density. The mpc.data file should be prepared
for a given trial wave function and geometry by setting the input keyword runtype to ‘gen mpc’ and
typing runqmc. Note that generation of the mpc.data file requires complex wf=T, but this is not
required for the subsequent use of the mpc.data file.

One might consider using the MPC interaction because casino can evaluate it much more quickly
than the Ewald interaction, and also because it gives rise to smaller finite-size effects1. More details
are given in Sec. 19.4.4.

6.1.6 Summary of input files required by CASINO

The input files (and some of the output files) required by casino are summarized in the figure below:

CASINO

input

pseudopotential

 file

out

awfn.data

pwfn.data

CRYSTAL95/98/03/06/09

TCM atomic code

Numerical orbitals:

Gaussians:

GAUSSIAN94/98/03/09

TURBOMOLE

dwfn.data

gwfn.data

mpc.data

expot.data

correlation.data

expval.data

vmc.hist
dmc.hist
etc..

bwfn.data

Blips

Plane waves:

ABINIT

CASTEP

K270

GP

PWSCF
bwfn.data.bin

config.in

config.out

The dotted-line boxes indicate optional files, and the curved dotted line indicates that one of the
wave function files defined by the arrows within the sweep of the curve must be supplied (unless you

1The difference between the energy per atom obtained in a finite simulation cell and the energy per atom for an
infinite crystal is smaller when the MPC interaction is used instead of the Ewald interaction.

16

are doing a model system such as the homogeneous electron gas which does not require a trial wave
function generated by an external code).

A complete list of the input and output files used by casino, together with detailed information about
their format, is given in Sec. 7.

6.2 How to do a VMC calculation

Let’s begin by calculating the HF energy of a hydrogen atom. Change directory to
~/CASINO/examples/atom/hydrogen/. You will see a gwfn.data file generated by a gaussian94
calculation—see the bottom of gwfn.data for the gaussian output—and a casino input file (note
that most casino wave function files are supplied in compressed .gz form, so you may need to gunzip
them). No pseudopotential file is supplied, so casino will assume you wish to do an all-electron
calculation. No correlation.data file is supplied, because the correlation energy in a one-electron
atom (zero!) is not difficult to calculate without one.

Look in the input file. You will see that neu and ned have been given the correct values (one
spin-up electron present), periodic is F, and, as this is a finite system, the npcell block is not
required. It is not necessary to equilibrate the electron distribution since there is only one electron,
but vmc equil nstep is set to 500 to remind you that this should normally be done. The vmc nstep
parameter is set to 100000. Note also that the runtype parameter is set to ‘vmc’, implying that we
are going to perform a VMC calculation. The atom basis type parameter is set to ‘gaussian’, which
means that a Gaussian basis set is used to expand the orbitals in the trial wave function.

Type runqmc. Three files, out, vmc.hist and config.out, should be produced. First type envmc.
This is a quick way to pull the VMC result out of the output file. It says:

ENVMC v0.60: Script to extract VMC energies from CASINO output files.

Usage: envmc [-kei] [-ti] [-fisq] [-pe] [-vee] [-vei] [-vnl] [-nc]

[-vr] [-rel] [-ct] [-nf <no-figures>] [files]

File: ./out

(energies in au, variances in au)

E = -0.49999(4) ; var = 0.000083(4)

Total CASINO CPU time ::: 3.3700 seconds

If any warnings are present in the output file, then envmc will print them out, but there shouldn’t be
in this case. Note that, because of the stochastic nature of the method, the energy has an associated
error bar (users of DFT, etc., may find this disconcerting!). The true HF energy of the hydrogen atom
is exactly −0.5 a.u., so we have seemingly correctly performed our first VMC calculation!

A point about parallel machines: if you try to run this calculation on your machine then you may
get a slightly different answer. The numbers above were obtained on a single processor core; if your
computer has more than one core (these days most machines do, of course) and your CASINO ARCH is
a parallel one, then the runqmc script will automatically detect the number of cores on your machine
and run casino in parallel using that number. If you wish to reproduce the single-core result, you
may use runqmc -p 1.

For example, my (=MDT) personal machine has dual hex-core processors (i.e., 12 cores in total),
though if I interrogate it using a command like

cat /proc/cpuinfo 2> /dev/null | grep -cE "ˆprocessor"

it thinks it has 24. This is because these are Intel chips with hyperthreading enabled, i.e., for each
processor core that is physically present, the operating system addresses two virtual processors, and
shares the workload between them when possible.

So if I execute runqmc then I get the following 24-core result:

ENVMC v0.60: Script to extract VMC energies from CASINO output files.

Usage: envmc [-kei] [-ti] [-fisq] [-pe] [-vee] [-vei] [-vnl] [-nc]

[-vr] [-rel] [-ct] [-nf <no-figures>] [files]

File: ./out

(energies in au, variances in au)

E = -0.50000(4) ; var = 0.000088(7)

Total CASINO CPU time ::: 0.4309 seconds

17

Note the behaviour here. The second run is a lot faster but gives roughly the same error bar as the
first one. This is because vmc nstep gives the total number of configuration space samples—in this
case 100,000—not (as was the case with early versions of casino using the old nmove keyword) the
number of samples done by each core. Giving the total number is better since it means that the input
files are then independent of the number of MPI processes on which the job is run. With 24 cores, the
100000 samples to be taken will be divided by 24 (to give 4166.667). Because this is not an integer,
this number is rounded up to 4167, and so 4167×124 = 100008 samples will actually be done in total.
Because each processor is doing less work, the calculation as a whole is much faster (not exactly 24
times faster because the setup is a significant fraction of such a short calculation). The answer will
be different, however, because 24 short random walks initialized with different random number seeds
sample the space differently to 1 long random walk.

Next, look in the out file. We see a complete report of the calculation and at the end we see the total
energy and its components. Just before the total energy, we see the ‘acceptance ratio’ which should
be around 50% (the acceptance ratio depends on the VMC time step, and we have set opt dtvmc to
1 to automagically adjust the time step so that the acceptance ratio of 50% is achieved). 2.

Next, look at the file vmc.hist (see Sec. 7.12). This contains mainly energy data produced at each
step of the random walk (you can average over successive steps using the vmc ave period keyword
to prevent this file getting too large). The vmc.hist file contains all the raw VMC data, which should
be subjected to a statistical analysis. Note that the data in here is averaged over MPI processes, so
in the example above vmc.hist will contain 4167 lines, and each line contains energy data averaged
over 24 cores.

The error bar in VMC and DMC energies is affected by serial correlation (caused by the sampling
points not being truly independent of each other). There are two ways of removing this—which should
more or less agree with each other—and casino uses both when calculating total energies and their
components. The first way is the correlation-time method—see Sec. 24.2—the corrected error bar
calculated using this method is printed at the end of the output of VMC calculations (including the
data from earlier runs if the current run is restarted). The second way is the reblocking method (see
Sec. 24.1). This is done by casino ‘on-the-fly’ and the reblocked error bar is printed at the end of
both VMC and DMC output files (again, this includes data from previous calculations in the case of
‘continued’ runs). All these numbers may also be extracted from VMC output files using the envmc

utility. Both reblocking and the correlation time correction may also be performed after a calculation
by using the reblock utility to analyse the data in vmc.hist or the equivalent DMC file dmc.hist.
Although this allows a more detailed analysis of serial correlation, it is not necessary under normal
circumstances to post-process the data since casino and the reblock utility should give the same
answers, and the additional detail is of limited interest. One might use the utility when visualizing
reblocked energy data, when doing explicit statistical studies of QMC, when calculating error bars on
other expectation values stored in the vmc.hist/dmc.hist files (dipole moment, forces, . . .), or just
when learning how the reblocking method works.

So let’s see how the reblocking method works. Type reblock in the directory containing the vmc.hist

file. It will first ask you what units you want. Then it will print out a reblocking analysis (see Sec.
24.1): it will calculate an estimate of the standard error in the mean energy as a function of the
length of blocks into which the data are gathered. The error bar will generally be too small for low
values of the block length, and then should go up to a roughly constant value for larger block lengths.
For very large block lengths the estimated error bar will oscillate as the error bar on the error bar
becomes large. The constant value in the middle is the accurate error bar you want. Note that, in
general, VMC calculations will reach this plateau more quickly than DMC calculations since they use
a much larger time step and there is therefore less serial correlation in the data. In fact, for many
VMC calculations, the standard error in the mean energy reaches its plateau at a block length of 1,
so that one does not see the standard error rising significantly as the block length is increased.

A file called reblock.plot is normally produced as part of the output of the reblock utility. If you
have the program xmgrace (or gnuplot or python/matplotlib) set up on your system, then you can
visualize the results of reblock by typing plot reblock—you should be able to see a ‘plateau’ in the
standard-error-versus-block-length curve, like the one shown in the figure below. (The block length

2If the time step is small then the electrons only attempt to move very short distances at each step of the random
walk. Although the acceptance ratio is therefore high, the electrons are likely to bumble about in one corner of the
configuration space, and serial correlation is likely to be significant. If the time step is large then the electrons attempt
very large jumps—which are likely to be to regions of lower probability—and are thus likely to be rejected by the
Metropolis algorithm. Hence the electrons don’t move very much, and the serial correlation is again large. This is the
reason why an acceptance ratio of 50% usually implies nearly optimal sampling efficiency.

18

is given by 2 raised to the power of the ‘reblocking transformation number’.) In the example shown
below, the standard error in the mean energy is 0.00035 a.u. Note that xmgrace is a very useful thing
to have, and it is used by various casino utilities. If you don’t have it set up on your system then you
can download it for free from the following website: http://plasma-gate.weizmann.ac.il/Grace/

(it is also present in most modern Linux repositories, though not generally installed by default).

0 5 10 15 20
Reblocking transformation number

0

0.0001

0.0002

0.0003

0.0004

0.0005

St
d.

 e
rr

. i
n

th
e

m
ea

n
D

M
C

 e
ne

rg
y

(a
.u

.)

The file config.out contains the final positions of the electrons and the current state of the random
number generator so that the VMC run can be continued if desired. To do this, set the input keyword
newrun to F and rename the config.out file to config.in (in fact the runqmc script will normally
ask if it can do this for you), then run the calculation for another vmc nstep steps. All the extra
data will be put onto the end of vmc.hist and the corrected error bar obtained from the reblocking
analysis will be smaller (in principle the error bar can be made as small as desired). As I already
mentioned, you need to use the reblock utility for continued runs since the on-the-fly reblocking will
no longer work (though the correlation time correction does).

Finally, go and find a system with more than one electron and a Jastrow factor, such as the beryllium
dimer in ~/CASINO/examples/molecule/be2/. Experiment with switching use jastrow between F

(HFVMC) and T (VMC with a Jastrow factor), and see the energy- and error-bar-lowering effect of
the Jastrow factor (results shown below for 12 cores).

Without Jastrow :

E = -29.107(8) ; var = 6.6(6)

Total CASINO CPU time ::: 4.0744 seconds

With Jastrow :

E = -29.215(2) ; var = 0.303(2)

Total CASINO CPU time ::: 6.0221 seconds

After any casino calculation, you can delete all the output that casino produces and restore the
directory to the state it was in at the start of the calculation by typing clearup.

6.3 Wave function optimization

The values for the parameters in the Jastrow factor used in the last part of the previous section (and
other adjustable parameters such as the coefficients in a multideterminant expansion, or backflow
parameters) generally need to be optimized so that we have best possible trial wave function of the
given functional form. There are various methods for doing this, including minimization of the variance
(‘varmin’), minimization of the energy (‘emin’), and minimization of the mean absolute deviation of
the local energies from the median (‘madmin’). Wave-function optimization is probably the most

19

http://plasma-gate.weizmann.ac.il/Grace/

difficult part of QMC for beginners, and perseverance will help. The user might first like to take a
look at Sec. 25.1, which contains a detailed summary of the theory and best practice. Here we simply
summarize.

6.3.1 How to do a variance-minimization calculation

Recall that if the trial wave function were exact, then any arrangement of the electrons in configuration
space would have the same value of the local energy—and thus zero variance3. For non-exact wave
functions, this would not be the case, and the variance would be a positive number. Adjusting the
shape of the non-exact wave function in order to minimize the sample variance is therefore a good
idea. How do we do this? We need a set of configurations4 distributed according to the square of
the trial wave function, and the first part of a variance minimization calculation is to generate such a
set. casino will automatically perform VMC configuration-generation runs before the optimization
if keyword runtype is set to ‘vmc opt’. Keyword vmc nconfig write must be set to the number
of configurations to generate (note again that on parallel machines this is the total number, not
the number per MPI process)5. The configurations generated are passed to the variance-minimization
stage, where casino adjusts the value of the wave-function parameters in such a way that the variance
of the local energies of the previously generated configurations is minimized.

At this stage the configurations are distributed according to the original, unoptimized wave function.
Thus it is often a good idea to use the new, optimized wave function to generate a new set of
configurations, and then perform the minimization again. This iterated procedure can be carried on
as long as desired, although there is generally only a significant change in the variational energy over
the first few cycles. The number of cycles is controlled by the keyword opt cycles.

The two main things to worry about are ‘how many configurations to use?’ and ‘what parameters
should be included in the Jastrow factor?’. Good advice about this is given in Sec. 25.1. Basically you
should use more than 10,000 configurations in general, bearing in mind that increasing the number of
configurations past a given value will not improve the wave function but will be more costly. If you
have difficulties optimizing a wave function then the first things to try are (i) increasing the number
of configurations used in the optimization, (ii) reducing the number of optimizable parameters, i.e.,
simplifying the trial wave function and (iii) reducing cutoff lengths in the Jastrow factor. On the other
hand, if optimization is going well then you want your wave function to be as flexible as possible (more
variational parameters and longer cutoff lengths).

The parameters in the Jastrow factor (see Sec. 7.4.2) are of multiple types. In systems containing
atoms the expansion coefficients in the U term, the χ term and the F term together with their
associated cutoffs are the ones normally varied (together with the P term in periodic systems).

So let’s play. For a particular example, see ~/CASINO/examples/electron phases/3D fluid/.
This is a homogeneous electron gas (HEG) calculation with density parameter rs = 10 and
54 electrons per cell. Make a backup copy of the Jastrow factor (e.g., cp correlation.data

correlation.data backup or whatever). Then, in the correlation.data file, find the two sec-
tions labelled ‘Parameter values’ and delete all the parameter lines (a first block of sixteen for the U
term and a second block of seven for the P term). You have now created a ‘blank’ Jastrow file.

In correlation.data you can state which parameters should be held fixed, and which should be op-
timized. In this first example we don’t want to optimize the nonlinear cutoff parameter, because it
can take a long time to optimize. If we did want to do this then we could go to the point after the
line where it says Cutoff ; Optimizable (0=NO; 1=YES) and set the ‘Optimizable’ flag to 1. If you
want, you can change the number of parameters by changing the Expansion order for the U term. To
use more parameters in a P term, you should use the make p stars utility.

Now edit the input file. First of all, set runtype to vmc opt. Let’s use 3200 configurations
(vmc nconfig write = 3200). Note that the total number of VMC moves vmc nstep needs to be at
least as large as the number of configurations used in the optimisation. Let’s set vmc nstep = 6400.
Make these changes now. Also, let’s choose opt cycles to be 4, meaning ‘do four cycles of con-

3The local energy is given by Ψ−1(R)Ĥ(R)Ψ(R), where Ĥ(R) is the Hamiltonian operator, Ψ(R) is the trial wave
function, and R are the electron positions.

4Each configuration R is a set of coordinates for all the electrons in the system, {ri}i=1...N .
5Clearly, vmc nstep must be greater than or equal to vmc nconfig write. You might want it vmc nstep to be

a few times larger than vmc nconfig write to get an acceptable error bar on the energy; this is useful for judging the
success of an optimization at each stage

20

figuration generation and optimization’. Set the opt method to varmin linjas and make sure
opt jastrow is set to T.

Type runqmc. casino’s output will be placed in the out file, as before. In addition, casino will
create files called correlation.out.1, correlation.out.2, etc. These files contain the optimized
Jastrow factor from each cycle of the optimization process. When casino has finished, type envmc.
The output should look something like this (I ran the calculation on 4 cores):

ENVMC v0.80: Script to extract VMC energies from CASINO output files.

Usage: envmc [-kei] [-ti] [-fisq] [-pe] [-vee] [-vei] [-vnl] [-nc]

[-vr] [-rel] [-ct] [-nf <no. of figures in error bars>] [files]

File: ./out

Block averages recomputed for current run.

Corrected for serial correlation using correlation time method.

Energies in au/particle, sample variances in au.

VMC #1: E = -0.0386(1) ; var = 0.19(1) (correlation.out.0)

VMC #2: E = -0.05380(1) ; var = 0.00280(9) (correlation.out.1)

VMC #3: E = -0.05390(1) ; var = 0.00232(6) (correlation.out.2)

VMC #4: E = -0.05393(1) ; var = 0.00233(8) (correlation.out.3)

VMC #5: E = -0.05393(2) ; var = 0.0024(2) (correlation.out.4)

Total CASINO CPU time ::: 438.1300 seconds

We see that optimizing the parameters in this way lowers the variance and total energy significantly.

You should use the output of envmc to choose which correlation.out file you want to use in sub-
sequent calculations, e.g., for DMC or for further optimization. In general, one should choose the
correlation.out file that gives the lowest variational energy. Therefore, in the example above,
correlation.out.4 should be copied to correlation.data for use in subsequent calculations.

To get an even better wave function one could try additional things, such as optimizing the cut-
offs, or using more parameters, or having different functional forms between different spin types to
optimize the Jastrow still further. Feel free to try this. If you wish to optimize parameters that
do not appear linearly in the Jastrow exponent J , such as the cutoff lengths, then you cannot use
varmin linjas. You can instead use ‘conventional’ variance minimization (opt method = varmin)
or energy minimization (opt method = emin).

For this example we have only used the electron–electron terms U and P in the Jastrow factor. If we
were optimizing a wave function for a real system with atoms then we would also include atom-centred
electron–nucleus χ terms (one for each type of atom), and (usually) electron–electron–nucleus F terms
(again, one for each atom type). A three-body H term is also available, but is not widely used in
studies of real systems, because the improvement to the wave function does not justify the additional
computational expense. It is more useful in studies of electron gases and, especially, in systems where
there is an attractive interaction beteen particles. The plane-wave term P is, of course, only applicable
to periodic systems. Finally, cylindrical one-body χcyl and two-body terms Ucyl are available.

If you are only interested in optimizing linear parameters in casino’s Jastrow factor (i.e., all Jastrow
parameters except cutoffs and parameters in the three-body terms), then the ‘varmin-linjas’ method
(see Sec. 25.2) is usually considerably faster than other optimization methods. However, in general it
is a good idea to use energy minimization (opt methods = emin) as a final stage of optimisation, as
described next.

6.3.2 How to do an energy-minimization calculation

casino also includes a different optimization method, in which the variational energy is minimized.
Full details of the method and its usage are given in Sec. 25.3.

Energy minimization is done in a very similar manner to standard variance minimization, and is
selected by setting opt method to ‘emin’. As before, the process consists of cycles, each comprising a
VMC configuration-generation stage followed by an optimization stage. The number of configurations
that must be generated per cycle (vmc nconfig write) should usually be such that the statistical
error bar is smaller than the expected lowering of the VMC energy.

There are some differences in the capabilities and behaviour of energy and variance minimization.
Whereas variance minimization typically achieves all of its improvement to the wave function in one

21

or two cycles, energy minimization will often require up to ten cycles to converge. The exception to
this is that when optimizing only determinant coefficients, energy minimization should converge in
at most two cycles (see Sec. 25.3 for an explanation of this). Energy-minimization cycles are usually
faster than variance-minimization cycles, so that the overall time to convergence is similar for both
methods. Energy minimization is also more sensitive than variance minimization to the presence of
optimizable parameters which have very little effect on the wave function (it is often best to avoid
including such parameters). More importantly, energy minimization has some difficulty in optimizing
cutoff parameters (in the Jastrow, backflow, or orbital functions). Lastly, if the Jastrow u term is
present and being optimized, starting from zeroed parameters, it is possible for the energy to increase
after the first cycle of energy minimization. Subsequent cycles should lower the energy as usual. This
behaviour is explained in Sec. 25.3.

6.3.3 How to do a ‘madmin’ calculation

‘Madmin’ is a variant of variance minimization where a measure of the spread of local energies other
than the variance is minimized, one that is less sensitive to outliers (e.g., divergent local energies).
This measure is the mean absolute deviation (MAD) from the median energy,

MAD =
1

NC

∑
R

∣∣∣E{α}L (R)− Ēm
∣∣∣ , (1)

where Ēm is the median of the set of local energies {EL}. This actually works very well, and minimizing
the MAD generally gives a lower energy than minimizing the variance. Having a ‘robust’ measure of
the spread turns out to be important when e.g., optimizing parameters that affect the nodal surface
where Ψ = 0 (such as multideterminant expansion coefficients, parameters in orbitals and backflow
functions). Optimization of such parameters is difficult because the local energy diverges where the
wave function is zero, and so the unreweighted variance diverges whenever the nodal surface moves
through a configuration.

To use this method, you do essentially the same procedure as in a varmin calculation but set
opt method = ‘madmin’.

6.4 How to do a DMC calculation

DMC calculations are the main point of doing QMC. They are generally extremely accurate—
comparable to or better than the best quantum chemistry correlated wave-function techniques—and
yet remain applicable to very large systems. However, they require an accurate trial wave function in
order to be efficient. This is normally taken to be a Slater-Jastrow wave function with the parameters
in the Jastrow factor optimized by one or more of the above minimization procedures.

So we begin by assuming we have an input file, an xwfn.data file containing the determinantal
part of the wave function and an optimized correlation.data file containing the Jastrow factor.
A DMC calculation then consists of three basic steps: (i) VMC configuration generation; (ii) DMC
equilibration; and (iii) DMC statistics accumulation.

The wave function in DMC is not represented analytically, but by the time-dependent distribution of
a set of configurations (or ‘walkers’). The shape of the many-electron wave function in configuration
space is built up by moving, killing or duplicating individual walkers according to certain rules, and
thus the population of walkers fluctuates.

22

V(x)

Ψinit
(x)

Ψ0
(x)

t

τ {

x

The first step in DMC is to generate these configurations in their initial distribution (i.e., according
to the VMC trial wave function). This is done through a VMC calculation in exactly the same way as
we generated configurations for variance minimization in the previous section. Therefore one should
again set vmc nconfig write to be the desired number of configurations, and vmc nstep to be ≥
vmc nconfig write. (Setting the decorrelation period vmc decorr period to a higher value than
in VMC is less important than in variance minimization, since the correlations will disappear as the
DMC calculation evolves).

Note—and this is a common point of confusion—that the runtype flag should generally be set to
‘vmc dmc’ at the start of a DMC calculation, not, as might be thought, to ‘dmc’ 6.

An appropriate number of configurations to use for DMC might be 1000 or more. You can sometimes
get away with using a few hundred for small systems. Notice that parallelization is automatic—
configurations will be distributed among the MPI processes.

Following configuration generation the distribution of walkers is allowed to propagate in imaginary
time (see e.g. Ref. [11]) according to the DMC rules. During a certain period of equilibration, the
distribution will change until the walkers are distributed according to the ground-state wave function
of the system, subject to the constraint that the wave function has the same nodes as the trial function
that we started with. This part of the process is called ‘DMC equilibration’. The best estimate of
the energy will fall from the initial VMC value to around the correct ground-state energy during this
process. After equilibration, the best estimate of the energy will be roughly correct, and we now
propagate for a long period of imaginary time in order to accumulate enough energy data to estimate

6Sometimes one does wish to do DMC only (by using already generated VMC configurations, or by continuing an
existing DMC run) in which case one should set runtype to either ‘dmc equil’ (perform DMC equilibration), ‘dmc stats’
(perform DMC statistics DMC equilibration), or ‘dmc dmc’ (perform DMC equilibration, then statistics accumulation).
In earlier versions of the code, we used runtype = ‘dmc’ with the now-deprecated keyword iaccumulate = T or F

to indicate whether stats accumulation was activated or not. This usage is now deprecated and, unless iaccumulate
is specifically defined in input, runtype = ‘dmc’ is just a synonym for ‘dmc dmc’. If you don’t know what DMC
equilibration or statistics accumulation are, read on.

23

the DMC energy with a sufficiently low error bar. This is the ‘statistics-accumulation’ part 7.

As usual, the basic output of casino is sent to a file called out—this includes the final total energy
and its components with reblocked error bars. The other important output file is dmc.hist, which
contains the energy and other data as a function of move number (see Sec. 7.12 for precise definitions
of what it contains). The data in this file can be analysed in detail using the reblock utility, as
was done above for the data in the vmc.hist file (there is no equivalent of the envmc utility for
plucking the most important numbers out of the out file—as this is only really useful in wave function
optimization). In most circumstances it is not generally necessary to use the utility as the reblocked
error bars are computed on the fly. As a precaution against runs being prematurely ended—due to
power cuts, time limits, etc.—a file dmc.status is written and overwritten at the end of each DMC
block. At any time during the run, this file contains the complete statistical evaluation as it would be
written if the run had finished here. The out file only contains this data once at the end, if the run
goes to completion (at which point the dmc.status file is deleted).

The progress of a DMC simulation is easily visualized by means of the utility graphdmc, which reads
the dmc.hist file and calls the plotting program xmgrace to show you the resulting pretty picture.
Typing graphdmc will produce something like this:

0 500 1000 1500

Number of moves

-55.8

-55.7

-55.6

-55.5

-55.4

Local energy (Ha)
Reference energy
Best estimate

0 500 1000 1500
1000

1100

1200

1300

1400

1500

POPULATION

This picture shows the results of the simulation of an antiferromagnetic NiO crystal with 1280 config-
urations. The upper panel shows how the population fluctuates as the simulation progresses. There
is a feedback process in operation to limit the population fluctuations, so the population should just
oscillate around the total initial number of configurations that we chose (1280 in this case). If you
have a colour-printed manual or you are looking at the PDF version, in the bottom panel you will see
a red line, a green line and a rapidly oscillating black line. The black line is the instantaneous value
of the local energy averaged over the current population of configurations; the red line is the reference
energy ET, which is adjusted to control the feedback process that keeps the population in check; and
the green line is the best estimate of the DMC energy as the simulation progresses.

You should note that, in the picture above, the best estimate of the energy falls from its initial value

7Given our ability to reblock the casino data and discard an arbitrary number of initial steps, one might wonder
why it is necessary at all to run equilibration steps in DMC. In fact, the algorithm in the equilibration and statistics
accumulation phases is slightly different. In the equilibration phase, the underlying mean DMC energy is generally
expected to decrease as time progresses, whereas in the statistics accumulation phase it is steady. Hence the ‘best
estimate of the energy’ in equilibration is taken over a narrow window of the most recent ebest av window (=25 by
default) moves, whereas in statistics accumulation the best estimate is the average over all moves since the start of
statistics accumulation. The best estimate of the energy is used in the local-energy limiting schemes when computing
the branching factors: see later.

24

(the energy from the VMC configuration-generation run) to a much lower, constant value (around
−55.72 a.u.) as the wave function evolves to the ground state. You should look for the point at which
the energy becomes roughly constant (at around 500 moves in this case). This splits the graph quite
neatly into an equilibration phase and a statistics-accumulation phase. When we average energies to
produce the final energy and error bar, we should only include those moves between 500 and the end
of the run. More detailed information about choosing the number of moves for equilibration is given
in Sec. 24.3.

To see DMC in action, go to ~/CASINO/examples/molecule/h2/RHF/dmc/ and let’s calculate the
DMC energy of a hydrogen molecule. The input files should already be set up correctly (though as
before you may need to gunzip the gwfn.data file). We see that an equilibrated VMC run is set to
go for vmc nstep= 1000 moves in order to produce vmc nconfig write= 1000 configurations or
walkers 8. For DMC equilibration, we run for dmc equil nstep= 2000 moves, and for the statistics
accumulation we run here for dmc stats nstep= 100000 moves (note that unlike vmc nstep, these
are per process quantities, since in DMC the parallelization is done over configurations, not steps.
Study the definition of these keywords carefully in Sec. 7.3). The dmc stats nblock keyword is set
to 5; this does not mean we do 5 blocks of 100000 moves each; rather, that we do 100000 moves and we
checkpoint the data (write to output etc.) 5 times over the course of that calculation, i.e., every 20000
moves. The dmc target weight parameter is set to 1000.0—the same as vmc nconfig write, but
note that they are allowed to differ. The dtdmc parameter is the DMC time step—note that it is
much smaller than the VMC time step (it needs to be small because the DMC Green’s function is
only exact in the limit that the time step goes to zero). A typical value in a DMC simulation with
all-electron ions might be 0.003, while a typical value in a simulation with pseudopotentials might be
0.02. Note that for accurate work, you need to consider extrapolating your DMC results to zero time
step (see the utility extrapolate tau, described in Sec. 10). Now type runqmc.

When casino has finished running, you can type reblock in the directory containing the dmc.hist

file. reblock will read these files and then starting asking you questions. How many initial lines of
data do you wish to discard? Usually the same as the number of lines of equilibration data—which is
printed out—though look at the ‘graphdmc’ plot to be sure. Find the move number where the green
line in the plot becomes approximately constant (e.g., 501 in the NiO case). Then, what units do you
want the answer in? Whatever you want. reblock will then show you the correlation-time analysis
of the error bar, and start the reblocking analysis, where you need to choose a block length. Choose a
value where the ‘Std err of mean’ column starts to plateau (again, the plot reblock utility can help
you visualize this). A value in the thousands might be typical; the value increases as you reduce the
time step. reblock will then print out the final DMC energies and reblocked error bars (which should
agree with the ones in the out file), together with an analysis of the population fluctuations, effective
time steps and acceptance ratios.

In the case of molecular hydrogen, for my short 5-minute run the final energy is −1.174322 ±
0.00018 a.u. The exact energy is −1.1744757 a.u., which is within our reblocked error bar, so this
result is pretty good without paying particular attention to getting it absolutely right—this is due to
the system being exactly solvable in DMC due to the lack of nodes in the wave function.

6.5 How to perform QMC calculations for periodic systems

Suppose you wish to use QMC to study condensed matter rather than isolated atoms or molecules.
For example, you might be interested in the bulk properties of a crystalline solid. Obviously, in a
QMC simulation you can only study a small ‘simulation cell’ of such a crystal. Hopefully this cell will
be sufficiently large that you are able to obtain the bulk properties of the material. Fortunately the
boundary conditions on the simulation cell can be chosen to maximise the rate of convergence of the
bulk properties with respect to the size of the cell. Periodic boundary conditions are a highly efficient
and convenient choice, and are ubiquitous in computational studies of condensed matter.

According to Bloch’s theorem, single-particle orbitals in a periodic crystal can be written as ψk(r) =
uk(r) exp(ik · r), where uk(r) has the periodicity of the primitive cell and k lies in the first Brillouin
zone of the primitive cell. The allowed Bloch vectors k are determined by the boundary conditions on

8What is a typical number of DMC walkers? We usually say ‘around 1000’. Of course this is a bit like the length of a
piece of string. Nevertheless, for most systems with most wave functions on most computers it ensures that population-
control bias—see later—is completely negligible, but still lets you gather data for a sufficiently long period in imaginary
time that you can see a plateau on your reblock plot without heroic computational effort. If one has to give a single
number for the target weight, clearly 1000 configurations is as sensible a suggestion as any. Obviously if you want to
run on 20000 cores or whatever then you need a larger number of configurations.

25

the simulation supercell. Under periodic boundary conditions the allowed k are the reciprocal lattice
points of the supercell. Under so-called twisted boundary conditions the allowed k are the reciprocal
lattice points of the supercell offset by a constant vector ks in the first Brillouin zone of the simulation
cell.

In an explicitly correlated method such as QMC the need to describe long-range correlations forces
one explicitly to construct a simulation supercell consisting of several primitive cells. By contrast, in
single-particle methods such as DFT, the problem can be reduced to a single primitive cell with a grid
of k points, and the simulation supercell is never explicitly constructed.

You could generate a trial wave function for use in your QMC calculation by performing a DFT
calculation for the simulation supercell at a single k point. However this would be inefficient: the
translational symmetry within the simulation cell would not be exploited to reduce memory require-
ments in both the DFT calculation and the subsequent QMC calculation. Instead you should generate
the trial wave function for a simulation supercell consisting of l×m×n primitive cells by performing
a DFT calculation in a single primitive cell with an l ×m × n mesh of k points. The kvec maker
utility will help you to generate an appropriate k-vector grid: simply run the utility and answer the
questions.

In summary, your DFT calculation should be set up to generate a set of orbitals for a single primitive
unit cell with an l×m×n k-point grid, whilst the QMC calculation should be set up for a simulation
supercell consisting of l ×m× n primitive cells. In the input file, the number of up- and down-spin
electrons neu and ned should be appropriate for the supercell, whilst the npcell block, which specifies
the size of the supercell, should contain ‘l m n’.

Note that QMC methods cannot exploit symmetry (apart from time-reversal symmetry), and hence
a complete l ×m × n grid of k vectors must be supplied in general. (How you do this depends on
your DFT code.) If you are using a grid of k vectors with time-reversal symmetry then your trial
wave function in the subsequent QMC calculations can be chosen to be real, and the complex wf
input keyword should be set to F. In this case you only need to supply one out of each ±k pair. If
you do not have time-reversal symmetry you must supply the complete grid of k vectors and set the
complex wf keyword to T. The kvec maker utility will ask you whether time-reversal symmetry
is to be applied

Typically you will need to perform QMC calculations in two different supercell sizes and extrapolate
your results to the limit of infinite cell size. How exactly you proceed depends a good deal on what
you are calculating. The problem of finite-size errors in QMC calculations is discussed extensively in
Ref. [15].

6.6 How to run the code: RUNQMC

The runqmc script (which should be in your path after installing casino) is designed to reduce the
effort of doing QMC calculations to just entering one command, and that command is essentially
the same on all different kinds of computer. It is most useful when using parallel machines with a
batch queueing system, since it detects most common errors that a user may make in setting up a
calculation and such faults are thus detected immediately rather than when casino actually starts
running (which may be many hours or even days later). See the utils/runqmc/README file for more
information.

runqmc can run calculations on single- and multiprocessor workstations, and on clusters. To run the
casino calculation set up in the current directory, simply type runqmc. This will automatically—and
possible a little dangerously—occupy all cores on a workstation, or the maximum permitted allocation
(in both number of cores and walltime) on a cluster. To change this, or to specify other calculation
parameters, there are various options available.

An example on a big parallel machine:

runqmc --nproc=224256 --walltime=10h --shm=12

will run the code in parallel using 224256 MPI processes (distributed among computational nodes
depending on the number of cores per node in the machine, which runqmc knows about) using shared
memory over groups of 12 processes with a walltime limit of 10 hours (which may affect what queue
your job is put in).

Note that this is equivalent to

26

runqmc -p 224256 -T 10h -s

(provided the machine has 12 cores per node) i.e., most options come with a longer version (with two
hyphens and an equals sign) and a shorter easier-to-type version (with one hyphen, and zero or more
spaces before the option value).

A really important point which trips quite a few people up: on machines with batch queue systems
everyone is used to manually creating batch scripts which tell the machine how to run the code, how
many cores, time limits etc, which is then manually qsubbed to the batch queue. Do not insert a
call to runqmc in such a script (c©the casino Wiki on the UK national facility ‘Hector’, written
by the sysadmins). The purpose of runqmc is to create this batch script, and runqmc will then
submit it all by itself. OK? We appreciate this is unusual, but it works.

If you can’t remember the basic parameters of the machines that you’re running on (e.g., the number
of cores per node, queue-dependent walltime limits, the maximum number of cores etc.) then typing
runqmc --info or runqmc -i will print to the screen all relevant parameters available from the
machine’s arch file. This may help you decide on what values to use for the run time parameters when
invoking runqmc.

6.6.1 Other facilities

(1) runqmc can run calculations in multiple directories, by simply giving the directory names at the
end of the command line, e.g.,

runqmc -p 256 -T 10h diamond beta_tin

will run the two calculations in directories ‘diamond’ and ‘beta tin’, where each of them uses 256
cores.

Running, e.g., 2 calculations on a 4-core workstation will result in 2 cores being used for each of
them (unless otherwise specified via ‘-p’). Running multiple calculations on clusters is only possible
for specific machines; multiple calculations on clusters will use a single batch queue slot and a single
script. This is useful for large clusters where runs on large numbers of cores are cheaper per core-hour
by policy, but is otherwise a bad idea since different calculations will take different times to complete
but the longest will be charged for.

If no directories are specified, the calculation in the current directory will be run.

(2) In order to run on a cluster log-in node, use the ‘--no-cluster’ option, which will make runqmc

behave as if the machine was a workstation. You should check with your system administrator
to see if this is OK.

(3) If you would like to produce a submission script on a cluster without running casino (for verifi-
cation purposes), use the ‘--check-only’ flag.

(4) In order to use the OpenMP capabilities of casino, use the flag ‘--tpp=〈threads-per-process〉’.
runqmc will automatically adjust the number of processes per node to leave one OpenMP thread per
core. If you would like to modify this behaviour, use the ‘--ppn=〈processes-per-node〉’ flag and set
your own value.

You need to have compiled the OpenMP version with ‘make Openmp’ in order to access this feature.

(5) In order to use the shared-memory capabilities of casino, use the flag ‘--shm’. runqmc will tell
casino to share orbital coefficients (blip or Gaussian only) and some other data among all cores in
each node; to modify this behaviour use instead ‘--shm=〈number-of-cores-in-SHM-group〉’.
You need to have compiled the SHM version with ‘make shm’ in order to access this feature (‘make
OpenmpShm’ is also available).

(6) Individual machines can have user-defined options --user.option in order to cope with particular
idiosyncrasies. See the end of the Usage section below.

(7) A similar script ‘runpwscf’ is available for running the pwscf plane-wave DFT-code, which also
uses the same CASINO ARCH system for determining what computer we’re running on. It has the
same set of optional arguments as runqmc, apart from the obviously QMC-specific ones (plus some
extra ones for controlling pwscf behaviour). Note that if your casino arch file defines a command
for running casino, then it must include a tag &BINARY ARGS& following the &BINARY& tag; this is
because the pwscf executable takes command line arguments such as -pw2casino, -npool etc., which
are not required by casino.

27

(8) A script ‘runqmcmd’ is available which runs coupled DFT-DMC molecular dynamics calculations
(see section6.7). This exploits both ‘runpwscf’ and ‘runqmc’ to alternately run pwscf DFT calcula-
tions and casino QMC calculations.

(9) A script ‘twistav pwscf’ is available for running ‘twist-averaged’ calculations where new
xwfn.data files are repeatedly generated by pwscf for different twist angles (offsets of the k-point
grid from the origin)—see Sec. 28. This is useful in reducing finite-size effects in periodic systems.
Again, this facility exploits both the ‘runpwscf’ and ‘runqmc’ scripts.

6.6.2 Usage

Run runqmc --help to display the full set of options available to your specific machine.

runqmc [<options>] [[--] <directories>]

The core set of options is as follows:

Options available on all machines

--force | -f

Run the calculation without checking for presence/correctness of input

files.

--check-only | -c

Stop before running the calculation. In clusters, this option can be used

to produce the batch submission script for manual checking; ’--check-only

--force’ would only produce a submission script in these systems.

--unlock | -u

Ignore existing lock files and run the calculation regardless. Using this

option will remove stale lock files left over by a runqmc instance that died

without being able to unlock the directory.

--version=<version> | --opt | --dev | --debug|-d | --prof

Select the binary version <version>, which ought to be one of ’opt’, ’dev’,

’debug’ or ’prof’. --opt, --dev, --debug and --prof are equivalent to

the respective --version=<version> option. -d sets <version> to ’debug’.

<version> is set to ’opt’ by default.

--continue

Continue a previous run which provides continuation info. This requires

using the MAX_CPU_TIME and/or MAX_REAL_TIME input keywords. This option

is not available when running multiple jobs.

--auto-continue

Start and automatically continue a run until it finishes. This requires

using the MAX_CPU_TIME and/or MAX_REAL_TIME input keywords, and

partitioning the job into multiple blocks (CASINO can emergency stop

at the end of a block if there is not sufficient time remaining to do at

least one more block). This option is not available when running multiple

jobs.

--home=<home> | --chome=<home> | -H <home>

Set the location of the CASINO installation to <home>. By default, <home>

is determined by the location of this script, or set to \$HOME/CASINO if

unsuccessful.

--binary=<binary> | -b <binary>

Set the binary name to use to <binary> instead of ’casino’. This only needs

to be used for custom compilations with the option ’EXECUTABLE=<binary>’.

--tpp=<tpp> | -t <tpp>

Set the number of OpenMP threads per process to <tpp>. This requires having

compiled the code with OpenMP support, as in ’make Openmp’

--acc

28

Enable the use of accelerators (GPUs) using OpenACC. This requires having

compiled the code with OpenACC support, as in ’make Openacc’

--help | -h

Display this help. If the CASINO_ARCH can be determined and exists, the

help will display options specific to the current manchine, else all options

will be displayed.

--verbosity=<verbosity> | -v | -q

Set the verbosity level of the machine set-up process to <verbosity>. By

default <verbosity> is 0. ’-v’ increases the verbosity level by 1, and

’-q’ decreases it by 1.

--info | -i

Report back various machine-dependent parameters whose value one might like

to know when deciding how to run a job, then stop. This is useful

for inquiring what runqmc believes to be, e.g., the number of cores per node,

according to the currently activated arch file.

Options available on workstations

--background | -B

Run CASINO in the background, returning control to the shell after starting

the run. This has the same effect as ’${0##*/} & disown’, whereby the

CASINO process is detached from the shell, so if one wants to stop the run

’kill’ or ’killall’ must be used. It is safe to log out after running with

this option, the calculation will continue---no need for nohup/disown.

Running multiple jobs causes them to run in the background whether this

option is specified or not.

--print-out | -P

Print out the output of CASINO as it is being run. Implies --background.

[CTRL]-[C] will stop the print-out, and the CASINO job will remain in the

background. This option is ignored when running multiple jobs.

--debugger=<debugger> | --gdb|-g | --valgrind

Run the code through the a debugger. This automatically sets <version> to

’debug’ if no version had been selected. --gdb and -g are equivalent to

--debugger="gdb -q". --valgrind is equivalent to --debugger="valgrind"

Note that specific debuggers tend to work better with specific compilers,

for example the gdb debugger tends works better with GCC’s gfortran than

with Intel’s ifort.

Options available on parallel workstations and clusters

--no-mpi | -1

Run the binary directly without invoking mpirun etc. This option is applied

before any others, and makes this script behave as if the machine was a

single-core machine.

--nproc=<nproc> | -p <nproc>

Set the number of MPI processes to <nproc>. This will have to be consistent

with <tpp>, <nnode>, <ppn> and the machine information in the relevant

.arch file.

--ppn=<ppn>

Set the number of MPI processes per physical, multi-core node to <ppn>.

This will have to be consistent with <tpp>, <nproc>, <nnode>, <ppn> and the

machine information in the relevant .arch file.

--shm[=<numablk>] | --shmem[=<numablk>] | -s

Enable shared memory (which affects, e.g., storage of orbital

coefficients in blip or Gaussian mode and some other large arrays).

If <numablk> is provided, set the

number of processes among which to share memory to <numablk>, otherwise

shared memory is used across all cores on the same node by default. This

29

option requires having compiled the code with shared memory support, e.g.,

with ’make shm’ or ’make openmpshm.

--diagram | -D

Draw a diagram of the processes and threads on each node to the terminal

during set-up.

Options available on clusters

--no-cluster | -l

Run the calculation directly on the login node of a cluster without

producing a submission script. This option is applied before any others,

and makes this script behave as if the machine was a multi-core workstation.

--nnode=<nnode> | -n <nnode>

Set the number of physical, (possibly) multi-core nodes to use to <nnode>.

This will have to be consistent with <tpp>, <nnode>, <ppn> and the machine

information in the relevant .arch file.

--walltime=<walltime> | -T <walltime>

Set the wall-time limit for the run to <walltime>, given in the format

[<days>d][<hours>h][<minutes>m][<seconds>s].

--coretime=<coretime> | -C <coretime>

Set the core-time (i.e., wall-time times number of reserved cores) limit for

the run to <coretime>, given in the format

[<days>d][<hours>h][<minutes>m][<seconds>s].

--name=<name> | -N <name>

Set the submission script name and job name to <name>.

Options available on some individual machines

If you type runqmc --help you may see appended to the above list a set of additional user-definable
options—these all take the form of ‘--user.option’ (and obviously a CASINO ARCH must be defined in
order to see these). Such options are defined in the relevant .arch file using the syntax of Appendix
5. The arch system was designed to be readily extensible on a per-machine basis without having to
modify any part of the script system that handles it, and thus only variables associated with core
functionality are pre-defined, e.g., even the (widely applicable but Linux-specific) nice value of a job
on a workstation is handled as --user.nice.

Examples of such options include but are not limited to:

--user.account

Name of account under which to run the job (note that it’s very useful to

alias runqmc=’runqmc --user.account=my_account ’ on machines which require it).

--user.nice

Unix ’nice’ value to use for the job on workstations.

--user.queue

Name of queue on which to run the job.

--user.mem

(Over-)estimate of the memory usage per compute node in Mb.

--user.shmemsize

When running in shared memory mode [on a Blue Gene machine] you are required

to set the size of the shared memory partition when launching a job (through

the value of an environment variable named BG_SHAREDMEMPOOLSIZE (Blue Gene/P)

or BG_SHAREDMEMSIZE (Blue Gene/Q)). The value of this number (in Mb) may be

set on the command line as the value of user.shmemsize. See the CASINO FAQ for

further details. Note that setting --user.shmemsize implies an Shm

calculation; there is no need to use -s/--shm/--shmem as well unless you want

to change ’numablk’ (the number of processes among which to share memory)

30

from the default of all cores on the node.

--user.messagesize

Size of MPI message in bytes below which the ’eager’ (truly non-blocking)

protocol is used instead of the ’rendezvous’ (partially non-blocking)

protocol. Perfect parallel scaling at very large numbers of MPI processes

(> c.20,000) with CASINO supposedly requires the non-blocking message

passing to be truly asynchronous (i.e., communication takes place at the same

time as communication). The default value for MESSAGESIZE on [a

Blue Gene/P machine] (1200 bytes) is generally too small, as CASINO config

messages typically range up to around 50000 bytes. Thus some advantage may

be gained on large numbers of cores by setting MESSAGESIZE to be larger than

the default.

6.7 How to run coupled DFT-DMC molecular dynamics calculations: the
runqmcmd script

Coupled DFT-DMC molecular dynamics—which involves a correlated sampling procedure that couples
the stochastic imaginary-time electronic and real-time nuclear trajectories—is popularly supposed to
result in highly accurate energies for a full dynamical trajectory at a fraction of the cost of doing a
full QMC calculation for each nuclear configuration. The basic ideas are outlined in Grossman and
Mitas’s paper—Ref. [9].

In my (MDT’s) opinion, this technique is often misrepresented, both by the authors of the GM paper,
and by others. It is claimed, for example, in the original paper that:

‘This continuous evolution of the QMC electrons results in highly accurate total energies for the full
dynamical trajectory at a fraction of the cost of conventional, discrete sampling.’

‘[It provides]an improved, significantly more accurate total energy for the full dynamical trajectory.’

‘This approach provides the same energies as conventional, discrete QMC sampling and gives error
bars comparable to separate, much longer QMC calculations.’

A casual reading of the above sentences might lead to the conclusion that we get effectively the same
results as conventional DMC at each point along the trajectory. As we are only doing, e.g., 3 DMC
stats accumulation per step, we thus appear to be getting ‘something for nothing’. What are we
missing?

(1) The point about GM-MD—and Lubos Mitas has agreed with this in an email to me—is that its
true purpose is to calculate thermodynamic averages, an example being given in the paper of the heat
of vaporization of H2O. This is calculated as an average over the evolution path of the ions (at a given
T > 0) and QMC and thermodynamic averages are done at the same time. Think of it as a method
of Monte Carlo sampling a distribution in 3N-dimensional configuration space that is changing shape
in time. Each nuclear configuration is sampled via far fewer (e.g., three moves times the number of
walkers) electron configurations than usual. It is not intended that accurate energies for all nuclear
configurations are calculated, only an accurate Monte-Carlo-sampled ‘thermodynamic average’ as the
molecule (or whatever) vibrates or otherwise moves.

(2) If you want accurate answers and small error bars for the energies at each point along the MD
trajectory then—done under normal conditions (number of DMC walkers etc.)—the method actually
does not save you any time at all, apart from that spent doing DMC equilibration. It gives extremely
poor answers with huge error bars for the individual MD points; if you want proper DMC accuracy
then you have to do the usual amount of statistical accumulation work.

(3) The only reason they are able to claim ‘the same energies [and error bars] as conventional, discrete
QMC sampling ’ is because they use extremely large populations of walkers (a technique which is
difficult to scale to large systems). The requirement for a large number of walkers is not stressed in
the paper; it is merely stated that ‘we chose a number of walkers such that the statistical fluctuations
in the GM-MD energies are one-tenth the size of the variation in the total energy as a function of the
MD time with no emphasis that this is considerably more than usual.

There is also a big question over whether the configurations read in at the restart can be properly
equilibrated in so few moves in the case when the DMC wave functions involve genuinely new physics.
MDT has a discussion document in circulation which covers these issues in more detail.

Bearing in mind these reservations, the technique has been implemented in casino as follows.

31

The runqmcmd script is used to automate DMC-MD molecular dynamics calculations using casino
and the pwscf DFT code (part of the quantum espresso package, available at http://www.
quantum-espresso.org). pwscf must be version 4.3 or later.

runqmcmd [--help --nproc_dft=I --splitqmc[=N] --startqmc=M

--dft_only/--qmc_only [<runqmc/runpwscf options>]

We first generate a full DFT trajectory. We then do a full QMC calculation for the initial nuclear
configuration of the trajectory, followed by a series of very quick (a few moves) DMC calculations for
each point along the trajectory, where each such calculation is restarted from the config.out of the
previous one with slightly different nuclear coordinates.

This script works by repeatedly calling the runpwscf and runqmc scripts which know how to run
pwscf/casino on any individual machine. Almost all optional arguments to this script are the
same as for runpwscf/runqmc and are passed on automatically to these subsidiary run scripts (the
–background/-B option is also used by runqmcmd, and for the same purpose). Type ‘runpwscf
--help’ or ‘runqmc --help’ to find out what these options are (or see the previous section of the
manual). There is a short list of optional flags specific to runqmcmd which are described below.

It is assumed that pwscf lives in $HOME/espresso and casino lives in $HOME/CASINO. There are
override options available if this is not the case.

If you are running on a multi-user machine with an account to be charged for the
calculations, you might consider aliasing runqmcmd using, e.g., alias runqmcmd="runqmcmd

--user.account=CPH005mdt " or whatever.

In general you should do something like the following:

Setup the pwscf input (‘in.pwscf’) and the casino input (‘input’, etc., but no wave function file)
in the same directory. For the moment we assume you have an optimized Jastrow from somewhere.
Have the pwscf setup as ‘calculation = "md"’, and ‘nstep = 100’ or whatever. The runqmcmd

script will then run pwscf once to generate 100 xwfn.data files, then it will run casino on each
of the xwfn.data. The first will be a proper DMC run with full equilibration (using the values of
dmc equil nstep, dmc stats nstep etc. The second and subsequent steps (with slightly different
nuclear positions) will be restarts from the previous converged config.in; each run will use new
keywords dmcmd equil nstep and dmcmd stats nstep (with the number of blocks assumed to be
1. The latter values are used if new keyword dmc md is set to T, and they should be very small).

It is recommended that you set dmc spacewarping and dmc reweight conf to T in casino input
when doing such calculations.

The calculation can be run through pwfn.data, bwfn.data or bwfn.data.bin (and obsolete
bwfn.data.b1) formats as specified in the pw2casino.dat file (see elsewhere).

Default behaviour of runqmcmd (on all machines)

Note: in what follows, nmdstep is the value of the pwscf input keyword ‘nstep’, while
xwfn.data refers to whatever wave function file is specified in the pw2casino.dat file (either
bwfn.data.b1/bwfn.data.bin [default], bwfn.data or pwfn.data).

For a complete DMC-MD run, the following three steps are performed in sequence:

(A) Generate nmdstep+1 xwfn.data.$ files, where $ is a sequence number from 0 to nmdstep.

(B) Do a full DMC run on xwfn.data.0

(C) Temporarily modify the casino input file, by changing dmc md from F to T, and runtype from
vmc dmc to dmc dmc. Run nmdstep restarted QMC runs on xwfn.data.1 to xwfn.data.[nmdstep],
each restarting from the previous.

On batch queue systems, runqmcmd will by default do two batch script submissions, the first—handled
by the runpwscf script—executing step (A), and the second—handled by the runqmc script—executing
steps (B–C).

In principle, this wastes some unnecessary time (the time spent waiting for the QMC batch script to
start) but this is unavoidable if runqmcmd uses separate runpwscf and runqmc scripts to handle the
DFT and QMC calculations. This may be changed in the future, if anyone can be arsed.

Note that all calculations will be done on the number of cores requested on the command line (with
the --nproc/-p flag) irrespective of whether they are DFT or QMC calculations. You may override
this for the DFT calculations by using the --nproc dft flag to runqmcmd.

32

http://www.quantum-espresso.org
http://www.quantum-espresso.org

Modifications to default behaviour (on all machines)

runqmcmd --dft_only

Execute only step (1), generating nmdstep+1 xwfn.data.$ files.

Essentially the same thing can be done by executing ‘runpwscf --qmc’ but doing that would bypass
a few error traps.

runqmcmd --qmc_only

Execute only steps (B & C). This requires that the nmdstep+1 xwfn.data.$ files already exist; if
they don’t the script will whinge and die.

runqmcmd --startqmc=M

Start the chain of QMC runs with file xwfn.data.M If M = 0, the first run will be a full QMC run with
dmc md=F, otherwise if M > 0 then all runs will be short restarted ones with dmc md=T. (Note
that for M > 0, dmc md and runtype in the input file will be temporarily ‘modified’ as described
above, no matter what values they currently have).

Modifications to default behaviour (batch machines only)

On batch machines, there is an additional complication due to the walltime limits on particular queues
which may require full DMC-MD runs to be split into sections. The following flags may be used to
do this.

runqmcmd --splitqmc

Do step A (DFT run), step B (initial QMC run) and step C (chain of remaining QMC restarted jobs)
as three separate batch script submissions (i.e., no longer combine B and C).

runqmcmd --splitqmc=N

As (3) but split step C into N separate batch script submissions.

Example: nmdstep=1005, and runqmcmd --splitqmc=4 will result in 1 step B job plus four sets of
step C jobs with 251, 251, 251, 252 steps.

Note finally that there are a couple of simple utilities (extr casino and extr pwscf that extract the
DFT/QMC energies from the output of a runqmcmd run.

7 Files used by CASINO

A complete list of the input files is given in Sec. 7.1, while a corresponding list of the output files is
given in Sec. 7.2. By input files we mean all files that may be read by casino, including files that
may also be written to. By output files we mean those files that are only written to, even where the
data is appended to an existing file.

7.1 Complete list of the input files

7.1.1 The principal input files

input This is the main input parameter file.

correlation.data This file contains all optimizable parameters together with accompanying data
(for example, the parameters used to define a Jastrow factor or backflow function).

xwfn.data This file contains the data that defines the geometry, the orbitals and, if appropriate,
the determinant expansion coefficients calculated by the generating code. ‘x’ indicates one
of the various different basis sets supported by casino. The filenames supported at present
are: pwfn.data (plane-wave basis), gwfn.data (Gaussian basis), awfn.data (numerical atomic
orbitals on a grid), dwfn.data (numerical molecular orbitals for dimers), bwfn.data (blip basis)
and stowfn.data (Slater-type orbitals).

33

bwfn.data.bin New (11/2011) format binary blip wave function file (much smaller than the human-
readable bwfn.data). Created and written automatically on reading a formatted bwfn.data file.
These files are portable between same-endianness machines and compilers. Where portability
is not possible, the code should error out nicely thanks to an endianness check included in the
binary file.

bwfn.data.b1 Old format binary blip wave function file–deprecated but still completely supported.
Note that pwscf is capable of producing single bwfn.data.b1 files directly; it is intended to
one day convert it produce the newer .bin files. (Note that an old method of splitting blip
data over processors used additional files such as bwfn.data.b2, bwfn.data.b3, etc., hence the
notation. With the advent of a proper shared-memory facility, support for these additional files
has been completely removed).

Here is a list of benefits of the newer .bin format over the .b1:

• Extensible and flexible, by using labels for groups of data and a format version string at
the start of the file (instead of by means of hacks).

• Portable between different compilers on same-endianness machines

• Detection of different-endianness machines

• Reduced size for spin-polarized systems (up to 50% smaller)

• Up to 4 times faster to write (to quote a figure, the actual amount will vary depending on
the case)

mpc.data This file contains data used by the MPC interaction. This includes the Fourier components
of the charge density corresponding to the Slater wave function and the Fourier components of
the 1/r Coulomb interaction treated within the minimum-image convention.

config.in This is the file used to store configurations and other data (such as random-number-
generator states) between different stages of a calculation (VMC-optimization, optimization-
VMC, VMC-DMC). It also contains data to continue VMC and DMC runs.

x pp.data (where x is the chemical symbol of an element in lower-case letters.) This file contains the
pseudopotential data for the corresponding element. In certain rare circumstances one may wish
to use multiple pseudopotentials for elements with the same atomic number (e.g., Mg with He
core on a surface, and Mg with Ne core in the bulk). Different types of pseudoatom are flagged in
xwfn.data by adding multiples of 1000 to the original atomic number, e.g., atno 12, 1012, 2012
and these different pseudopotentials are stored in files called, e.g., mg pp.data, mg2 pp.data,
mg3 pp.data etc.

expval.data This file contains data that allow the estimation of various expectation values. For ex-
ample, this file may contain the charge density, spin density, spin density matrix, pair-correlation
function, localization tensor, structure factor, one-electron density matrix or two-electron density
matrix.

expot.data This file contains a specification of any external potential (for example, the potential for
an inhomogeneous electron gas calculation, or the potential due to an external electric field), and
data defining the orbitals associated with such potential. It is also used to specify the magnetic
vector potential.

7.1.2 Other input files

config.backup If a population-explosion catastrophe occurs during a DMC simulation, and the input
keyword dmc trip weight is set, then this file is read and the simulation jumps back to an
earlier point. This file is not read at the start of a DMC simulation, and is not required under
normal circumstances.

expval.backup As config.backup, but for the expval.data file (if accumulation of expectation values
other than the energy is flagged in input).

34

7.2 Complete list of the output files

7.2.1 The principal output files

The files listed below are the ‘standard’ output files, which users are likely to encounter.

out This file contains the main output of casino.

correlation.out[.n] This is the correlation.data file generated by the nth cycle of casino’s
optimization procedure.

vmc.hist This file contains all of the energy components calculated during VMC. This file can be
analysed using the reblock utility.

dmc.hist This file contains the energy components and important simulation parameters at each
iteration in a DMC simulation. This file can be analysed using the reblock utility.

config.out This is the name under which the config.in file is produced. It will be automatically
renamed by runqmc provided config.in does not exist; otherwise, runqmc will alert the user
and exit.

dmc.status This file is written and overwritten at the end of each block of a DMC simulation. At
any time during the run, this file contains the complete statistical evaluation as it would be
written if the run was finished here. The out file only contains this data once at the end, if the
run is finished properly.

movie.out This file contains the data for making a ‘movie’ of the simulation.

lineplot.dat This file contains data such as orbital values plotted along a straight line in space.

2Dplot.dat This file contains visualization data given on a 2D plane.

3Dplot.dat This file contains visualization data given over a 3D volume.

7.2.2 Other output files

The files listed below are only likely to be of interest to developers.

local energy.dat This file contains information related to the cusp correction to Gaussian orbitals.

orbitals.dat, gradients.dat and laplacians.dat These files contain information relating to the
cusp correction to Gaussian orbitals.

random.log This file holds information about the state of the random-number generator.

jastrow value u.dat, jastrow deriv u.dat and jastrow sderiv u.dat These files contain the
value, first derivative and second derivative, respectively, of the u term of the Jastrow factor
with respect to electron separation.

jastrow value chi x.dat, jastrow deriv chi x.dat and jastrow sderiv chi x.dat These files
contain the value, first derivative and second derivative, respectively, of the χ term of the
Jastrow factor (for set x) with respect to electron–nucleus distance.

jastrow value f x.dat This file contains the value of f (for set x) as an electron is moved along a
straight line.

jastrow value p.dat This file contains the value of p as an electron is moved along a straight line.

jastrow lap p.dat This file contains the Laplacian of p as an electron is moved along a straight line.

jastrow value q.dat This file contains the value of q as an electron is moved along a straight line.

jastrow lap q.dat This file contains the Laplacian of q as an electron is moved along a straight line.

jastrow value ucyl.dat This file contains the value of ucyl as an electron is moved along a straight
line.

35

jastrow lap ucyl.dat This file contains the Laplacian of ucyl as an electron is moved along a straight
line.

jastrow value chicyl.dat This file contains the value of χcyl as an electron is moved along a straight
line.

jastrow lap chicyl.dat This file contains the Laplacian of χcyl as an electron is moved along a
straight line.

bfconfig.dat Dump of configuration used for backflow plot.

bfconfigx.dat Dump of quasiparticle configuration used for backflow plot.

bffield.dat Plot of the backflow-displacement vector field on a plane.

bfeta s.dat Plot of the backflow η function for spin-dependence s.

bfmu s set.dat Plot of the backflow µ function for spin-dependence s and set set.

bfphi s set.dat 3D plot of the backflow Φ + Θ function for spin-dependence s and set set (on a
plane).

lsqfun.dat Plot of the variance against the value of a parameter. This file can only be produced by
modifying the code.

emin.log Matrix algebra log produced by an energy minimization run.

btilde.log, bhtilde.log, SVD cpts 0.log and SVD cpts 1.log Full matrix logs produced by an
energy-minimization run.

ft of jastrow.dat Fourier transform of u and p terms in Jastrow factor for a periodic system.

7.3 Basic input file: input

The file input contains all the parameters needed to control the QMC calculation. A complete list
of the input parameters is given below. Further details, including default values, may be found by
using the casinohelp utility. Type casinohelp all to get a list of all keywords that casino knows
about, or casinohelp keyword for detailed help on a particular keyword. Type casinohelp search text
to search for the string text in all the keyword descriptions. Create a blank file containing the keyword
input example and type runqmc—this will create a sample input file containing all valid keywords
and their default values in the correct format.

The input file is meant to be very flexible and the list of understood keywords can vary with time
without breaking anything. The input file is based on an early version of the electronic-structure
data format (ESDF) developed for the castep code. The main points are summarized below. See
the comments at the top of the esdf.f90 module for more information.

• Each line is of the form ‘keyword : value’. There must be a space either side of the colon.

• The parameters are divided into types: ‘string’/‘integer’/‘single’/‘double’/‘physical’/‘boolean’.
Variables of ‘physical’ type must be supplied with a unit, such as ‘hartree’, ‘eV’, ‘rydberg’ or
‘Joules/Megaparsec’. All reasonable physical units are understood.

• The parameter names are case-insensitive (e.g., RunType is equivalent to runtype) and
punctuation-insensitive (run type is equivalent to run-type and runtype). Punctuation char-
acters are ‘.’, ‘ ’ and ‘-’.

• Some of the parameters are of ‘block’ type, which means that multiple parameters must be
supplied, which may be spread over several lines. See, e.g., ‘qmc plot’.

Note that the input file is never written to by casino (though there are a couple of utilities, such as
the runqmcmd script, which temporarily manipulate it). Files generated by other codes, which may
contain large amounts of data, are not included in input.

36

7.3.1 List of current input keywords

Here is the current list of the input parameters in alphabetical order (a list of some older keywords
is given after this). Note that the casinohelp facility is always up to date (it runs casino to find out
what it knows about)—but this manual may not be.

ALIMIT (Real) Parameter required by DMC drift-velocity- and energy-limiting schemes when
limdmc=2, 3, 4 or 6. A value of 0.5 (default) is generally appropriate. The DMC energy
is insensitive to the precise value of alimit. alimit is ignored if nucleus gf mods is set to T.
See Sec. 13.5.

ALLOW NOCHI ATOMS (Logical) If this keyword is set to T then casino will issue a warning
message when some atoms are not included in any sets of χ or f terms in the Jastrow factor and
µ and Φ terms in the backflow function. Otherwise, casino halts with an error if some atoms
are not included in these terms.

ALLOW SLAVE WRITE (Logical) The ALLOW SLAVE WRITE flag can be used to allow/dis-
allow slave process output to the main output file. The default is to allow it. The ability to
turn this off can be useful when you’re running on a million cores.

ALPHALIMIT (Real) Parameter required by DMC, in ZSGMA branching limiting scheme (i.e.,
when limdmc=4). A value of 0.2 (default) is generally appropriate. The limit for τ → 0 of the
DMC energy is insensitive to the precise value of alphalimit, but it affects the finite τ DMC
energy and the stability.

ATOM BASIS TYPE (Text) This selects the basis set in which the atom-centred orbitals are
expanded, or more generally, the ‘type of orbital’ to be used. If the orbitals are to be read from
disk, this implicitly selects which file to read the orbitals from. Possible values are:
‘none’ (default): no atoms are present, so no externally generated orbitals are read in;
‘plane-wave’: use a plane-wave basis set; the orbitals are read in from pwfn.data;
‘gaussian’: use a Gaussian basis set; the orbitals are read in from gwfn.data;
‘slater-type’: use Slater-type orbitals; the orbitals are read in from stowfn.data;
‘numerical’: use orbitals tabulated on a grid (atomic systems only); the orbitals are read in from
awfn.data;
‘dimer’: use orbitals tabulated on a grid (molecular dimers only); the orbitals are read in from
dwfn.data;
‘blip’: use a blip basis set; the orbitals are read in from bwfn.data.

Some special wave function types are also available:
‘nonint he’: use exact orbitals for a noninteracting helium atom.
‘h2’ or ‘h3plus‘: wave functions for the H2 molecule or the H+

3 molecular ion where each orbital
is the sum over hydrogen nuclei of a parameter-less exponential centred at each nucleus.

For free-particle and external-potential-related orbitals, set atom basis type to ‘none’ and use
the input block free particles.

In a ‘gen blip’ calculation, atom basis type should be set to ‘plane-wave’, since the geometry
and orbitals will be read from pwfn.data.

BACKFLOW (Logical) Turns on backflow corrections (see Sec. 23). Backflow parameters are read
from correlation.data and, if optimized (opt backflow = T), written to correlation.out.

BF SPARSE (Logical) Setting bf sparse to T will result in the Woodbury formula being used to
update the inverse Slater matrices and determinants instead of recomputing the determinants
entirely. This is advantageous only if the backflow functions are short-ranged with respect to
the size of the system.

BLIP CALC KE (Logical) Choose whether to perform a numerical evaluation of the norm squared
and kinetic energy of blip orbitals, to be compared with the kinetic energies evaluated in a
plane-wave basis, in a blip-generation calculation.

BLIP NBAND MAX (Block) This block consists of a single line with a list of nspin integers,
these being the maximum numbers of bands to be transformed from a plane-wave basis to a blip
basis in a blip-generation calculation. If a negative integer is given then all bands for that spin
will be re-represented in a blip basis (this is the default behaviour).

37

BLIP NRANDPOINTS (Integer) Number of random points for the Monte Carlo evaluation of the
overlap between blip and plane-wave orbitals in a blip-generation calculation. By default this is
zero, meaning that the overlap test is skipped.

BLIP MPC (Logical) If blip mpc is set to T and one is using the MPC interaction in a system that
is periodic in all three dimensions and consists of only electrons then the long-range portion of
the MPC potential will be evaluated using blip functions. In some systems setting this to T can
greatly speed up the calculation. The default is F.

BLIP XMUL (Real) Multiplicity of the blip grid in a blip-generation calculation (i.e., the amount by
which the blip grid is finer in each spatial dimension than the corresponding grid of G vectors
in the pwfn.data file). See Sec. ?? for more information. The default value of 2.0 is often
appropriate.

BLIP PERIODICITY (Integer) Orbitals expanded in a blip basis can be periodic in zero, one, two
or three dimensions. blip periodicity specifies the number of dimensions in which the orbitals
are periodic. Note that if blip periodicity is 1 then the system is assumed to be periodic in
the x direction, while if blip periodicity is 2 then the system is periodic in the (x, y) plane.
In all cases, the simulation cell is the parallelepiped defined by the lattice vectors placed at
the origin. ‘Lattice vectors’ in nonperiodic directions should be orthogonal to lattice vectors in
periodic directions. Note that k points may only be used in periodic directions. See Sec. 9.

BLOCK TIME (Physical) If block time is set to a value greater than 0.0, then the num-
ber of blocks of moves implied by the value of vmc nblock, dmc equil nblock, or
dmc stats nblock will be ignored. Instead, casino will do all of the things it normally does
at the end of a block approximately every block time minutes of CPU time.

For VMC, the actions performed after a block are: (1) write data to the out file, vmc.hist

file, and possibly the expval.data file; (2) write the current VMC state plus any accumulated
configurations to the config.out file (this latter only if the checkpoint input keyword is
increased to 2 from its default value of 1—otherwise config.out is only written after the end
of the final block).

For DMC, the actions performed after a block are: (1) write data to out, dmc.hist,
and possible expval.data (the latter not during equilibration); (2) make a backup copy
of the config.out/expval.data file (if catastrophe protection is turned on with the
dmc trip weight keyword); (3) Write the dmc.status file (except after the final block); (4)
Write the current state of the system, and all configurations in the current population to the
config.out file (note that by setting the checkpoint keyword to 0, this step can be skipped
until the end of the final block, or skipped completely if checkpoint=-1, but this is not the
default).

Note that the above actions can take a significant amount of time (especially if they in-
volve writing to disk) so it is better to do them as infrequently as possible (i.e., large value
of block time). Obviously if the stopping criterion (number of moves, target error bar, etc.)
implies that the run will stop before block time minutes have elapsed, then the total run time
can be shorter than block time.

Note that using block time implies that multiple repetitions of the same run will not
necessarily lead to the same answer in parallel calculations (since the number of runs done in
block time seconds is defined by the master and what happens on the other slaves can mess
around with their random number sequences in an unpredictable way).

Note finally that block time is a physical parameter with dimensions of time, and the
units must be specified as, e.g., 1 day, 24 hr, 1440 min, or 86400 s.

BSMOOTH (Logical) If bsmooth is set to T then localized orbitals are interpolated smoothly to
zero beyond their cutoff radius. Otherwise, they are truncated abruptly. See Sec. 27 for more
information. It is recommended that bsmooth be set to F, which is the default.

CEREFDMC (Real) Constant used in updating the reference energy in the DMC algorithm. See
Sec. 13.4.

38

CHECKPOINT (Integer) This integer-valued keyword determines how much casino should worry
about saving checkpoint data to config.out files (which can take a not insignificant amount of
time, especially with large systems done on many cores, and can reduce the parallel efficiency—
since the slower blocking redistribution algorithm must be used at the end of every block when
we write out a config file).). checkpoint can take four values:
‘2’: save data after every block in both VMC and DMC, and save the state of the random
number generator in OPT runs.
‘1’ [default]: as ‘2’, but save data in VMC only after the last block when runtype = vmc opt,
opt vmc or vmc dmc (still after every block if runtype=vmc).
‘0’: only save data at the end of the run, for continuation purposes. This is safe only if used in
conjunction with the max cpu time or max real time keywords (since then the config.out

file will be automatically written if casino sees the job is about to run into an imposed time
limit, even if we have not completed the full number of requested blocks).
‘-1’: do not write config.out file at all, ever (DMC only). Note this value should be chosen
only if you know that the job will fit in any imposed time limit and that such a run will be
long enough to give an acceptably small error bar, since it will be impossible to subsequently
continue the run.
Note checkpoint= 0 or −1 clashes with the DMC catastrophe-recovery facility, for which each
DMC block needs to be checkpointed. The value of checkpoint is thus set to 1 regardless of
the input value if dmc trip weight > 0.

CHECKPOINT NCPU (Integer) This keyword can be used to specify how to group CPUs for
reading config.in checkpoint files. Having many CPUs access the same file at the same time
is not a good idea; therefore we form groups of checkpoint ncpu MPI processes in which only
one of them accesses data. The default value is the total number of MPI processes (nprocs
internally), but depending on the hardware you run on you may want to set checkpoint ncpu
to a different value (between 1 and nprocs). Note that in the case that nprocs is not exactly
divisible by checkpoint ncpu, then the remainder will be distributed over the existing groups,
and some of the groups will therefore contain checkpoint ncpu+1 MPI processes.

CHECKWFN (Logical) Enable a numerical check of the analytic orbital derivatives coded in the
various routines such as gauss per/gauss mol/bwfdet/pwfdet, etc. This is primarily intended
to help developers ensure that they have coded up the analytical derivatives of new forms of
wave function correctly.

COMPLEX WF (Logical) If complex wf is set to T then a complex Slater wave function will be
used. The orbital-evaluation routines will not attempt to construct real orbitals by forming linear
combinations of complex orbitals. It is necessary to set complex wf to T in periodic calculations
if twisted boundary conditions are to be applied or if twist averaging is to be performed. Note
that complex arithmetic is somewhat slower than real arithmetic and hence complex wf should
be set to F wherever possible. Information about the use of twisted boundary conditions can be
found in Sec. 28.

CON LOC (Character) The config.out and config.in configuration-data files are written to and
read from the directory specified by con loc. By default con loc is the directory in which
casino is run.

COND FRACTION (Logical) If cond fraction is set to T, then an improved estimator of the
spherically averaged two-particle density matrix, from which one-body contributions are sub-
tracted, will be computed. This is currently only available if the system is homogeneous. See
Sec. 34.

COND FRACTION MOM (Logical) If cond fraction is set to T, then an improved estimator
of the Fourier transform of the two-particle density matrix, from which one-body contributions
are subtracted, will be computed. This is currently only available if the system is homogeneous.
See Sec. 34.

CONTACT DEN (Logical) If this flag is set then casino will accumulate the spatial overlap be-
tween electrons and a positron. At present this is only relevant in studies of positronic molecules.

CONV BINARY BLIPS (Logical) In November 2011, a new format binary blip file
bwfn.data.bin was introduced, which is now written out by default when casino reads in
formatted bwfn.data files. The previous binary format—bwfn.data.b1—is still supported, not

39

least because at the time of the introduction of the new format, DFT codes such as pwscf still
produced the old-format b1 file natively (without the intermediate formatted file ever having
existed). By default, b1 files are treated exactly as bin files. If the value of conv binary blips
is set to T, then after reading in a b1 file, the data will be converted and written out as
bwfn.data.bin and the old b1 file will be deleted, prior to continuing the calculation as normal.
This can save disk space since bin files are generally smaller than b1 files and they can be
read in somewhat faster (which is advantageous if the same bin file is to be used in multiple
calculations). The bin files are also more portable. Default value is F.

CUSP CORRECTION (Logical) When expanded in a basis set of Gaussian functions, the
electron–nucleus cusp that should be present in all-electron calculations is not represented cor-
rectly. However, when the cusp correction flag is activated, the s-type Gaussian basis functions
centred on each atom are replaced within a small sphere by a function which ensures that the
electron–nucleus cusp condition is obeyed. This procedure greatly reduces fluctuations in the
local energy in all-electron Gaussian calculations. See Sec. 16 for more details.

CUSP INFO (Logical) If cusp correction is set to T for an all-electron Gaussian basis set calcula-
tion, then casino will alter the orbitals inside a small radius around each nucleus in such a way
that they obey the electron–nucleus cusp condition. If cusp info is set to T then information
about precisely how this is done will be printed to the out file. Be aware that in large systems
this may produce a lot of output. Furthermore, if you create a file called orbitals.in con-
taining an integer triplet specifying which orbital/ion/spin you want, the code will print graphs
of the specified orbital, radial gradient, Laplacian and ‘one-electron local energy’ to the files
orbitals.dat, gradients.dat, laplacians.dat and local energy.dat. These graphs may
be viewed using xmgrace or similar plotting programs. See Sec. 16 for more details.

CUSP THRESHOLD (Real) If the magnitude of the s component of a Gaussian orbital is less
than this threshold then it will not be cusp corrected. See Sec. 16.

CUSTOM SPAIR DEP (Block) This input block can be used to create new spin-pair groupings
for the Jastrow factor, etc. For example, if one were studying a paramagnetic fluid bilayer,
with spin-up and spin-down electrons in one plane (spins 1 and 2) and spin-up and spin-down
electrons on the other plane (spins 3 and 4) then one would want sets of u(rij) terms for same-
plane, same-spin pairs, same-plane, opposite-spin pairs and opposite-plane pairs. Here is an
example:

%block custom_spair_dep

no_spair_deps 1 # Number of custom spin dependences

spair_dep -1 3 #Label (-1,-2,-3,...) and number of spin groups

1-1,2-2,3-3,4-4

1-2,3-4

1-3,1-4,2-3,2-4

%endblock custom_spair_dep

To use this spin-pair dependence, the ‘spin-dependence’ flag in e.g. the u term of the Jastrow
factor in correlation.data would be set to ‘−1’. All spin-pairs must be included in a group.
See also custom ssingle dep.

CUSTOM SSINGLE DEP (Block) This input block can be used to create new spin-single group-
ings for the Jastrow factor, etc. Here is an example:

%block custom_ssingle_dep

no_ssingle_deps 1 # Number of custom spin dependences

ssingle_dep -1 2 # Label (-1,-2,-3,...) and number of spin groups

1,2

3,4

%endblock custom_ssingle_dep

To use this spin-single dependence, the ‘spin-dependence’ flag in e.g. the χ term of the Jastrow
factor in correlation.data would be set to ‘−1’. All spins must be included in a group. See
also custom spair dep.

CUSTOM STRIPLET DEP (Block) This input block can be used to create new spin-triplet
groupings for the Jastrow factor, etc. Since their is no automated generation of spin-triplets,
this block is necessary whenever using a Jastrow H term. Here is an example:

40

%block custom_striplet_dep

no_striplet_deps 1

striplet_dep -1 3

1=1=3,1=1=4,2=2=3,2=2=4,1=3=3,1=4=4,2=3=3,2=4=4

1=1=1,1=1=2,1=2=2,2=2=2,3=3=3,3=3=4,3=4=4,4=4=4

1=2-3,1=2-4,1-3=4,2-3=4

%endblock custom_striplet_dep

DBARRC (Integer) dbarrc is the number of moves between full recalculation of the cofactor
(=‘DBAR’) matrices. Basically every time an electron move is accepted in equilibration/VM-
C/DMC, the update dbar routine is called which updates these matrices using the efficient Eq.
(26) of Ref. [16]. As a numerical precaution that the (unstable!) update procedure is work-
ing, every dbarrc accepted moves the DBAR matrices and determinant are recomputed from
scratch from the orbitals in the Slater matrix. If the new DBAR differs by too much from the
old updated DBAR, then the program ought to be stopped (but in fact isn’t, since it happens at
least once per simulation and is very irritating). In principle one can boost the value of dbarrc
up to a fairly large number before this happens, and this is a good idea since reevaluation of the
matrix costs quite a lot. The default value is 100,000. Tests show that for systems with 1024
particles per spin channel it may be safe to do up to 1,000,000 updates with accuracy better
than single precision. See Sec. 18. NOTE: This keyword had a different meaning earlier in the
life of casino where it was appropriate to set it to a value of, e.g., 10. Re-using an old input
file with such a setting now can cause the code to slow down by 1–2 orders of magnitude without
the user necessarily understanding why (real world examples have been observed of people doing
this). It is therefore now forbidden to set DBARRC to a value lower than the default; if the user
has a genuine reason for wishing to do this he/she may search for the error trap in the source
code and comment it out.

DENSITY (Logical) If density is set to T then the charge density is accumulated and written to
the expval.data file. See Sec. 34.

DIPOLE MOMENT (Logical) If this flag is set to T then casino will accumulate the expectation
value of the electric dipole moment p. It will also evaluate the expectation value of |p|2.
The data (px,py,pz) and |p|2 are written to vmc.hist or dmc.hist like energy components,
rather than into expval.data, and their value and error bars are determined by reblocking.
The dipole moment is well-defined in aperiodic systems, or in aperiodic directions in 1D- and
2D-periodic systems.

Note that the casino reblock utility reports only the components and not the magni-
tude of the dipole moment in order to allow the user to decide how to deal with the symmetry.
Suppose that symmetry dictates the dipole moment will point in the x direction. The y and z
components should be zero, but there will be some noise when they are evaluated in QMC. If
you work out |p| =

√
|px|2 + |py|2 + |pz|2 then you will get something larger than |px|, tending

to |px| in the limit of perfect sampling (i.e., a biased estimate with finite sampling). You will
also get larger error bars on |p| than |p|x. See Sec. 34.8 for more details and for an example see
J. Chem. Phys. 127, 124306 (2007).

DMC AVE PERIOD (Integer) Number of consecutive local energies that are averaged together in
DMC before writing them to the dmc.hist file. The only effect of this keyword is reduce the
number of lines in dmc.hist by a factor of 1/dmc ave period. Note that if dmc equil nstep
or dmc state nstep are not divisible by dmc ave period, they will be rounded up to the
nearest integer multiple of it.

DMC DECORR PERIOD (Integer) Length of the inner decorrelation loop in DMC. The algo-
rithm will perform dmc decorr period configuration moves between successive evaluations of
expectation values other than the energy. Setting dmc decorr period to a value greater than
1 should reduce the serial correlation of the data. Notice that dmc decorr period differs from
its VMC counterpart in that in DMC local energies are calculated at intermediate steps (they
must), and these additional values are averaged into the energy data. Therefore, for calculations
which do not require expectation values other than the energy, changing dmc decorr period
from 1 to some value x is equivalent to setting multiplying both dmc equil/stats nstep and
dmc ave period by x. In a preliminary DMC calculation, dmc decorr period specifies the
frequency with which configurations are written out.

41

DMC DTEFF METHOD (Integer) Method used to evaluate the DMC effective time step (see
Sec. 13.5). Possible values: 0 (effective time step is the same as the actual time step); 1 (the
mean squared diffusive distance for accepted moves is evaluated as the weighted average of
squared diffusive distances for proposed moves); and 2 (the mean squared diffusive distance
for accepted moves is evaluated as the unweighted mean of the squared diffusive distances for
accepted moves). We recommend the default value of 1.

DMC EQUIL FIXPOP (Real) If VMC and DMC energy are too different, the population increases
during the initial phase of equilibration before the reference energy can counteract. This param-
eter (between 0.0 and 1.0) specifies an initial fraction of the equilibration phase during which
the population and total weight are fixed to the target weight. Setting this parameter to e.g.
0.5 will prevent such explosions and should have negligible effect on equilibration time.

DMC EQUIL NBLOCK (Integer) Number of blocks into which the DMC equilibration phase is
divided (if dmc equil nstep is not divisible by dmc equil nblock, then the number of steps
will be increased to the nearest multiple of the number of blocks). Note that having multiple
blocks does not increase the amount of data collected, merely the frequency with which data is
written to files; the final answer should be essentially the same, irrespective of the number of
blocks. Specifically, at the end of each equilibration block, the following significant actions are
performed:
(1) Write MPI process- and config-averaged data to dmc.hist (one line for each step in the
current block).
(2) Print monitoring data to the out file (block-averaged quantities).
(3) Make a backup copy of the config.out file (if catastrophe protection is turned on with the
dmc trip weight keyword).
(4) Write the dmc.status file.
(5) Write the current state of the system, and all configurations in the current population to the
config.out file (note that by setting the checkpoint keyword to 0, this step can be skipped
until the end of the final block, or skipped completely if checkpoint=-1, but this is not the
default).
Note that if accumulating expectation values other than the energy, data is not written to the
expval.data file after each block, as it would be during the statistics accumulation phase.
Also, having too many blocks will make the code slower, and if the run is not massively long it
is perfectly in order to have only one DMC equil block (which is the default).

DMC EQUIL NSTEP (Integer) Number of DMC steps performed on each MPI process in the
DMC equilibration phase, and consequently, the total number of local energy samples (averaged
over configurations and MPI processes) written to the dmc.hist file. The equilibration phase
may be partitioned into dmc equil nblock blocks, but this does not affect the total number of
steps (just how frequently stuff is written out). However, if dmc equil nstep is not divisible by
the number of blocks, then it will be rounded up to the nearest multiple of dmc equil nblock.
Furthermore, dmc ave period consecutive local energies may be averaged together in DMC
before writing them to the dmc.hist file (hence reducing its size), but again, if dmc equil nstep
is not divisible by dmc ave period, it will be rounded up to the nearest multiple of it. Note the
difference in parallel behaviour compared to vmc nstep, which is not a per-process quantity;
this is because the DMC phase is parallelized over configurations.

DMC EREF METHOD (Integer) dmc eref method selects the method used to evaluate the
DMC reference energy ET. Possible values are: (1) the algorithm in Ref. [21] (default); (2)
like 1, but with the mixed estimate of the energy replaced by the growth estimator; (3) like
1, but with the mixed estimate of the energy replaced by the mean limited local energy. We
recommend you use the default value dmc eref method=1.

DMC INIT EREF (Physical) If set, dmc init eref defines the initial reference energy for a DMC
calculation. If unset, the VMC energy is used instead (default). This keyword is ignored if the
initial configurations come from DMC, in which case the previous DMC best estimate of the
energy is used instead.

DMC LOCAL DUMP (Logical) Setting dmc local dump causes the local energies and force
components for each configuration to be written to disk. Each MPI process writes its own
dump, dmc local dump iproc.dat, containing configuration weights and relevant local values
obtained every dmc decorr periodth step.

42

DMCMD EQUIL NSTEP (Integer) Total number of DMC steps performed in the DMC equili-
bration stage when we are doing a non-initial step in a DMC molecular dynamics calculation
(we already have a quasi-converged wave function for a slightly different nuclear configuration).
The number of blocks is assumed to be 1.

DMCMD STATS NSTEP (Integer) Total number of DMC steps performed in the DMC stats ac-
cumulation stage when we are doing a non-initial step in a DMC molecular dynamics calculation
(we already have a quasi-converged wave function for a slightly different nuclear configuration).
The number of blocks is assumed to be 1.

DMC MD (Logical) If DMC MD is T then in a DMC calculation we assume we are do-
ing molecular dynamics and that we are restarting from a converged wave function for a
slightly different nuclear configuration. In practice, all this means is that the number of
steps performed are given by dmcmd equil nstep and dmcmd stats nstep, rather than
dmc equil nstep/dmc stats nstep (the number of blocks is assumed to be 1 in the MD case,
and the value of block time is ignored). The number of moves necessary will be greatly reduced
from the normal case. See also dmc reweight conf and dmc spacewarping. The necessary
manipulations are automated by the runqmcmd script.

DMC METHOD (Integer) dmc method selects which version of DMC to use: (1) the particle-
by-particle algorithm; (2) the configuration-by-configuration algorithm. Method 1 is the default.
The DMC algorithm is discussed at length in Sec. 13.

DMC NCONF PRELIM (Integer) This is the approximate total number of configurations
(summed over all MPI processes) to generate in a preliminary DMC calculation (for reducing
the cost of equilibration). See Sec. 39.3.6.

DMC NORM CONSERVE (Logical) Use the norm-conserving DMC algorithm [17]. This elimi-
nates fluctuations in the total population. Experimental algorithm: use with caution.

DMC NTWIST (Integer) Number of random ‘twists’ or offsets to the grid of k vectors to be
sampled during DMC statistics accumulation. If dmc ntwist is 0 then the twist angle is not
changed during DMC. After each change of twist angle, the set of configurations needs to be re-
equilibrated: hence a value needs to be specified for dmc reequil nstep. Setting dmc ntwist
greater than 0 requires the use of a complex wave function (complex wf : T). Note that the
usual keywords define the run length for a single twist angle, thus the run length is increased
by a factor of dmc ntwist. DMC twist averaging can only be carried out within casino for
electron(-hole) fluid phases at present (for real systems containing atoms, see the utilities in the
CASINO/utils/twist directory). See Sec. 28.

DMC POPRENORM (Logical) Control the DMC configuration population by randomly deleting
or copying configurations after branching with the reference energy set equal to the best estimate
of the ground-state energy. This can be used to maintain a constant population of configurations
per MPI process, provided the value of dmc target weight is an integer multiple of the number
of MPI processes. Note that non-integer values of dmc target weight are not allowed when
using dmc poprenorm. Note also that dmc poprenorm is not in general recommended
because of the population control errors it can theoretically introduce, though in general these
are likely to be small.

DMC REEQUIL NBLOCK (Integer) Number of blocks into which the total re-equilibration run-
length is divided when doing a twist-averaged DMC run. Currently, a re-equilibration only takes
place when the twist angle is changed. DMC twist averaging can only be carried out within
casino for electron(-hole) fluid phases at present (for real systems containing atoms, see the
twistav xxx utilities in the CASINO/utils/twist directory). See Sec. 28.

DMC REEQUIL NSTEP (Integer) Total number of steps performed in the re-equilibration stage
when doing a twist-averaged DMC run. A re-equilibration only takes place when the twist
angle is changed. Notice that this number will be rounded up to the nearest multiple of
dmc reequil nblock times dmc ave period. DMC twist averaging can only be carried out
within casino for electron(-hole) fluid phases at present (for real systems containing atoms, see
the twistav xxx utilities in the CASINO/utils/twist directory). See Sec. 28.

DMC REWEIGHT CONF (Logical) Update walker weights read in from config.in. Weights of
walkers are recomputed after reading config.in to correct for a modified wave function. This
allows continuous QMC-MD computations as described in PhysRevLett.94.056403.

43

DMC SPACEWARPING (Logical) Electronic positions are adjusted to follow the ionic positions
when adapting an existing population to a new wave function. The method follows the descrip-
tion in Phys. Rev. B 61, R16291 and is typically combined with dmc reweight conf.

DMC STATS NBLOCK (Integer) Number of blocks into which the DMC statistics accumulation
phase is divided (if dmc stats nstep is not divisible by dmc stats nblock, then the number
of steps will be increased to the nearest multiple of the number of blocks). Note that hav-
ing multiple blocks does not increase the amount of data collected, merely the frequency with
which data is written to files; the final answer should be the same, irrespective of the number
of blocks. Specifically, at the end of each accumulation block, the following significant actions
are performed:
(1) Write MPI process- and config-averaged data to dmc.hist (one line for each step in the
current block).
(2) Write MPI process- and config-averaged data to the expval.data file (if accumulating expec-
tation values other than the energy).
(3) Print monitoring data to the out file (block-averaged quantities).
(4) Make a backup copy of the config.out file (if catastrophe protection is turned on with the
dmc trip weight keyword).
(5) Make a backup copy of the expval.data file (if it exists, and if catastrophe protection is
turned on with the dmc trip weight keyword).
(6) Write the dmc.status file.
(7) Write the current state of the system, and all configurations in the current population to the
config.out file (note that by setting the checkpoint keyword to 0, this step can be skipped
until the end of the final block, or skipped completely if checkpoint=-1, but this is not the
default).
Note that having too many blocks will make the code slower, and if the run is not massively
long it is perfectly in order to have only one DMC stats block (which is the default).

DMC STATS NSTEP (Integer) Number of DMC steps performed on each MPI process in the
statistics accumulation phase, and consequently, the total number of local energy samples (av-
eraged over configurations and processes) written to the dmc.hist file. The accumulation phase
may be partitioned into dmc stats nblock blocks, but this does not affect the total number of
steps (just how frequently stuff is written out). However, if dmc stats nstep is not divisible by
the number of blocks, then it will be rounded up to the nearest multiple of dmc stats nblock.
Furthermore, dmc ave period consecutive local energies may be averaged together in DMC be-
fore writing them to the dmc.hist file (hence reducing its size), but again, if dmc stats nstep
is not divisible by dmc ave period, it will be rounded up to the nearest multiple of it. Note the
difference in parallel behaviour compared to vmc nstep, which is not a per-process quantity;
this is because the DMC phase is parallelized over configurations.

DMC TARGET WEIGHT (Real) Total target weight in DMC, summed over all MPI pro-
cesses. This is synonymous with the ‘target population’ of configurations, except that
dmc target weight is allowed to be non-integer. Typically dmc target weight will be the
same as vmc nconfig write when runtype= vmc dmc, though it does not have to be.9

DMC TRIP WEIGHT (Real) In the course of a DMC simulation, it is possible for a configuration
‘population explosion’ to occur. If dmc trip weight is set to 0.0 then nothing will be done
about this. If dmc trip weight> 0 then the algorithm will attempt to restart the block (with a
different random number sequence) if the iteration weight exceeds dmc trip weight. A general
suggestion for its value would be three times dmc target weight (but see the discussion later
in the manual in Sec. 13.9 about this).

DTDMC (Real) Time step for DMC run (atomic units). The DMC time step must be small, as
the DMC Green’s function is only exact in the limit of zero time step: see Sec. 13. Typically
the DMC time step is about two orders of magnitude smaller than the VMC time step, and

9It may seem bizarre to allow non-integer total target weights, but a possible use for this is in increasing the parallel
efficiency when you have a very small population per MPI process. Suppose your target weight is 1 configuration per
process and you are running on 100000 processes. Half the time your total population will be a bit higher than 100000,
and when this happens nearly all of your processes will spend half their time twiddling their thumbs waiting for the
small number of processes that have two configurations to finish the iteration. So around 25% of the computer time
is wasted. If instead you set your target weight to 0.98 configurations per process then it is very unlikely that any
processes will have two configurations. Instead you have on average 2% of your processes sitting idle, which is sad, but
still more efficient than having large numbers of processes wait for a small number of over-burdened processes.

44

the DMC move-acceptance ratio should be about 99.9%. For accurate work, one must always
investigate time-step bias by plotting the DMC energy against the value of dtvmc. Provided
the time step is sufficiently small that the root-mean-square distance diffused by each particle at
each step is much less than the shortest physically relevant length scale, one can expect to find
the time-step bias in the DMC energy to be linear; hence it is straightforward to extrapolate to
zero time step. The extrapolate tau utility and make E v dt script exist to help with the
extrapolation to zero time step.

DTVMC (Real) Time step for VMC run (atomic units). The form of the VMC transition-probability
density used by casino is discussed in Sec. 12. As described in Sec. 12.4, dtvmc should be
chosen so that the overall move acceptance ratio is close to 50%. In most normal systems, the
appropriate value is between 0.1 a.u. and 0.6 a.u. If dtvmc is given a sensible starting value
(and, for normal systems, anything in this range is sensible), setting opt dtvmc to 1 will cause
the time step to be optimized automatically. For very low-density systems, a much larger value
of dtvmc is appropriate.

DTVMCS (Block) Use this keyword to specify a VMC time step for each particle family explicitly,
as well as to determine whether to optimize each of them individually. The contents of this
block override the values of dtvmc and opt dtvmc. One line is to be written for each ‘family’
of particles, the format of each line being:
DTVMC OPT DTVMC
where ‘DTVMC’ is the value of the time step, and ‘OPT DTVMC’ can be 0 or 1, indicating
whether to optimize the corresponding time step or not.

DTVMC SHIFT (Real) dtvmc shift is an optional shift in the VMC transition probability, which
can be used to ‘encourage’ electrons to be more mobile. dtvmc shift is expressed in units of
the square root of dtvmc.

E OFFSET (Physical) This keyword gives a constant shift Eoffset in the total energy per electron
such that the final result will be E = Ecalc − Eoffset. The default is zero. This allows the user
to add any constant contributions to the total energy that are not calculated within casino.

EBEST AV WINDOW (Integer) Averaging window for calculating the ground-state energy during
equilibration. During DMC equilibration the best estimate of the ground-state energy is taken
to be the average local energy over the last ebest av window moves. The default of 25 is
usually sufficient.

EDIST BY ION, EDIST BY IONTYPE (Block) The edist by ion block allows fine control
of the initial distribution of the electrons before equilibration starts. The standard algorithm
shares out the electrons amongst the various ions weighted by the pseudo-charge/atomic number
of the ion. Each electron is placed randomly on the surface of a sphere surrounding its parent
ion. There are certain situations, for example a simple crystal with a very large lattice constant,
where the standard algorithm in the points routine may give a bad initial distribution, which
cannot be undone by equilibrating for a reasonable amount of time. This keyword allows a
user-defined set of electron/ion associations to be supplied. The syntax is to supply Nion lines
within the block which look like, e.g., 1 4 4, where the three numbers are: the ion sequence
number; the number of up-spin electrons associated with this ion; the number of down-spin
electrons associated with this ion. Alternatively one may use the edist by iontype keyword
block, where you replace the ion sequence number with the ion type sequence number and the
information is supplied only for each particular type of ion.

EMIN MIN ENERGY (Physical) This keyword sets a minimum energy threshold for energy min-
imization, used to reject low-quality wave functions which produce spurious low VMC energy
estimates. The value of emin min energy should (ideally) be set slightly below the ground-
state energy. The ground-state energy is often not known, in which case a good estimate can
sometimes be supplied. If this keyword is not set manually, casino will supply an automatic
guess derived from the preceding VMC run. See Sec. 25.3.7 for more details.

EMIN XI VALUE (Real) This keyword sets the value of the ξ parameter used to control semi-
orthogonalization in energy minimization. It should rarely be changed by users. See Sec. 25.3
for details.

45

ESUPERCELL (Logical) By default total energies and their components in periodic systems are
printed as energies per primitive cell. Switching this flag to T forces printing of energies per
simulation cell in the output file.

EWALD CHECK (Logical) casino and the wave-function generating program should be able to
calculate the same value for the nuclear repulsion energy, given the same crystal structure. By
default casino computes the Ewald interaction and compares it with the value given in the
wave-function file. If they differ by more than 10−5, then casino will stop and complain. If you
have a justifiable reason for doing so (e.g., you have turned off periodicity), you may turn off
this check by setting ewald check to F.

EWALD CONTROL (Real) This is the percentage increase (from the default) of the cutoff radius
for the reciprocal space sum in the Ewald interaction, which is used for calculating electro-
static interactions between particles in periodic systems. Its default value is zero. Increasing
ewald control will cause more vectors to be included in the sum, the effect of which is to
increase the range of the Ewald γ parameter over which the energy is constant (the default
γ should lie somewhere in the middle of this range). This need only be done in exceptional
circumstances and the default should be fine for the general user. See Sec. 19.4 for information
about the Ewald method.

EXPOT (Logical) If expot is set to T then an external potential is read from the file expot.data

and included as a summed contribution to the total energy. See Sec. 7.11.

EXPVAL CUTOFF (Physical) expval cutoff is the energy cutoff for G-vectors used in the eval-
uation of expectation values accumulated in reciprocal space (e.g., the density, spin density,
pair-correlation function, etc.). The value of expval cutoff is ignored if an expval.data file is
already present, in which case the G-vector set(s) given therein are used instead. If you set it
to zero, then the program will suggest a value. The default is 3 a.u. See Sec. 7.13.

EXPVAL ERROR BARS (Logical) If this flag is set, casino will, where practicable, accumulate
the additional quantities required to evaluate error bars on requested expectation values. This
will increase the size of the expval.data file and slow down the calculation slightly. At present
this functionality is limited to the structure factor.

EXPVAL KGRID (Block) This block contains a specification of one or more k-point grids defined in
one, two or three dimensions. A one-dimensional grid is defined by a line AB, a two-dimensional
grid by a plane AB–AC and a three-dimensional grid by a parallelepiped AB–AC–AD, together
with an appropriate number of k-points along each direction. These grids may be used in the
calculation of various expectation values, if the appropriate keywords are set to T in input. The
block consists of the following lines:
Line 1: Number of grids defined in this block;
Line 2: Which expectation value uses this grid? (2 for spherical structure factor);
Line 3: Dimensionality d of current k-grid (1–3);
Line 4: Coordinates of k-point A (a.u.);
Line 5: Coordinates of k-point B (a.u.), number of points along AB;
Line 6: [If d = 2 or 3] Coordinates of k-point C (a.u.), number of points along AC;
Line 7: [If d = 3] Coordinates of k-point D (a.u.), number of points along AD.
Repeat lines 2 to 7 for each additional grid.
Note that spherically averaged quantities require a one-dimensional grid, irrespective of the
dimensionality of the system.

FINITE SIZE CORR (Logical) Calculate finite-size corrections to the kinetic energy and the
electron–electron interaction energy in periodic systems using the method described in Ref.
[18] and Ref. [15]. See Secs. 29 and 30 for further information.

FIX HOLES (Logical) This keyword is used to define the reference points for the exciton-exciton
separation when using the ‘BIEX3’ wave function. Setting fix holes to T means that the two
holes are fixed at a distance xx sep apart. The default is F, in which case the centres of mass
of the two excitons are fixed instead. If BIEX3 is not being used then this keyword is ignored.

FIXED PARTICLES (Block) When setting up a model system one can place fixed, charged par-
ticles within the simulation cell by using the fixed particles block. This can be used to study,
e.g., electron–hole complexes in the presence of fixed donor and acceptor ions. The block consists
of one line for each fixed particle, where the lines are of the form ‘〈charge〉 〈x〉 〈y〉 〈z〉’, where

46

x, y and z are the Cartesian components of the fixed charge’s position. The charge must be an
integer. Periodic repeats of the fixed particle are generated automatically.

FORCES (Logical) Calculate atomic forces in VMC/DMC. Forces are only implemented for Gaus-
sian basis sets and only work in pseudopotential calculations (in order to eliminate the electron–
nucleus singularity).

FORCES INFO (Integer) Controls the amount of information calculated/displayed during force
calculations:
‘2’: display no additional information; the Hellmann–Feynman force is evaluated with the d-
channel of the pseudopotential chosen to be local and the s-d and p-d channels nonlocal (default);
‘5’: calculate and display two additional Hellmann–Feynman force estimators, where the s- and
p-channels of the pseudopotential components are chosen to be local.

FREE PARTICLES (Block) This block sets the parameters that define the behaviour of the orbitals
which are not atom-related in a system. The geometry of the system can be given using ‘r s
〈rs〉’, ‘dimensionality 〈d〉’, ‘periodicity 〈P 〉’ and ‘cell geometry’ (followed by d lines with d reals
corresponding to the unscaled cell vectors). For 2D or 1D systems one can also specify that
the electrons are confined to different layers (wires in 1D) using ‘heg nlayers 〈no. layers〉’ and
‘heg zlayer 〈layer〉 〈z〉’, with species being assigned to layers using ‘heg layer 〈spin〉 〈layer〉’.
In 1D, one can also specify the y-coordinate of a wire using ‘heg ylayer 〈layer〉 〈y〉’. These
parameters are only required if atom basis type=‘none’ (which it is by default) in the input

file). The number and type of the orbitals can be given using lines with the syntax ‘particle 〈i〉
: 〈n〉 orbitals 〈orb〉 [orb-options]’ (if all determinants contain the same orbital type) or ‘particle
〈i〉 det 〈det〉 : 〈n〉 orbitals 〈orb〉 [orb-options]’, where 〈det〉 is the term in the multideterminant
expansion, 〈i〉 must be 1, 2 or a number given in the particles block (1 and 2 are up- and down-
spin electrons), 〈n〉 is the number of free particles/orbitals belonging to the 〈det〉th determinant
and ‘〈orb〉 [orb-options]’ is one of the following: ‘free’, ‘crystal siteset 〈s〉’, ‘harmonic’, ‘pairing 〈j〉
[+ 〈m〉 orbitals free]’, ‘sdw’ or ‘expot 〈set〉’, 〈j〉 being the particle type with which 〈i〉 is paired,
〈m〉 is the number of unpaired particles of type 〈i〉, and 〈set〉 being an orbital set in expot.data.
If the orbitals have optimizable parameters, these must be provided in correlation.data.
Wigner-crystal geometry is specified using the keywords ‘crystal type 〈type〉 〈n〉 siteset[s] [repeat
〈r〉]’ (type = ‘cubic’, ‘fcc’, ‘bcc’, ‘rectangular’, ‘hexagonal’ or ‘triangular’, which must match
‘dimensionality’ and ‘cell geometry’, or ‘manual’), and ‘siteset 〈s〉 [antiferro[magnetic]] offset
〈x y z〉’ for predefined lattices (in primitive-cell fractional coordinates), and ‘siteset 〈s〉 manual
〈n〉 site[s]’ followed by 〈n〉 lines of the form 〈x y z〉 defining the sites for manual lattices (in
primitive-cell fractional coordinates). In nonperiodic directions the site positions and offsets
are in absolute rather than fractional coordinates. If a complex wave function is used, i.e.,
complex wf is set to T, then an offset to the grid of k vectors for fluid phases may be specified
using ‘k offset 〈kx〉 〈ky〉 〈kz〉’, where kx, ky and kz are the Cartesian components of the offset.
Alternatively, the offset can be specified in terms of fractions of supercell reciprocal lattice vectors
using ‘k offset frac 〈k1〉 〈k2〉 〈k3〉’. The offset is translated into the first Brillouin zone of the
simulation cell. Using a nonzero offset corresponds to using twisted boundary conditions. If you
are studying a 1D HEG or a 2D HEG of finite width b, you can specify that width using ‘quasi 1D
b’. You can select whether the finite width is described using an effective 1D interaction that
is averaged over transverse motion or by explicit sampling of the ground-state distribution in
the transverse direction. The former and latter methods are selected using ‘transverse method
0’ and ‘transverse method 1’, respectively. It’s not quite as difficult to use this input block
as it may appear from the above: see the examples in ~/CASINO/examples/electron phases

and ~/CASINO/examples/electron hole phases. Information about the associated blocks of
optimisable parameters in correlation.data can be found in Secs. 7.4.9 and 7.4.10.

FUTURE WALKING (Logical) If this flag is set to T then future walking will be used to evaluate
pure estimators in DMC. See Sec. 36.

GAUTOL (Real) Tolerance for Gaussian orbital evaluation. The contribution of a Gaussian is
neglected if its value is less than 10−gautol.

GROWTH ESTIMATOR (Logical) Turn on calculation of the growth estimator of the total energy
in DMC calculations. A statistically significant difference between the mixed estimator and the
growth estimator for the energy normally implies the presence of time-step bias. Other than
that, the growth estimator is not generally useful, because the statistical error in the growth

47

estimator is substantially greater than the error in the mixed estimator. See Sec. 13.8 for more
information.

IBRAN (Logical) If set to T then weighting and branching is allowed in DMC. Setting ibran=F

may be used to check the DMC algorithm, as it then reduces to a VMC algorithm in which the
DMC drift-diffusion Green’s function is the transition probability density.

INITIAL CONFIG (Block) Use this keyword if you want to specify the initial VMC configuration
to use instead of the random one generated by the points routine. It is possible to specify the
positions of only some of the particles. The format of each line in this block is:
σ i x y z
where σ is the spin index of the particle, i is the index of the particle within its spin channel
and (x, y, z) is the position of the particle.

INPUT EXAMPLE (Logical) If input example is T then an example of a casino input file with
all currently known keywords and their default values will be written out. A modified version
of this can be used as an input file in future runs.

INT SF (Logical) If int sf is set to T then the electron–electron interaction energy for a periodic
system will be calculated in terms of the structure factor. The structure factor should either
have been accumulated in a previous run and stored in an available expval.data file, or its
accumulation should be flagged for the current run. Using this method the total interaction
energy can be separated into Hartree and XC terms. This feature is not currently documented
in the manual.

HARTREE XC (Logical) Flag the computation of separate Hartree and exchange-correlation (XC)
parts of the electron-electron interaction energy for a periodic system. This may be done in two
different ways, namely the structure factor method and the MPC method. The computation
thus requires either (1) structure factor information from a previously accumulated expval.data
file or from setting structure factor=T, or (2) the MPC interaction to be active (through
interaction=mpc, mpc ewald or ewald mpc). If both these things are true then both methods
will be used to compute the hartree/XC energies (the resulting numbers should agree reasonably
closely). If neither are true, then this keyword has no effect. The default is T. Note that the
MPC version only works with 3D periodicity.

INTERACTION (Integer) Type of interaction between particles. interaction can take the follow-
ing values:
‘none’: noninteracting particles;
‘coulomb’: Coulomb interaction;
‘ewald’: periodic Coulomb interaction computed using Ewald summation;
‘mpc’: periodic Coulomb interaction computed using the MPC method;
‘ewald mpc’: compute and report both Ewald and MPC results, but use Ewald in DMC propa-
gation;
‘mpc ewald’: compute and report both Ewald and MPC results, but use MPC in DMC propa-
gation;
‘manual’: compute a user-defined interaction (see the manual interaction block input key-
word);
‘ewaldpp’, ‘ewaldpp mpc’, ‘mpc ewaldpp’: as their above counterparts, but using an electron-
electron pseudopotential for the Ewald interaction, whose parameters [see Eq. (4) of Ref. [19]]
must be specified in the manual interaction block;
‘ewald kel’: use the “Ewaldized” (i.e., periodic) Keldysh interaction for 2D semiconductors,
which is equal to the usual Coulomb Ewald interaction plus the difference of the finite Keldysh
potential and the Coulomb 1/r potential summed over periodic images; the required r∗ param-
eter is specified in the manual interaction block.

The values ‘coulomb’ and ‘ewald’ can be used interchangeably, although ‘coulomb’ should strictly
refer to aperiodic systems and ‘ewald’ to periodic systems.

The MPC interaction is generally significantly faster than the Ewald interaction and should give
smaller finite-size effects. The MPC interaction is not currently implemented for 1D systems,
however. Furthermore, we recommend using ‘ewald mpc’ rather than ‘mpc’ or ‘mpc ewald’, as
there is some evidence that the MPC interaction can distort the XC hole. See Sec. 19.4 for
information about the Ewald interaction, Sec. 19.4.4 for information about the MPC and Sec.
20 for information about ‘manual’ interactions.

48

ISOTOPE MASS (Real) This keyword can be used to define a nuclear mass in unified atomic
mass units (u) if you need to override the default value used in casino (which is averaged over
isotopes according to their abundances). The default (given in the table in Sec. 33) is used if
isotope mass is set to zero. The unified atomic mass unit (u) in this sense means ‘the ratio of
the average mass per atom of the element to 1/12 of the mass of 12C’. This is only relevant if
relativistic is set to T. See Sec. 33.

JASBUF (Logical) If jasbuf is T then the one-body (χ and q) terms in the Jastrow factor for each
electron in each configuration are buffered in DMC: this saves time at the expense of memory.
Clearly this will have no effect in systems without one-body terms in the Jastrow factor.

JASTROW PLOT (Block) This utility allows the user to plot the u(rij), χ(ri), f(ri, rj , rij), p(rij),
ucyl(rij), χcyl(ri) and q(ri) terms in the Jastrow factor. The first line is a flag specifying whether
the Jastrow factor is to be plotted (0=NO, 1=YES); the second line holds the spin of particle
i = 1, 2, . . .; the third line holds the spin of particle j = 1, 2, Optionally, another three
lines may be given: the fourth line holds the (x, y, z)-position of particle j; the fifth line holds
a vector with the direction in which i is moved; and the sixth line holds the position vector of
a point on the straight line along which electron i moves. If lines 4–6 are not given, default
values will be inserted. The nucleus is assumed to lie at the origin. All 6 (or 3) lines must
be present, even if only χ is to be plotted: the redundant information about particle j will
be ignored. If χ is plotted then jastrow value chi ?.dat, jastrow deriv chi ?.dat and
jastrow sderiv chi ?.dat contain the value, derivative and second derivative of χ(ri) against
ri for each set of χ terms. Likewise for u. If f is plotted, the jastrow value f ?.dat files
contain the value of f against the distance from the point given in line 6. Likewise for p and q.
All terms present in the Jastrow factor in correlation.data will be plotted. If wave-function
optimization has gone wrong, a common indication is that u(rij) does not increase monotonically
to 0. If you encounter unexpected population-control problems in DMC, this is a good test to
apply. See Sec. 22.1 for information on casino’s Jastrow factor.

KE FORGIVE (Logical) casino performs numerical tests to determine whether the kinetic energies
computed during the run will be correct. If ke forgive is set to F, casino will regard this as
an error and stop. The default is T. Note that although the procedure is generally stable, there
may be cases in which poor numerics causes failures. See also ke verbose.

KE VERBOSE (Logical) casino performs numerical tests to determine whether the kinetic energies
computed during the run will be correct. Such tests are carried out after VMC equilibration,
and will only produce concise output about the outcome. However, if the flag ke verbose is
set to T, casino will print out information throughout the process. The default is F. See also
ke forgive.

KWARN (Logical) The kwarn flag is relevant only in calculations using a plane-wave basis set. If
the flag is set to T, then casino will issue a warning whenever the kinetic energy calculated
from the supplied orbitals differs from the DFT kinetic energy given in the pwfn.data file by
more than an internal tolerance (usually set to 10−6). If the flag is F, then casino will stop
with an error message on detecting this condition. Note that in cases where the DFT calculation
which generated the orbitals used fractional occupation numbers, the kinetic energy mismatch
is very likely to occur since QMC deals in principle only with integer occupation numbers, hence
the existence of this flag. Furthermore, the calculation of the kinetic energy is based on the
assumption that the orbitals are orthogonal; hence kwarn should be set to T if nonorthogonal
localized plane-wave orbitals are used.

LCUTOFFTOL (Real) This is used to define the cutoff radius for the local part of the pseudopo-
tential. It is the maximum deviation of the local potential from −Z/r at the local cutoff radius.
See Sec. 19.3.

LIMDMC (Integer) Set modifications to Green’s function in DMC (see Sec. 13.5). May take values:
0: no modifications applied;
1: Depasquale et al. scheme [20];
2: Umrigar et al. scheme [21];
3: Langfelder–Rothstein–Vrbik mods [22];
4: Umrigar mods to drift velocity, Zen–Sorella–Alfè mods to energy [23], with a cut in the
branching of Ecut = α

√
N/τ . The parameter α is set by alphalimit

5: Experimental Zen–Alfé scheme;

49

6: Scheme of Umrigar et al. applied to the single-electron local energies rather than the total
local energy. We recommend a value of 4, which is the default. This scheme must be used if the
nucleus gf mods flag is set to T.

LOC TENSOR (Logical) If loc tensor is set to T then the localization tensor will be accumulated
in the expval.data file (periodic systems only). See Sec. 34.

LWDMC (Logical) Enable weighted DMC, where each configuration carries a weight that is simply
multiplied by the branching factor after each move; only if the weight of a configuration goes
outside certain bounds (above wdmcmax or below wdmcmin) is it allowed to branch or be
combined with another configuration. This should reduce excessive population fluctuations,
which is generally held to be a good thing. Note that setting lwdmc=T means that your
population will generally fluctuate around a value other than dmc target weight (after an
initial transient); the chances of being killed if your weight is below 1 or duplicated if your
weight is above 1 depend on the values of wdmcmin and wdmcmax, and in general this is
not symmetrical. See Sec. 13.4.

LWDMC FIXPOP (Logical) This flag activates the lwdmc variant with fixed population. By
interpreting wdmcmin and wdmcmax relative towards the current population the population
and the total weight are decoupled. The population is nearly fixed while the total weight
fluctuates as usual. While this generally reduces the statistical efficency of the DMC algorithm,
it is a simple way to eliminate population explosions or extinction in cases of small population
and large population fluctuation. WARNING: this is not a solution for walkers trapped in
singular points of the wave functions, nor is it a solution for populations that get trapped in
high-energy states. Be careful about this option when you do not know the reason for the
population problems in the first place.

MAGNETIC FIELD (Logical) Apply an external magnetic field using the magnetic vector poten-
tial specified in expot.data. See Sec. 38.

MAKEMOVIE (Logical) Plot the particle positions every movieplot moves (see Sec. 11).

MANUAL INTERACTION (Block) When interaction is set to ‘manual’, this block is used to
specify the form and parameters of the desired interaction. The format is either

square_well

Height : -2.0

Width : 3.0

or

poschl_teller

Mu : 12

V_0 : -1.0

or

hard_sphere

D : 0.88

or

polynomial

order : 3

cutoff : 5.3

c_0 : 1

c_1 : 1

c_2 : 1

or

logarithmic

rstar : 1.0

or

50

keldysh

rstar : 1.0

or

dipole

d^2 : 1.0

or

tilted_dipole

d^2 : 1.0

theta : 1.57

or

pseudodipole

order : 3

cutoff : 5.3

c_0 : 1

c_1 : 1

c_2 : 1

d^2 : 1.0

or

tilted_pseudodipole

order : 3

cutoff : 5.3

c_0 : 1

c_1 : 1

c_2 : 1

d^2 : 1.0

theta : 1.57

or

ewald_kel

rstar : 1.7858

or

clifford

See Sec. 20 for information on the available interactions and their parameters.

MAX CPU TIME (Physical) If the CPU time elapsed since the start of a QMC simulation exceeds
max cpu time and a suitable point in the algorithm is reached, then casino will halt gracefully.
This should make it easier to carry out, e.g., multiple DMC runs on a computer with a queueing
system, particularly when used with the --continue or --auto-continue options of runqmc.

The way this works is that at the end of each block of moves, CASINO will check whether doing
one more block will exceed the time limit. If so, it will perform an emergency stop, writing to
the output file any changes to the input file that must be made in order to restart the job (in a
form readable both by humans and by runqmc). The user must therefore define the block length
appropriately—most usefully via the block time keyword—such that the time taken per block
is a sufficiently small fraction of max cpu time.

Note that in DMC, if checkpoint=0 in input and there is a job time limit, it is strongly
recommended that max cpu time is used to ensure the config.out file is written out if the
required CPU time is longer than the time limit. max cpu time is a physical parameter with
dimensions of time, and the units must be specified as, e.g., 1 day, 24 hr, 1440 min, or 86400 s.
See also the max real time keyword.

51

MAX REAL TIME (Physical) If the wall-clock time elapsed since the start of a QMC simulation
exceeds max real time and a suitable point in the algorithm is reached, then casino will halt
gracefully. This should make it easier to carry out, e.g., multiple DMC runs on a computer with
a queueing system, particularly when used with the --continue or --auto-continue options
of runqmc.

The way this works is that at the end of each block of moves, CASINO will check whether doing
one more block will exceed the time limit. If so, it will perform an emergency stop, writing to
the output file any changes to the input file that must be made in order to restart the job (in a
form readable both by humans and by runqmc). The user must therefore define the block length
appropriately—most usefully via the block time keyword—such that the time taken per block
is a sufficiently small fraction of max real time.

Note that in DMC, if checkpoint=0 in input and there is a job time limit, it is strongly
recommended that max real time is used to ensure the config.out file is written out if the
required time is longer than the time limit. max real time is a physical parameter with
dimensions of time, and the units must be specified as, e.g., 1 day, 24 hr, 1440 min, or 86400 s.
See also the max cpu time keyword.

MAX REC ATTEMPTS (Integer) This is the maximum number of times that DMC will attempt
to restart a block if it continues to encounter population-explosion catastrophes. Relevant only
if the dmc trip weight keyword is set to a nonzero value. See the discussion in Sec. 13.9 for
more details.

MOLGSCREENING (Logical) Toggle on and off the use of screening in Gaussian basis set calcu-
lations of molecules, i.e., the division of space into boxes and the preparation of lists of which
Gaussian basis functions have a significant weight in each box. The use of screening should
speed up the calculation of large molecules. The screening information can take up a reasonable
amount of memory; hence the existence of this keyword.

MOM DEN (Logical) If set to T the momentum density will be accumulated. Exclusively for HEGs
at the moment.

MOVIECELLS (Logical) If F then casino will plot the unit cell when making a movie; if T then
nearest-neighbour cells in the (x, y)-plane will also be written (see Sec. 11).

MOVIEPROC (Integer) Plot the particle positions on MPI process movieproc (see Sec. 11).

MOVIEPLOT (Integer) Plot the particle positions every movieplot moves (see Sec. 11).

MPC CUTOFF (Physical) mpc cutoff is the energy cutoff for G-vectors used in (a) the fast
Fourier transform (FFT) of the MPC interaction and (b) the FFT of the one-particle density
required when generating the mpc.data file. The program will suggest a value for mpc cutoff
if the existing value is unsuitable, or if the user inputs a value of zero. The default is 30 a.u.
See Sec. 19.4.4.

NED (Integer) For real systems containing atoms, ned is the total number of spin-down electrons
referenced by the many-body wave function (for periodic systems, this is the number of spin-
down electrons in the simulation cell, rather than the underlying primitive cell). The number of
spin-up electrons is given by the keyword neu.
Note that in the presence of addition or subtraction excitations, ned refers to the state of
the system AFTER the required number of electrons have been added or removed. For model
electron(-hole) phases such as the HEG, set ned to zero and use the free particles block to
define the number of spin-down electrons.

NEIGHPRINT (Integer) neighprint= n will generate a printout of the first n stars of neighbours
of each atom in the primitive cell, with the relevant interatomic distances given in both Ångstrom
and a.u. If n = 0 or if you have an atom-free electron or electron–hole fluid phase, then the
keyword has no effect. Note that activating cusp corrections when using a Gaussian basis (the
default) will trigger a neighbour analysis irrespective of the value of this keyword.

NEU (Integer) For real systems containing atoms, neu is the total number of spin-up electrons
referenced by the many-body wave function (for periodic systems, this is the number of spin-up
electrons in the simulation cell, rather than the underlying primitive cell). The number of spin-
down electrons is given by the keyword ned.

52

Note that in the presence of addition or subtraction excitations, neu refers to the state of
the system AFTER the required number of electrons have been added or removed. For model
electron(-hole) phases such as the HEG, set neu to zero and use the free particles block to
define the number of spin-up electrons.

NEWRUN (Logical) Specifies whether a new run or a continuation of an old one is to be performed:
T: (VMC) vmc equil nstep Metropolis steps are performed on a set of randomly

generated configurations before accumulation of statistics begins.;
(DMC) A set of VMC configurations is read from a config.in file and the ini-
tial best estimate of the energy EBEST is calculated as the mean energy of these
configurations. In the special case of dmc reweight configs=T, config.in
may also contain DMC configurations which are reweighted to a new wave
function and EBEST shifted by the current energy difference between the wave
functions.;

F: (VMC) Continuation of an old run. A set of old (and presumably equilibrated)
electron positions are read from a config.in file, and no Metropolis equilibra-
tion steps are performed before accumulation of statistics.;
(DMC) Continuation of an old run. A set of DMC configurations is read from
a config.in file and EBEST is not recomputed but taken to have the value
written on the end of the config.in file (presumably by a previous DMC run,
either equilibration or accumulation).

NHD (Integer) Like nhu, but for spin-down particles.

NHU (Integer) Number of spin-up fermions other than electrons in real systems. For example,
if you are interested in positronic molecules then nhu should be set to 1, and the up-spin
positron (‘spin’ 3) should be defined appropriately in the particles block. Likewise for muonic
systems. At present only the Gaussian routines can be used to return orbitals for species other
than electrons. (There exists a modified version of the gaussian code that can be used to
generate orbitals for positronic molecules.) If you want to use a different basis or study muons
or something then you will need to make the appropriate changes first. For model systems such
as electron-hole gases, etc., please use the free particles block to define the number of spin-up
holes.

NLCUTOFFTOL (Real) This is used to define the cutoff radius for the nonlocal parts of the
pseudopotential. It is defined as the maximum deviation of the nonlocal potentials from the
local potential at the nonlocal cutoff radius. See Sec. 19.3.

NON LOCAL GRID (Integer) non local grid selects the grid for nonlocal integration, ranging
from coarse (low non local grid value) to fine (high non local grid value). The value is
assumed to be the same for all atoms if it is controlled through this keyword; alternatively you
can provide values of non local grid for particular species by specifying values for nlrule1 at
the top of the corresponding pseudopotential files. non local grid can take values between 1
and 7, the default being 4 (used if non local grid is negative or not supplied). See Sec. 19.2
for more information.

NPCELL (Block) Vector of length 3 giving the number of primitive cells in each dimension that
make up the simulation cell. N.B., for the 1D-periodic case, npcell(2) and npcell(3) must be 1,
and for the 2D slab case, npcell(3) must be 1. To construct more general simulation supercells,
please use the scell matrix keyword.

NUCLEUS GF MODS (Logical) This keyword is the switch for enabling the use of the modifi-
cations to the DMC Green’s function for the presence of bare nuclei, suggested in Ref. [21], in
order to reduce time-step errors in all-electron calculations. See Sec. 13.6.

ONEP DENSITY MAT (Logical) If onep density mat is set to T, then the spherically averaged
one-particle density matrix will be computed and written to the expval.data file. This is only
possible if the system is homogeneous for the moment. See Sec. 34.

ON TOP PAIR (Block) This block contains two lines consisting of the particle type and index
(integers) of each of two particles to be forced to stay on top of each other throughout a VMC
calculation. This is intended for the evaluation of recombining-pair momentum densities and
“one-body” density matrices in hole-in-HEG systems—wrong values will be reported for other
expectation values, including the energy. Note that the time step of the first-specified particle
applies to the pair. This block must not be used in DMC or optimization runs.

53

OPT BACKFLOW (Logical) Optimize backflow parameters in wave-function optimization. See
Sec. 23.

OPT COMPLEX (Logical) This flag determines whether the imaginary part of the local energy is
taken into account in ‘varmin’, ‘madmin’ and ‘varmin linjas’ calculations when a complex trial
wave function is used. opt complex is T by default.

OPT CYCLES (Integer) Number of cycles of configuration generation and optimization to be car-
ried out if runtype=‘vmc opt’ or ‘opt vmc’. For variance minimization, 3–6 cycles is typical;
for energy minimization, 5–10 cycles is usual unless only determinant coefficients are being
optimized, in which case 1–2 cycles will be enough.

OPT DET COEFF (Logical) Optimize the coefficients of the determinants in wave-function opti-
mization.

OPT DTVMC (Integer) This keyword may take three possible values: opt dtvmc=0 (default)
turns off optimization of the VMC time step, while opt dtvmc=1 causes the time step to be
optimized during equilibration in order to achieve an acceptance ratio of (roughly) 50%. See
Sec. 12.4. The value of opt dtvmc is ignored if the input block dtvmcs is supplied.
casino can also maximize the diffusion constant with respect to dtvmc. This can be enabled
by setting opt dtvmc=2. In a first stage, dtvmc is varied to get an acceptance ratio of 50%,
so as to have decent statistics to perform the diffusion-constant maximization stage. This last
option is only useful for vmc method=3, where it is the default.

OPT FIXNL (Logical) If this keyword is set to T then the nonlocal energy will be fixed where
possible in optimization. This is recommended for variance minimization (and T by default)
as it greatly improves the speed of the optimization process, and possibly the accuracy of the
optimization as well. For energy minimization, it is F by default, as the speed increase is small.

OPT GEMINAL (Logical) During optimization, allow the optimization of the geminal coefficient
matrix.

OPT INFO (Integer) Controls amount of information displayed and/or written out during wave-
function optimization. Variance minimization: (1) display no information; (2) display energies
at each function evaluation; (3) as (2), but calculate weights as well; (4) write out configurations
and their energies, etc., as they are read in. Energy minimization: (1) little information; (2)
basic information; (3) full information, write matrix algebra log file; (4) also write full matrices
to log files; (5) also write SVD component matrices to log files, if SVD used.

OPT JASTROW (Logical) Optimize the Jastrow factor in wave-function optimization.

OPT MAXEVAL (Logical) Maximum number of evaluations of the variance during variance min-
imization (default 200).

OPT MAXITER (Integer) Largest permitted number of nl2sol or global EMIN iterations (de-
fault: 10).

OPT METHOD (Text) There are currently four optimization methods implemented in casino:
(1) variance minimization (‘varmin’); (2) minimization of the mean absolute deviation of the
set of local energies from the median (‘madmin’); (3) energy minimization (‘emin’); (4) an
accelerated variance minimization technique for parameters that appear linearly in the Jastrow
factor (‘varmin linjas’). The first three methods are capable of optimizing the Jastrow factor,
orbitals, backflow functions, and determinant coefficients. The fourth method can only be used
to optimize linear parameters in the Jastrow factor. There are other keywords that affect the
behaviour of each of these methods. The default value of opt method is ‘varmin’.

OPT NOCTF CYCLES (Integer) Supplying a positive integer X for this keyword will cause all
‘shallow’ parameters (cut-off lengths in the Jastrow factor, backflow transformation and orbitals)
to remain fixed for the final X cycles of a multi-cycle optimization run. This is potentially useful
for energy minimization, which can be adversely affected by the presence of optimizable cut-off
parameters. opt noctf cycles defaults to 0 (i.e., cut-offs are never fixed).

OPT ORBITALS (Logical) Optimize parameters in the orbitals in wave-function optimization (rel-
evant, e.g., if use orbmods=T).

54

OPT PLAN (Block) Allows specifying different parameters for each optimization cycle for runtype
‘vmc opt’, ‘opt vmc’ or ‘opt’. The block has one line per optimization cycle (the block length
overrides the value of opt cycles), each containing the cycle index followed by any number of
blank-separated <keyword>=<value> assignments. Valid keywords are:

• method: sets opt method to <value> for the cycle (string)

• reweight: sets vm reweight to <value> for the cycle (Boolean)

• w max: sets vm w max to <value> for the cycle (real)

• w min: sets vm w min to <value> for the cycle (real)

• sample hf: sets vmc sample hf to <value> for the cycle (Boolean)

• jastrow: sets opt jastrow to <value> for the cycle (Boolean)

• backflow: sets opt backflow to <value> for the cycle (Boolean)

• det coeff: sets opt det coeff to <value> for the cycle (Boolean)

• orbitals: sets opt orbitals to <value> for the cycle (Boolean)

• geminal: sets opt geminal to <value> for the cycle (Boolean)

• maxiter: sets opt maxiter to <value> for the cycle (Boolean)

• fix cutoffs: determines whether to fix cut-offs (T) or not (F) for the cycle (Boolean;
analogous to opt noctf cycles)

Input keywords will remain at their provided/default values for all cycles for which they are not
modified by the corresponding opt plan line.

OPT STRICT (Logical) Setting opt strict=T will cause casino to stop a vmc opt or opt vmc run
if the VMC energies are incremented within a 99.7% confidence interval during two consecutive
cycles. Prevents wastage of CPU time in times of scarcity. Default value is F.

ORB NORM (Real) Allows user to change normalization of orbitals by multiplying all of them by
this constant. Of course this should have no effect on the energy, but it can be useful if the
Slater determinant starts going singular, as it might for some very low-density systems.

ORBBUF (Logical) Setting orbbuf=T turns on orbital buffering in DMC. This is an efficiency
device in which buffered copies of orbitals/gradients/Laplacians are kept for later reuse. This
has a significant memory cost. Orbital buffering should always be used unless you start running
out of memory; hence the ability to turn it off.

PAIR CORR (Logical) Set pair corr to T to accumulate the reciprocal-space pair-correlation func-
tion in the expval.data file. Currently restricted to periodic systems. Note that you also need
to give the position and type of a fixed particle using the pcf rfix block (unless the density is
homogeneous). See Sec. 34.

PAIR CORR SPH (Logical) If pair corr sph is set to T then the spherically averaged real-space
pair-correlation function will be accumulated in the expval.data file (via a process of ‘binning’
the electron-electron separations). This currently works for periodic homogeneous systems and
finite isotropic systems such as electron-hole bilayers. For periodic systems with atoms you can
use the pair corr keyword instead which gives you the full (non-spherically averaged) pair-
correlation function accumulated in reciprocal space. See Sec. 34.

PARTICLES (Block) Using the particles block the user can define quantum particles (other than
electrons, which can be introduced using neu and ned) to be used in the QMC calculation.
The format of each line is ‘〈i〉 〈charge/|e|〉 〈mass/me〉 〈spin/h̄〉 〈name〉’. A negative value of
the mass indicates that the following three lines give an anisotropic 3× 3 mass tensor [currently
unused]. casino decides whether each particle type is a fermion or a boson (based on the spin),
and selects the appropriate way to combine the one-particle orbitals (symmetric combination
[not currently implemented] or antisymmetric Slater determinants). The particles defined here
can be assigned orbitals using the free particles block.

PCF RFIX (Block) This block contains two lines. The first line gives the type of particle to be fixed
during accumulation of the pair correlation function g(r, r′); the second line gives the coordinates
of the position r at which to fix it (in a.u.). This applies to the reciprocal-space pair-correlation
function (PCF) activated with the pair corr input keyword. It also applies in principle to the

55

spherical real space PCF activated with the pair corr sph input keyword, in the sense that the
format of expval.data allows it, but the accumulation of the spherical PCF with fixed particles
has not yet been implemented. See Sec. 34.

PCFS RCUTOFF (Physical) Radius of region to be considered when accumulating the pair-
correlation function. The default value in periodic systems (the Wigner–Seitz cell radius) is
generally appropriate; however, for finite systems such as excitonic complexes, pcfs rcutoff
should be set to something rather larger than the size of the complex. Note that units (e.g.,
bohr) should be supplied after the value of pcfs rcutoff. Enter a negative value or omit the
keyword to use the default value. If an expval.data file is present then the value given in
expval.data will be used and the input keyword pcfs rcutoff will be ignored. See Sec. 34.

PCFS NBINS (Physical) Number of bins to be used when accumulating the real-space pair-
correlation function. Enter a negative value or omit the keyword to use the default value.
If an expval.data file is present then the value given in expval.data will be used and the
input keyword pcfs nbins will be ignored. See Sec. 34.

PERIODIC (Logical) T if and only if the system is periodic in either 1, 2 or 3 dimensions.

PERMIT DEN SYMM (Logical) If this flag is set to T then he symmetry of the self-consistent
field (SCF) charge density (in mpc.data) will be imposed on the QMC charge-density data used
in the MPC interaction (with the justification that imposing an exact condition on the charge
density can’t hurt) and also when writing the QMC density to expval.data. It is possible
however that DMC will break the symmetry of the SCF calculation; in this case the user should
turn off permit den symm.

PLOT BACKFLOW (Block) This block allows a plot of the backflow transformation to be made
(see Sec. 23) just after VMC equilibration. The block should contain 2 lines, plus an optional
line for plotting the Φ term: (1) ‘0’ or ‘1’ to (de-)activate this facility; (2) ‘kspin’, ‘knumber’
and ‘zposition’; (3) value of fixed electron–nucleus distance riI . This will produce various files:
bfconfig.dat (reference config), bfconfigx.dat (associated quasi-particle config), bfions.dat
(coordinates of nuclei for which backflow terms exist), bfeta 〈s〉.dat (η vs. rij for each spin-
pair type 〈s〉), bfmu 〈s〉 〈set〉.dat (µ vs ri for each spin type 〈s〉 in each set 〈set〉), bfphi.dat
[contribution of Φ to the 3D backflow displacement on electron j vs. 2D projection of rjI on the
plane defined by electron j, ion I in set 〈set〉, and electron i at distance riI from the nucleus with
spin such that 〈s〉 is the spin-pair type of (i, j)], and bffield.dat (3D backflow displacement
on electron (kspin,knumber) vs. its 2D position on the plane z = zposition).

PLOT EXPVAL (Block) This block allows the plot expval utility to be told about the geometrical
region over which a particular expectation value is to be plotted (which can be a line AB / plane
AB-AC / volume AB-AC-AD). The structure of the block is as follows:
Line 1: dimensionality d (1, 2 or 3);
Line 2: No. of points along the d directions;
Line 3: x, y and z coordinates of point A;
Line 4: x, y and z coordinates of point B;
Line 5: x, y and z coordinates of point C (if required);
Line 6: x, y and z coordinates of point D (if required).
The data will be plotted in a format suitable for xmgrace in the file lineplot.dat or in
a format suitable for gnuplot in 2Dplot.dat or 3Dplot.dat which can be quickly visualized
using the plot 2D utility. This block is ignored by casino itself. Linear combinations of different
lineplot.dat and 2Dplot.dat files, e.g. for extrapolated estimation, can be taken using the
combine plot data utility.

POPSTATS (Logical) If popstats is T then the variance of the local energies sampled in DMC will
be evaluated.

POPULATION (Logical) If population is T then the population of electrons associated with each
ion is estimated by evaluating the electronic charge in Voronoi polyhedra about the ions. See
Sec. 34.9 for more information.

POSTFIT VMC (Logical) If postfit vmc is set to T then an extra VMC calculation will be per-
formed with the final optimized wave function when runtype=vmc opt or opt vmc, to enable
one to see the effect of the final optimization on the energy, etc. This is done by default. Unless
postfit keep cfg is set to T, this final VMC run will not generate any configurations.

56

POSTFIT KEEP CFG (Logical) If postfit keep cfg is set to T then the configurations generated
in the post-fit VMC calculation will be written to config.out. The default is F.

PRIMITIVE CELL (Block) Sometimes the ‘primitive lattice vectors’ in the xwfn.data file do not
correspond to the true primitive cell. If the actual primitive lattice vectors are needed (e.g., for
accumulation of the charge density), then override values can be supplied in the primitive cell
block.

PRINTGSCREENING (Logical) Before doing a periodic Gaussian calculation, casino prepares
lists of potentially significant (primitive) cells and sites in each such cell which could contain
Gaussians having a nonzero value in a reference primitive cell centred on the origin. Zero is
defined as 10−gautol. Turning on the printgscreening flag prints out the important information
about this screening.

PSI S (Text) If psi s is ‘none’ then the Slater wave function is set to one; if psi s is ‘slater’ (default)
then an expansion in one or more Slater determinants is used; if psi s is ‘exmol’ then a specially
crafted wave function for excitonic and positronic molecules is used; if psi s is ‘mahan’ then a
custom wave function for studying a single positive impurity in a HEG is used (see Sec. 32).

QMC DENSITY MPC (Logical) If this flag is set to T then the QMC charge data at the end
of the expval.data file will be used to compute the MPC interaction (see Sec. 19.4.4), rather
than the default SCF density in the mpc.data file. This is likely to be useful in cases such as
the Wigner crystal where the Hartree–Fock charge density is very different to the true charge
density (it is too localized) as opposed to, say, the Fermi fluid where the Hartree–Fock charge
density is exact. Note that using this option is likely to increase the time taken to evaluate the
MPC interaction; in both DFT and QMC cases, the code counts backwards from the end of
the list of G vectors and discards all those before the first non-zero one (where zero is defined
by some threshold like 1.d-6). In the HF/DFT case this tends to give a large reduction in the
size of the vector to be evaluated. However, the random noise in the QMC density coefficients
is likely to exceed the zero threshold for all G, and the vector will likely be untruncated. It is
important therefore to use a value for expval cutoff which is not too large when using this
facility, in order that the total number of G vectors in the expansion is not too large.

QMC PLOT (Block) This utility allows you to plot the value of certain quantities along a line AB /
plane AB-AC / volume AB-AC-AD. The data will be plotted in a format suitable for xmgrace
in the file lineplot.dat or in a format suitable for gnuplot in 2Dplot.dat or 3Dplot.dat.
The block has the following format:
Line 1: what to plot (either ‘orb’, ‘orb gradx’, ‘orb grady’, ‘orb gradz’, ‘orb lap’, ‘wfn’, ‘nodes’,
‘energy’, ‘eipot’ or ‘expot’);
Line 2: dimensionality (1, 2 or 3);
Line 3: no. of points along each direction;
Lines 4–: (x, y, z) coordinates of point A; of point B; of point C (if required); of point D (if
required).
Three additional lines have to be added for orbital plots:
Line A1: number of orbitals (Norb);
Line A2: Norb integers identifying the orbitals to be plotted;
Line A3: Norb integers identifying the spin/species for each of the orbitals.
For wave-function and local-energy plots, the coordinate defined by lines 4– refer to electron 1
by default. The coordinates of all remaining electrons are taken from a configuration obtained
by VMC equilibration (without Jastrow factor). Alternatively the positions of several electrons
may be fixed. The following line(s) must be added:
Line B1: number of fixed electrons (≥ 0);
Line B2 and onwards (if the number of fixed electrons is nonzero): spin, number and (x, y, z)
coordinates for each of the fixed electrons.
The default of moving the first electron can be overridden by adding the lines:
LINE B3: number of electrons to move (= 1 or 2);
LINE B4: spin, number of first electron to move;
LINE B5: spin, number and offset of second electron relative to the first.
For electron–ion-potential, external-potential and node plots, no lines have to be added.

RANDOM SEED (String) This keyword determines which random seed to use for the ‘ranlux’
random-number generator. The default value of random seed is ‘timer’, which causes the sys-
tem timer to be used as the seed. If random seed is set to ‘standard’, the seed 314159265 is

57

used. If the value of random seed is an integer, that integer will be used as the random seed.
The seed is printed to the output file so that calculations using random seed=‘timer’ can be
reproduced afterwards. Note that, if random seed is an integer or ‘standard’ or ‘timer’ then,
when restarting from a previous calculation the value of random seed is ignored (except for
any initial setup, such as evaluation of the twist-averaged Hartree–Fock energy of a homoge-
neous electron gas), and the random-number sequence will be continued from the saved state
of the random-number generator stored in the config.in file. However, if random seed is
‘timer reset’ then the generator will be re-initialized from the system clock after the config.in

file is read. This might be useful, for example, if a prior test has revealed that the standard
sequence will lead to a configuration giving rise to a population explosion.

RANLUXLEVEL (Integer) To generate the parallel streams of pseudo-random numbers for its
stochastic algorithms, casino uses an implementation of the ranlux algorithm. This is an
advanced pseudo-random number generator based on the rcarry algorithm proposed in 1991 by
Marsaglia and Zaman. rcarry used a subtract-and-borrow algorithm with a period on the order
of 10171 but still had detectable correlations between numbers. Martin Luescher proposed the
ranlux algorithm in 1993; ranlux generates pseudo-random numbers using rcarry but throws
away numbers to destroy correlations. ranlux trades execution speed for quality through the
choice of a ‘luxury level’ given in casino by the ranluxevel input keyword. By choosing a
larger luxury setting one gets better random numbers slower. By the tests available at the time
it was proposed, ranlux at its higher settings appears to give a significant advance in quality
over previous generators. The luxury setting must be in the range 0–4. Level 0: equivalent to
the original rcarry of Marsaglia and Zaman, very long period, but fails many tests. Level 1:
considerable improvement in quality over level 0, now passes the gap test, but still fails spectral
test. Level 2: passes all known tests, but theoretically still defective. Level 3 [DEFAULT]: any
theoretically possible correlations have very small chance of being observed. Level 4: highest
possible luxury, all 24 bits chaotic.

RANPRINT (Integer) Setting this keyword to a value greater than zero will cause the first ranprint
numbers generated by the casino random number generator to be printed to a file random.log.
On parallel machines the numbers generated on all MPI processes are printed. The run script
should pick out random.log files from different stages of a calculation (e.g., VMC configuration
generation / DMC equilibration / DMC statistics accumulation) and rename them appropriately.
Since 1.2011 (for more than 100 processes) the check on random seeds being equal on different
MPI processes is only performed when RANPRINT is greater than zero.

REDIST GRP SIZE (Integer) In the branch-and-redistribute algorithm (which does redistribution
of configurations across MPI processes in DMC), we must decide which pairs of MPI processes
are involved in configuration transfers, and how many configurations are to be transferred in
each operation. There is an optimal algorithm for doing this (involving looking at individual
configuration multiplicities and the exact excess or deficit of configurations relative to a target
on each MPI process). If we consider all the MPI processes then this algorithm scales linearly
with the number of MPI processes, eventually becoming so expensive that for a fixed number
of configurations the code actually becomes slower if we increase the number of MPI processes.
We therefore parallelize the algorithm; to do this we form groups of processes (‘redist groups’)
of size redist grp size (plus some remainder). When calculating the vector of instructions,
only transfers within these groups are contemplated, and the cost for working out what to send
where no longer increases with the number of MPI processes (above a certain size).

RELATIVISTIC (Logical) If relativistic is T, then relativistic corrections to the energy are cal-
culated using perturbation theory. Note that this can only be done for closed-shell systems at
present. See Sec. 33 for further details.

RNG RESTART SAFE (Logical) We would like, e.g., a 1000-move VMC run, and two 500-move
VMC runs linked together by a restart to give the same answer, in the sense that we end up with
the same vmc.hist file. Unfortunately they do not in general since the pseudorandom number
sequence is affected by the restart. This is because random numbers are generated something
like 63 at a time and stored in a buffer until needed (this buffer being refilled when necessary).
In the normal way of saving a point in the random number sequence, any unused numbers in
the buffer are discarded, which means the final answer will be different to the unrestarted case.
If the keyword rng restart safe is T (which is actually now the default) then the whole current
buffer is saved in the final config.out file as well as the current state of the random sequence

58

(necessarily fixed at the end of the current buffer). This allows multiple step runs to give the
same answer as single step runs, at the expense of slightly larger configuration files.

RUNTYPE (Text) This keyword specifies the type of QMC run to be carried out. It can take
the following values: ‘vmc’ (perform a single VMC simulation); ‘dmc equil’ (perform DMC
equilibration); ‘dmc stats’ (perform DMC statistics accumulation); ‘dmc’ (perform DMC equi-
libration, then statistics accumulation); ‘vmc dmc’ (perform VMC, then DMC equilibration,
then DMC statistics accumulation); ‘vmc dmc equil’ (perform VMC, then DMC equilibration);
‘opt’ (perform a single wave-function optimization calculation); ‘vmc opt’ (perform opt cyles
cycles of VMC and optimization, alternately); ‘opt vmc’ (perform opt cycles cycles of opti-
mization and VMC, alternately); ‘gen mpc’ (generate an mpc.dat file enabling the use of the
MPC interaction; requires complex wf=T); ‘gen blip’ (generate a blip representation, stored
in bwfn.data or bwfn.data.bin, of the plane-wave orbitals stored in pwfn.data); ‘gen gpcc’
(generate a gpcc.casl file with a Jastrow factor term reproducing the e-n cusp correction from
the GPCC facility; see Section 7.8.1); ‘gen gpcc single’ and ‘gen gpcc simple’ (like ‘gen gpcc’,
but make assumptions to simplify the term); ‘gen mdet casl’ (generate an mdet.casl file for
use by the det compress utility); ‘plot’ (perform plot specified by block qmc plot). NOTE:
in earlier versions of the code, we used ‘runtype : dmc’ with the now-redundant keyword ‘iac-
cumulate : T or F’ to indicate whether stats accumulation was activated or not. This usage is
now deprecated and, unless iaccumulate is specifically defined in input, then ‘runtype : dmc’
is just a synonym for ‘runtype : dmc dmc’.

SCELL MATRIX (Block) If the simulation-cell lattice vectors are {ai} and the primitive-cell lattice
vectors are {pj} then we may write ai =

∑
j Sijpj , where the Sij are integers. The 3×3 integer

matrix S is given in the scell matrix input block. This is a generalization of npcell (which
simply gives the diagonal elements of S in the special case that S is diagonal). Only one of
npcell and scell matrix should be present in the input file. You can use the supercell

utility to construct S.

SHM SIZE NPROC (Integer) In Shm calculations on Blue Gene machines one needs to
know in advance the number of MB of shared memory required, so that one may set
the BG SHAREDMEMSIZE environment variable (which can be done by means of the
--user.shemsize argument to runqmc). casino will calculate this number and print it to
output at the end of the setup process (within the scope of testrun=T). However, the amount
of shared memory required depends on the number of MPI processes per node (or per shared
memory partition). If one ultimately wishes to run on, say, half a million cores, it may be desir-
able to execute a test run on just a few cores on your personal laptop, rather than waiting a week
for the full job to sit in a queue. For the purposes of computing the size of the shared memory par-
tition, one may therefore set the number of desired processes/node by setting shm size nproc,
and this value will be used in computation of the shared memory size rather than the actual
number of processes/node being used in the test run (unless shm size nproc=0—which is the
default). Note that the casino test run must be done in Shm mode.

SMALL TRANSFER (Logical) If small transfer is set to T, the DBAR matrices and any po-
tentially large optional data are not transferred across MPI processes in DMC configuration
redistribution. The default is F. Set to T if you run into problems with parallel transfers.

SPARSE (Logical) casino is capable of using sparse matrix algebra in some algorithms for efficiency
purposes. For systems which are definitely not sparse (orbitals not well localized) then attempt-
ing to use sparse algorithms might actually slow things down. Thus, until we work out a better
way, you can toggle this behaviour with the sparse flag. In these algorithms a matrix element
is considered to be zero if it less than the value of the input keyword sparse threshold.

SPARSE THRESHOLD (Real) casino sometimes uses sparse matrix algebra for efficiency pur-
poses. In a future version, matrix elements will be taken to be zero if they are less than
sparse threshold. This keyword has no effect at present, however.

SP BLIPS (Logical) The single-particle orbitals that appear in the determinants can require a great
deal of memory when expanded in a blip basis. When sp blips=T, casino represents the
blip coefficients using single-precision real or complex numbers, which will halve the memory
required. This parameter is only relevant when atom basis type=‘blip’. The default value is
F.

59

SPIN DENSITY (Logical) Setting spin density to T will activate the accumulation of separate
up- and down-spin densities in the expval.data file. See Sec. 34.

SPLOT (Logical) If splot is T then the line plotter will use just the s component of orbitals. Useful
for analysing Gaussian cusp corrections (see Sec. 16).

STOP METHOD (Text) The stop method keyword defines how VMC and DMC runs are to be
terminated. It may take the values ‘nstep’, ‘target error’, or ‘small error’.

The classic method is ‘nstep’ which means simply: perform the number of VMC/DMC steps
implied by the input keywords vmc nstep or dmc stats nstep then stop. The error bar then
is what it is (it may be too large or smaller than required).

Note that in the VMC case stop methods other than ‘nstep’ are used only for pure VMC
calculations, i.e., for runtype=‘vmc’. The value of stop method is implicitly assumed to be
‘nstep’ for the VMC stage of optimization or DMC calculations.

If stop method = ‘target error’ then the run will continue until the error bar on the total
energy (corrected on the fly for serial correlation) is approximately equal to that defined by the
target error input keyword, subject to the constraint that the estimated CPU time required
on the master process (summed over restarts if necessary) will not exceed stop time. casino
is able to approximately estimate the required time by analysing how the error bar decreases as
a function of the number of moves, and as soon as it is reasonably confident that the desired
target error is too small and cannot be reached, then the code will stop (in a restartable
condition). On halting in this manner, an estimate of the CPU time required to get a range of
error bars will be written to the output file. Note that the method used to estimate the required
time assumes the validity of the central limit theorem, which is only approximately valid in most
cases.

If stop method = ‘small error ’, casino will attempt to make the error bar as small as possible
in a ‘reasonable time’ defined by the value of the stop time keyword. ‘As small as possible’
means what it says, but taking account of the fact that there is an error bar on the error bar
and it is somewhat pointless to reduce the error bar below its significant precision.

Note in both the last two cases casino has a minimum run length needed to get a reasonable
estimate of the variance.

STOP TIME (Text) If stop method = ‘target error’ then the run will continue until the error
bar on the total energy (corrected on the fly for serial correlation) is approximately equal to
that defined by the target error input keyword, subject to the constraint that the estimated
CPU time required on the master process (summed over restarts if necessary) will not exceed
stop time. casino is able to approximately estimate the required time by analysing how the
error bar decreases as a function of the number of moves, and as soon as it is reasonably confident
that the desired target error is too small and cannot be reached, then the code will stop (in a
restartable condition). On halting in this manner, an estimate of the CPU time required to get
a range of error bars will be written to the output file. Note that the method used to estimate
the required time assumes the validity of the central limit theorem, which is only approximately
valid in most cases.

If stop method = ‘small error’, casino will attempt to make the error bar as small as
possible in a ‘reasonable time’ defined by the value of stop time. ‘As small as possible’ means
what it says, but taking account the fact that there is an error bar on the error bar and it is
somewhat pointless to reduce the error bar below its significant precision.

Note that in both cases the code will block pointlessly short stop times, where ‘pointless’ is
currently and arbitrarily defined to be less than 60 seconds.

STRUC FACTOR SPH (Logical) If structure factor sph is set to T then the spherically aver-
aged structure factor will be accumulated in the expval.data file (homogeneous systems only).
See Sec. 34.

STRUCTURE FACTOR (Logical) If structure factor is set to T then the structure factor will
be accumulated in the expval.data file (periodic systems only). See Sec. 34.

TARGET ERROR (Text) If stop method = ‘target error’ then the run will continue until
the error bar on the total energy (corrected on the fly for serial correlation) is approximately
equal to that defined by the target error keyword, subject to the constraint that the estimated

60

CPU time required on the master process (summed over restarts if necessary) will not exceed
stop time. casino is able to approximately estimate the required time by analysing how the
error bar decreases as a function of the number of moves, and as soon as it is reasonably confident
that the desired target error is too small and cannot be reached, then the code will stop (in a
restartable condition). On halting in this manner, an estimate of the CPU time required to get
a range of error bars will be written to the output file. Note that the method used to estimate
the required time assumes the validity of the central limit theorem, which is only approximately
valid in most cases. Note also that the code will block infeasibly small target errors, where
‘infeasible’ is currently and arbitrarily defined to be less than 10−6 a.u.

TESTRUN (Logical) If this flag is T then casino will read input files, print information and stop.

TIMING INFO (Logical) Setting timing info to T will turn on the collection of subroutine timings.
Note, however, that the timing routines can adversely affect performance on certain computers,
especially for small systems; hence timers are deactivated by default. See Appendix A.6. If
timing info is T and casino halts to report an error message, casino will be able to provide
some traceback information about where that error occurs.

TPDMC (Integer) tpdmc (Tp) is the number of time steps for which the effects of changes in
the (theoretically constant) reference energy should be undone in order to estimate the DMC
energy at a given point. It is assumed that the best estimates of the DMC energy separated
by an amount greater than this are not correlated by fluctuations in the reference energy. Thus
Tp should exceed the timescale of fluctuations in the reference energy. A suggested value is
Tp = 10/τ , where τ is the time step. If you set it to 9999 in the input, then the code will
automatically use this value; if you set it to 0 then the reweighting scheme for population-
control biasing will not be used. The latter is the default since time-step bias is generally not a
problem in practice, and the reweighting scheme is an additional source of noise. See Sec. 13.7.

TWOP DENSITY MAT (Logical) If twop density mat is set to T, then the spherically averaged
diagonal term of the two-particle density matrix will be computed. This is only possible if the
system is homogeneous for the moment, and will increase the cost of the calculation significantly.
See Sec. 34.

TWOP DM MOM (Logical) If twop dm mom is set to T, then the Fourier transform of the two-
particle density matrix will be computed. This is only possible if the system is homogeneous for
the moment, and will increase the cost of the calculation significantly. See Sec. 34.

USE DETLA (Logical) If set to T, the determinant localization approximation (DLA) [26] to non-
local terms of pseudopotentials will be used. Use of the determinant locality approximation in
conjunction with the T-move scheme is discussed in Sec. ??.

USE GJASTROW (Logical) If set to T, the gjastrow Jastrow factor will be used. This Jastrow
factor is defined in a parameters.casl file. The default is to use the standard Drummond-
Towler-Needs Jastrow factor if a correlation.data file is present, else use the gjastrow Jastrow
factor.

USE GPCC (Logical) If this is set to T then short-ranged functions will be added to the orbitals to
ensure that the Kato cusp conditions are satisfied.

USE JASTROW (Logical) Use a wave function of the Slater-Jastrow form, where the Jastrow
factor exp(J) is an optimizable object that multiplies the determinant part in order to intro-
duce correlations in the system. The Jastrow factor is read from the ‘JASTROW’ block in
correlation.data (see Sec. 7.4.2). The form of casino’s Jastrow factor is described in Sec. 22.
If use jastrow is F then the Slater wave function will not be multiplied by the Jastrow factor.

USE ORBMODS (Logical) If use orbmods is set to T then the orbital-modification block in
correlation.data will be read, and the modification functions will be added to the numerical
atomic orbitals. This only applies if atom basis type is set to ‘numerical’, ‘gaussian’ or ‘slater-
type’. See Secs. 7.4.7 and 7.4.8. To optimize the corresponding parameters, use opt orbitals.

USE TMOVE (Logical) If use tmove is T then the Casula nonlocal pseudopotential scheme [24]
will be used in DMC. So-called ‘T-moves’ will be performed in order to give a DMC energy that
is greater than or equal to the ground-state energy. This violates the detailed-balance principle
at finite time steps, but greatly improves the stability of the DMC algorithm when nonlocal

61

pseudopotentials are used. The advantages of T-moves are that they restore the variational
principle and help to prevent population explosions; the disadvantages of T-moves are that the
magnitude of the error due to the locality approximation is generally larger, although always
positive, and the time-step bias is generally worse. [This latter problem is alleviated, to some
extent, by using a symmetric branching factor [25] as opposed to the asymmetric one suggested
in Ref. [24]. This advice was implemented in casino in June 2014.]. T-moves are now (as of
2018) used by default. T-moves in casino are discussed in Sec. ??.

VIRTUAL NCONFIG, VIRTUAL NNODES, VIRTUAL NODE (Integers) Number of
configurations, number of virtual nodes and virtual node number in virtual parallel variance
minimization. These parameters are not to be set manually.

VM E GUESS (Physical) If vm use e guess is T then vm e guess should be supplied as an
estimate of the ground-state energy. (Note that energy units should be supplied.) See Sec. 25.1.

VM FILTER (Logical) This keyword activates filtering of configurations in variance minimization
by making the weights (artificially) energy-dependent, i.e., Wi = W (|Ei − Eave|). This method
uses two parameters: vm filter thres and vm filter width. See Sec. 25.1.

VM FILTER THRES, VM FILTER WIDTH (Real) When limiting outlying configurations in
variance minimization (by setting the vm filter flag to T), the maximum deviation from the av-
erage energy at which the (artificial) weight of a configuration Wi = W (|Ei−Eave|) is kept equal
to unity is vm filter thres times the square root of the unreweighted variance. Outside this
limit, the weight is brought to zero using a gaussian of width vm filter width times the square
root of the unreweighted variance. By default, vm filter thres is 4.0 and vm filter width is
2.0. See Sec. 25.1.

VM FORGIVING (Logical) Do not whinge about calculated configuration energies not agreeing
with those read in. Recommended to be set to F.

VM LINJAS ITS (Integer) vm linjas its specifies the maximum number of iterations to be per-
formed if vm linjas method is ‘CG’, ‘SD’, ‘BFGS’, ‘CG MC’, ‘BFGS MC’ or ‘GN MC’. If
vm linjas method is ‘MC’, ‘LM’, ‘CG MC’, ‘BFGS MC’, or ‘GN MC’ then it (also) specifies
the number of line minimizations to be performed. See Sec. 25.2. Setting vm linjas its to 0
gives default behaviour, which is usually adequate.

VM LINJAS METHOD (Text) vm linjas method specifies the method used to minimize the
quartic least-squares function in the varmin-linjas optimization scheme. vm linjas method
should be one of: ‘CG’ (conjugate gradients), ‘MC’ (Monte Carlo), ‘LM’ (line minimization),
‘SD’ (steepest descents), ‘BFGS’ (Broyden-Fletcher-Goldfarb-Shanno), ‘BFGS MC’ (BFGS and
Monte Carlo), ‘CG MC’ (conjugate gradients and Monte Carlo), ‘GN’ (Gauss-Newton) or
‘GN MC’ (Gauss-Newton and Monte Carlo). (See Sec. 25.2). ‘BFGS’ is the default method,
although in case of difficulty, it is worth trying ‘GN’.

VM REWEIGHT (Logical) If vm reweight is T then the reweighted variance-minimization al-
gorithm will be used. If F then the unreweighted algorithm will be used. See Sec. 25.1. Un-
reweighted variance minimization is recommended.

VM SMOOTH LIMITS (Logical) When set to T, the optimizing routine used in variance mini-
mization is sent a smoothed version of the set of parameters. This only affects those which are
to remain bounded, such as Jastrow cutoffs. The result is a set of parameters that can vary
in the range (−∞,+∞), which is more convenient than ignoring out-of-range values without
the minimizer knowing. A suitable hyperbolic function is used for mapping ‘limited’ values into
‘extended’ ones and vice versa.

VM USE E GUESS (Logical) Setting this flag to T will cause the ‘variance’ in variance minimiza-
tion to be evaluated using vm e guess in place of the average energy of the configuration
set, in an attempt to combine energy minimization with variance minimization. Otherwise the
least-squares function will simply be the variance of the configuration local energies. See Sec.
25.1.

VM W MAX (Real) Maximum value that a configuration weight may take during reweighted vari-
ance minimization (i.e., when vm reweight is T). Set vm w max to 0 if you do not wish to
limit the weights; otherwise it should be greater than 1.

62

VM W MIN (Real) Minimum value that a configuration weight may take during reweighted vari-
ance minimization (i.e., when vm reweight is T). vm w min should have a value between zero
and one. Note that the limiting is not applied if vm w max = 0.

VMC AVE PERIOD (Integer) Number of consecutive local energies that are averaged to-
gether in VMC before writing them to the vmc.hist file. The only effect of this key-
word is reduce the size of vmc.hist: the number of lines written in a VMC calculation is
vmc nstep/(vmc ave period × number of MPI processes).

VMC DECORR PERIOD (Integer) Length of the inner decorrelation loop in VMC. The algo-
rithm will perform vmc decorr period configuration moves between successive evaluations of
the local energy (and other quantities to be averaged) in order to ensure the configurations that
are used are not significantly correlated with each other. Setting vmc decorr period to a
value greater than 1 should reduce the serial correlation of the data, but the length of the run
will be increased.

It is normally stated that typical values might be 3 or 4 for a pure VMC calculation, and greater
than 10 during a config-generation run for optimization or DMC (though this depends on the
system, and clearly setting the decorrelation period to a higher value in DMC config generation
is less important than in wave function optimization, since the correlations will disappear as the
DMC calculation evolves). The defaults are 3 for VMC calculations and 15 for config generation
runs. A slight complication is that if vmc nstep is greater than vmc nconfig write (as it
might be if you need more moves than the number of desired configurations to calculate a VMC
energy with a small enough error bar), then CASINO is able to exploit the extra moves to
space the config writes further apart, and it is no longer necessary for the inner decorrelation
loop to be so long in config generation runs. In such a case, vmc decorr period should be
taken to represent the *minimum* number of steps separating config writes; internally the
length of the decorrelation loop will be reduced as far as practical without going below the
VMC default of 3. Note that vmc nstep refers to the number of moves at which energies are
evaluated or configurations are (sometimes) written out; this is not affected by the value of
vmc decorr period. The value of vmc decorr period is ignore during equilibration.

Note that CASINO is able to automatically determine vmc decorr period to maximize the
run efficiency. This is done by adding an extra set of moves after equilibration to compute
an estimation of the correlation time of the local energies. The feature is enabled by setting
vmc decorr period=0.

VMC EQUIL NSTEP (Integer) Total number of equilibration steps in VMC; should normally
be at least a few thousand. Equilibration is only performed if newrun=T, thus the value of
vmc equil nstep is ignored on restarts. This is a single-process quantity, that is, all MPI pro-
cesses run vmc equil nstep equilibration steps. The value of vmc decorr period is ignored
during equilibration.

VMC IONJUMP (Real) In the special case of nearly separated molecule fragments (e.g., for in-
termolecular forces) electrons may get trapped in the energetically less favourable fragment
for a long time during a VMC run due to the large distance between the fragments. Setting
vmc ionjump to a small, nonzero probability will cause the VMC routine to try a long-distance
jump from one ion to another once in a while, improving the sampling of disjoint areas of the
configuration space. Detailed balance is preserved.

VMC LOCAL DUMP (Logical) Setting vmc local dump causes the local energies and force
components for each configuration to be written to disk. Each MPI process writes its own
dump, vmc local dump iproc.dat, containing configuration weights (if vmc sampling is not
‘standard’) and relevant local values obtained every vmc decorr periodth step.

VMC METHOD (Integer) vmc method selects which version of VMC to use: (1) propose single-
electron moves at the accept/reject stage and evaluate configuration energies at the end of the
configuration move; or, (3) propose entire configuration moves at the accept/reject stage and
add a weighted sum of the old and new energies to the accumulation arrays. Method 1 is the
default and is recommended. The algorithms are discussed in greater detail in Sec. 12.

VMC NBLOCK (Integer) Setting vmc nblock is one of two ways of specifying the number of
blocks into which the total VMC run is divided post-equilibration (the other way being to
specify block time). The number of blocks determines how often the output, history and

63

configuration/checkpoint files are written to disk. More specifically, at the end of each block (1)
the MPI process- and block-averaged energies and a short ‘report’ are written to out, (2) the MPI
process-averaged energies for each step in the current block are appended to vmc.hist (and other
quantities to expval.data), and (3) the current VMC state plus any accumulated configurations
are written to the config.out file (this latter only if the checkpoint input keyword is increased
to 2 from its default value of 1—otherwise config.out is only written after the end of the
final block). Note that the total energy and error bar should be effectively independent of
vmc nblock (provided it is ensured that the random number sequence is independent of the
number of blocks, which it has not been at various periods in casino’s history, though it should
be now). Note also that the value of vmc nblock is ignored if vmc ntwist or block time are
greater than zero. The default value of vmc nblock is 1.

VMC NCONFIG WRITE (Integer) Total number of configurations to be written out to the
config.out file in VMC for later use (wave-function optimization or DMC). This number must
be ≤ vmc nstep (though you may want to set vmc nstep to be significantly greater than
vmc nconfig write to get an acceptable error bar on the energy; this is useful for, e.g., judging
the success of an optimization after each stage). Since each MPI process always does the same
number of steps, then vmc nconfig write (and vmc nstep) will be rounded up to the nearest
multiple of the number of MPI processes (e.g., vmc nconfig write= 20 will be rounded up in-
ternally to 24 on 12 processes, and 24 configurations will be written to config.out—2 from each
MPI process). Note that the config.out file will still be written even if vmc nconfig write
is zero, since this file is used to store the current state of the system at the end of every VMC
block (equivalent to writing one config, though of course multiple MPI processes write multiple
configurations to save the state). Writing of config.out may be suppressed completely with
an appropriate value for the CHECKPOINT keyword, and the data will be held in memory
between different stages of the calculations.

VMC NSTEP (Integer) Total number of VMC steps summed over all MPI processes; this corre-
sponds to the total number of particle configurations for which the energy (and other quan-
tities to be averaged) are calculated. Note that because adjacent moves are likely to be
serially correlated, there is also an inner decorrelation loop of length vmc decorr period,
so the total number of configuration moves attempted in a VMC run following equilibra-
tion is vmc nstep×vmc decorr period. On parallel machines, each MPI process will do
the same number of steps and for each step the energy is averaged over the processes and
written to the vmc.hist file (which will ultimately contain vmc nstep/nprocs lines, though
vmc ave period adjacent lines may be averaged over to reduce the file size). This means that
if vmc nstep is not divisible by the number of MPI processes then it will internally be rounded
up to the nearest multiple of the number of processes (example: on a 12-core machine, given
vmc nstep= 20 in input, casino will round up vmc nstep to 24; each core will then do two
steps and a total of two records will be written to vmc.hist, each of which is an average of 12
energies). On a single-core machine with vmc nstep=20, casino will move the single config
20 times, and 20 records will be written to vmc.hist. Note the vmc nblock or block time
keywords may be used to vary the frequency with which checkpointing is done, i.e., how often
we write the data to disk; this does not affect the total number of VMC steps and expectation
values such as average energy should be independent of it.

VMC NTWIST (Integer) Number of different ‘twists’ or offsets to the grid of k vectors to be applied
during a twist-averaged VMC run. Note that the usual keywords define the run-length for a
single twist angle, thus the run-length is increased by a factor of vmc ntwist. Note also that
if vmc ntwist is greater than zero, the values of vmc nblock and block time are ignored.
Setting this keyword to a value greater than zero requires using a complex wave function. See
Sec. 28. (Note twist-averaging wholly within casino can currently be done only for electron(-
hole) fluid phases; for real systems with atoms one needs to couple with an external code to
regenerate the wave function after each twist. The various twistav xxx and twistanalysis

scripts in CASINO/utils/twist can help with this). See also Sec. 28.

VMC OPTIMUM E0 (Physical) This keyword controls the centre parameter used for optimum
VMC sampling, which is enabled by setting vmc sampling to ‘optimum’ or ‘HF optimum’. By
default this is 0 hartree. It should be set to an estimate of the ground-state energy of the system
under consideration.

VMC OPTIMUM EW (Physical) This keyword controls the width parameter used for optimum
VMC sampling, which is enabled by setting vmc sampling to ‘optimum’ or ‘HF optimum’. By

64

default this is 100 hartree. It should be set to an estimate of the expected width of the local
energy distribution.

VMC REEQUIL NSTEP (Integer) Total number of steps to take for a VMC re-equilibration
when doing a twist-averaged VMC run. Currently, a re-equilibration only takes place when
the twist angle is changed. Notice that this is a single-process quantity: all MPI processes run
vmc equil nstep equilibration steps. Also notice that the value of vmc decorr period is
ignored in re-equilibrations. Electron(-hole) fluid phases only. See Sec. 28.

VMC SAMPLE HF (Logical) Setting vmc sample hf to T causes casino to ignore the Jastrow
factor during the accept/reject step, which results in the HF wave function being sampled.
The Jastrow factor is still used to evaluate the local energy, so the reported VMC energy is
an estimate of 〈ESJ〉|ΨHF|2 , which is the reference energy in similarity-trasformed FCIQMC
calculations. This keyword lets one run consistency checks between VMC and ST-FCIQMC,
and optimize Jastrow factors by minimizing the spread of ESJ over |ΨHF|2—set opt method
to varmin, madmin, or varmin linjas for this.

VMC SAMPLING (Text) This keyword allows the use of alternative sampling distributions instead
of the square of the trial wave function in VMC and wave-function optimization. Each sampling
distribution has its own set of advantages and disadvantages. Possible values of this keyword are:
‘standard’ (use the square of the wave function) (default), ‘optimum’ (use the optimum sampling
distribution), ‘HF optimum’ (use the optimum sampling distribution for the HF wave function),
and ‘efficient’ (use an inexpensive probability distribution for speed, currently only available
in multideterminant calculations). See Sec. 26 for more information. For ‘optimum’ and ‘HF
optimum’ sampling, see description of keywords vmc optimum e0 and vmc optimum ew.

WDMCMIN, WDMCMAX (Real) These are the minimum and maximum allowed weights in
weighted DMC. See entry for lwdmc.

WRITE BINARY BLIPS (Logical) The formatted blip data file bwfn.data can be very large.
Consequently reading this file can be slow. Setting write binary blips to T will cause casino
to write the binary file bwfn.data.bin provided there are no pre-existing bwfn.data.bin files in
the run directory. When casino is run again it will first attempt to read bwfn.data.bin rather
then bwfn.data, so start up will be faster. If one wishes to change the occupied orbitals delete
the existing binary file bwfn.data.bin in the run directory. In a blip-generation calculation, this
parameter determines whether a formatted bwfn.data file or an unformatted bwfn.data.bin

file will be produced. This parameter is only relevant when the atom basis type = blip or
when runtype is ‘gen blip’. Default value is T.

WRITEOUT DMC HIST (Logical) If writeout dmc hist is set to T (default) then the energy
components, etc., are written to the file dmc.hist during a DMC simulation.

WRITEOUT VMC HIST (Logical) If writeout vmc hist is set to T (default) then the energy
components etc. are written to the file vmc.hist during a VMC simulation. Furthermore,
the config.out file required to continue a VMC calculation will only be produced if write-
out vmc hist is T.

XC CORR METHOD (Integer) If xc corr method is set to 1, the XC finite-size correction will
be evaluated by determining the coefficient of k2 in the structure factor; if it is set to 2, the
XC correction will be evaluated by fitting the whole structure factor. Method 1 (the default) is
recommended. See Sec. 30 for further information.

7.3.2 Old format input keywords

casino understands an alternative set of keywords left over from its early development days which
are listed below. You must either use the set of keywords below or their equivalents in the above list;
it is not allowed to mix both. If you choose to use this ‘old format’ set, casino will tell you what the
equivalent current keywords and values are.

Please note that support for these keywords will be removed in a version of casino expected to be
published around January 2015. A utility called input kw conv exists to help you change the ‘old’
keyword set to the ‘new format’ set (and, somewhat pointlessly, vice versa).

CORPER Same as vmc decorr period.

65

CORPER DMC Same as dmc decorr period.

NBLOCK Same as vmc nblock, or same as vmc ntwist when doing twist-averaging runs.

NBLOCK DMC EQUIL Same as dmc equil nblock.

NBLOCK DMC STATS Same as dmc stats nblock.

NBLOCK DMCT EQUIL Same as dmc reequil nblock.

NCONFIG Same as dmc target weight/nproc.

NCONFIG PRELIM Same as dmc nconf prelim/nproc.

NDMCAVE Same as dmc ave period∗dmc decorr period.

NEQUIL Same as vmc equil nstep.

NEQUIL TA Same as vmc reequil nstep.

NMOVE Same as vmc nstep/(vmc nblock∗dmc ave period∗nproc).

NMOVE DMC EQUIL Same as dmc equil nstep/(dmc equil nblock∗dmc decorr period).

NMOVE DMC STATS Same as dmc stats nstep/(dmc stats nblock∗dmc decorr period).

NMOVE DMCT EQUIL Same as dmc reequil nstep.

NUM DMC TWISTS Same as dmc ntwist.

NVMCAVE Same as vmc ave period.

NWRCON Same as vmc nconfig write/nproc.

PARALLEL KEYWORDS When set to total, modifies the meaning of the other keywords de-
scribed in this list in a way equivalent to setting nproc= 1 in the definitions (this was a first
attempt at simplifying the VMC/DMC input; alternatively the ‘new’ keyword set can be used,
and hence this keyword has now been flagged as REDUNDANT).

TRIP POPN Same as dmc trip weight/nproc.

VMC TWIST AV Flag set whenever vmc ntwist> 0.

7.4 Optimizable-parameter file: correlation.data

7.4.1 The correlation.data file

The correlation.data file contains all the optimizable parameters in the trial wave function that
allow the QMC wave function to improve upon the wave function produced by the generating code.
Specifically, the file contains the parameters that define

• a Jastrow factor (see Sec. 7.4.2)

• a backflow function (see Sec. 7.4.4)

• determinant-expansion coefficients (see Sec. 7.4.5)

• modifications to numerical atomic orbitals (see Sec. 7.4.7)

• modifications to HF/DFT molecular orbitals represented in a Gaussian basis (see Sec. 7.4.8)

• parameters relating to HEGs and pairing wave functions (see Secs. 7.4.9 and 7.4.10).

• a custom ‘Mahan’ wave function for describing impurity-in-HEG systems (see Sec. 7.4.11).

The sets may be given in any order, and not all sets need to be given. The correlation.data file
may also contain a header block, with information about the contents. The format is:

66

START HEADER

Correlation data for MgSiO3 calculations.

Can have several lines, if desired.

END HEADER

A very detailed specification of the format of this file can be found in Appendix D.

Note that casino also contains a second implementation of Jastrow factor made up of terms of arbi-
trary rank, spin-dependencies and functional bases, with fully implemented analytic derivatives. This
is stored in a file called parameters.casl, where ‘casl’ refers to the casino Serialization Language;
see Sec. 7.7. Users may activate this Jastrow by setting the use gjastrow input flag to T.

7.4.2 Jastrow factor

The format of the Jastrow-factor data set is shown below. This represents the state of the data set
in correlation.data before optimization: the variable parameters are not given explicitly and are
therefore assumed by casino to be zero. Here are 3 of the 6 possible Jastrow terms, any of which can
be added or removed.

START JASTROW

Title

Title of system goes here.

Truncation order

3

START U TERM

Number of sets

1

START SET 1

Spherical harmonic l,m

0 0

Expansion order

8

Spin-dep params (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

1

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 1

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

END U TERM

START CHI TERM

Number of sets; labelling (1->atom in s cell; 2->atom in p cell; 3->species)

2 1

START SET 1

Spherical harmonic l,m

0 0

Number of atoms in set

1

Labels of the atoms in this set

1

Impose electron-nucleus cusp (0=NO; 1=YES)

0

Expansion order

6

Spin-dep params (0->u=d; 1->u/=d)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

START SET 2

Spherical harmonic l,m

0 0

Number of atoms in set

4

Labels of the atoms in this set

67

2 3 4 5

Impose electron-nucleus cusp (0=NO; 1=YES)

0

Expansion order

6

Spin-dep params (0->u=d; 1->u/=d)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 2

END CHI TERM

START F TERM

Number of sets; labelling (1->atom in s cell; 2->atom in p cell; 3->species)

2 1

START SET 1

Number of atoms in set

1

Labels of the atoms in this set

1

Prevent duplication of u term (0=NO; 1=YES)

0

Prevent duplication of chi term (0=NO; 1=YES)

0

Electron-nucleus expansion order

2

Electron-electron expansion order

2

Spin-dep params (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

START SET 2

Number of atoms in set

4

Labels of the atoms in this set

2 3 4 5

Prevent duplication of u term (0=NO; 1=YES)

0

Prevent duplication of chi term (0=NO; 1=YES)

0

Electron-nucleus expansion order

2

Electron-electron expansion order

2

Spin-dep params (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 2

END F TERM

END JASTROW

There are two additional terms which may be of benefit in periodic systems:

START P TERM

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

1

Number of simulation-cell G-vectors (NB, cannot have both G & -G)

6

G-vector (in terms of rec latt vects) ; label

0 0 -1 1

68

0 -1 0 1

-1 0 0 1

1 1 1 1

1 1 0 2

1 0 1 2

Parameter value ; Optimizable (0=NO; 1=YES)

END P TERM

START Q TERM

Spin dep (0->u=d; 1->u/=d)

0

Number of primitive-cell G-vectors (NB, cannot have both G & -G)

10

G-vector (in terms of rec latt vects) ; label

0 -1 1 -2

-1 1 0 -2

-1 0 1 -2

1 1 1 -1

-1 0 0 1

0 0 -1 1

0 -1 0 1

1 1 2 2

2 1 1 2

1 2 1 2

Parameter value ; Optimizable (0=NO; 1=YES)

END Q TERM

A general three-body polynomial H term exists:

START H TERM

Number of sets

1

START SET 1

Spherical harmonic l,m

0 0

Expansion order N_h

3

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

-1

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 1

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

END H TERM

where use is made of spin-triplet dependencies as defined in the custom striplet dep input block.

Alternatively, in homogeneous systems, a three-body W term can be included:

START W TERM

Number of sets

1

START SET 1

Spherical harmonic l,m

0 0

Expansion order N_w

6

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 1

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

END W TERM

In general we recommend the use of the three-body H term rather than the W term.

69

In 2D-periodic systems a cylindrical two-body term ucyl can be used:

START UCYL TERM

Expansion order N_ucylrho

3

Expansion order N_ucylz

3

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

1

Axis polar angle theta ; Optimizable (0=NO; 1=YES)

0.00000000000000000 0

Axis azimuthal angle phi ; Optimizable (0=NO; 1=YES)

0.0000000000000000 0

Radial cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.0 0

Axial cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END UCYL TERM

In 2D-periodic systems a cylindrical one-body term χcyl can be used:

START CHICYL TERM

Expansion order N_chicylrho

3

Expansion order N_chicylz

3

Spin dep (0->u=d; 1->u/=d)

1

Origin x, y, z (3 lines) ; Optimizable (0=NO; 1=YES)

0.0000000000000000 1

0.0000000000000000 1

0.0000000000000000 1

Axis polar angle theta ; Optimizable (0=NO; 1=YES)

0.0000000000000000 1

Axis azimuthal angle phi ; Optimizable (0=NO; 1=YES)

0.0000000000000000 1

Radial cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.0 1

Axial cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.0 1

Parameter values ; Optimizable (0=NO; 1=YES)

END CHICYL TERM

END JASTROW

Notes:

• There are 8 standard types of term available: u (isotropic electron–electron terms), χ (isotropic
electron–nucleus terms), f (isotropic electron–electron–nucleus terms), p (plane-wave expansions
in electron–electron separation), q (plane-wave expansions in electron position), H/W (isotropic,
homogeneous three-electron term), ucyl (cylindrical electron–electron terms) and χcyl (cylindrical
electron–nucleus terms). All of these terms are optional: e.g., omitting all the lines from ‘START
Q TERM’ to ‘END Q TERM’ will give a Jastrow factor with no q terms. In many cases
(particularly in the presence of pseudopotentials) only u and χ terms are needed, and this is
good since higher-order terms such as f -functions can become very expensive in large systems.

• The ‘truncation order’ should be either 2 or 3. If it is of value C then the Jastrow factor is
C times differentiable everywhere; it must therefore be at least 2 for the kinetic-energy inte-
grand to be well-defined. If it is 3 then the local energy is continuous in configuration space
(assuming the orbitals are smooth). This is not strictly required, and leads to the loss of some
variational freedom, but it makes the numerical optimization of cutoff lengths easier. In general,
we recommend setting C = 3.

70

• In a future release, the u and χ terms may be made anisotropic; there are place-holders for this
in the Jastrow data set. At present, however, both must be isotropic. There should only be one
set of u terms, and the spherical harmonic l and m values should therefore be set to 0.

• The ‘expansion order’ of u determines the number of parameters. Typically it is given a value
between 4 and 8.

• The ‘spin-dep params’ line allows the user to specify whether the same u-parameters are to
be used for parallel- and antiparallel-spin electron-pairs. If the value is set to 0 then the same
parameters are used for parallel and antiparallel pairs (this option should not be used in general);
if the value is set to 1 then different parameters are used for parallel and antiparallel pairs; if
it is set to 2 then different parameters are used for up-spin, down-spin and opposite-spin pairs:
this is useful for spin-polarized systems.10

• The cutoff length is given a default value if it is set to 0. Note that it is possible to optimize
the cutoff length using variance minimization. This can be useful, because the choice of cutoff
length has a significant effect on the optimized energy and variance. Unfortunately, optimizing
the cutoff length is numerically difficult: variance minimization will take many more iterations
to converge if the cutoff is optimizable. Setting the truncation order to 3 can help somewhat.

• It is possible to specify exactly which of the expansion coefficients (‘parameter values’) are
optimizable and which are not. One does not need to specify all of the expansion coefficients:
any that are not listed are assumed to be zero. If all of the parameter values in all of the
Jastrow terms are blank, as is the case in the example given above, then the following default
behaviour will be used: if one is studying a homogeneous system, or a 3D-periodic system
or is using energy minimisation, a simple default for u will be chosen that satisfies the Kato
cusp conditions; otherwise, only the Slater wave function will be used for the first configuration
generation run when performing wave-function optimization.11

• Different χ functions are used for different species of ion: the ‘number of sets’ can be chosen
to be equal to the number of chemically distinct species. One can optionally specify how the
atoms in each set are to be labelled. The ‘labelling’ flag can be set to ‘1’, meaning that each
atom is labelled by its number within the simulation cell, or ‘2’, meaning that groups of atoms
are labelled by their number within the primitive cell, or ‘3’, meaning that groups of atoms are
labelled by their species.

• The ions in each set are specified by giving a list of the numbers that label them. If the labelling
flag is set to ‘1’ (the default if the labelling flag is absent: see above) then, in the first primitive
cell, the atom labels are the same as the labels used in the xwfn.data file that specifies the
geometry of the system; the atoms in the subsequent primitive cells are labelled in the same
order as the first. If the labelling flag is set to ‘2’ then the atom labels are the same as those
used in the xwfn.data file (so the same χ functions are used for translationally equivalent atoms
within the supercell). If the labelling flag is set to ‘3’ then the atom labels refer to species (in
the order in which the species occur in the xwfn.data file), so that all atoms of the same species
have the same χ functions.

• It is possible to make the Jastrow factor enforce the electron–nucleus cusp condition. This should
only be done if the χ-set contains bare nuclei and the orbitals do not satisfy the cusp condition.
With a Gaussian basis set, it is much better to use the in-built cusp correction algorithm acti-
vated with the input keyword cusp correction than to use the Jastrow. Likewise, numerical
atomic orbitals already satisfy the electron–nucleus cusp conditions.

• There are two spin-dependence options for χ: if it is 0 then the same parameters are used for
up- and down-spin electrons; if it is 1 then different parameters are used.

• Similar comments to those made for u apply to the ‘spherical harmonic’ labels, the cutoff length
and the parameter values of χ.12

10When particles other than electrons are present in the systems, introduced via the particles block input keyword,
these definitions change a little. Information on the particle and particle-pair splittings are given near the beginning of
the out file.

11The u-parameters are listed in the following order for electron systems: coefficients for spin-up pairs; coefficients
for antiparallel pairs (if spin-dependence is 1 or 2); coefficients for spin-down pairs (if spin-dependence is 2). For each
spin-pair, the number of parameters is equal to the expansion order.

12For electron systems, the parameter values are given for spin-up electrons, then (if the spin-dependence is 1) for
spin-down electrons. For each spin-type, the number of parameters is equal to the expansion order.

71

• The f function contains terms that approximately duplicate the u and χ terms: additional
constraints can be placed on f to remove these terms if desired. Duplication of u and χ should
generally be permitted, however.

• The number of f -parameters grows very rapidly with the electron–electron and electron–nucleus
expansion orders, which should normally be either 2 or 3. Note also that calculating f -functions
can be very expensive in large systems, particularly if the cutoffs are allowed to get too big.

• The spin-dependence options for f are exactly the same as for u.

• Optionally, one can specify a “secondary spin dependence” for f . This is a single-particle spin-
dependence that is used to decide whether f(ri, rj , rij) should be symmetric under exchange of
ri and rj ; f will be symmetric if and only if i and j belong to the same single-particle group.
f must be symmetric under exchange of same-spin particles, but is allowed to be asymmetric
under exchange of unlike particles. By default, f is always symmetric. An example of a situation
in which f should be allowed to be asymmetric would be for electron–positron–nucleus f terms
in a non-spin-polarised positronic molecule. In this case the spin dependence line in each f set
could be given as

Spin-dep params

1 1

where the first “1” chooses the spin-pair dependence in which the same-spin pairs are grouped,
opposite-spin electron pairs are grouped and electron–positron pairs are grouped, while the
second “1” is a spin-single dependence in which the electrons are grouped and the positron is in
a group by itself. This choice of spin-dependence and secondary spin-dependence implies that
there would be symmetric f terms for same-spin pairs, symmetric f terms for opposite-spin
electron pairs, and asymmetric f terms for electron-positron pairs.

• The p and q terms can only be present in periodic systems. The p term makes a small but
significant improvement to the wave function in most cases, whereas the q term does not appear
to help much. It is especially important to use a p term if the finite-size correction to the kinetic
energy is to be calculated (see Sec. 29). Note that q should only be used if the origin is a centre
of inversion symmetry of the charge density.

• The spin-dependence options for p and q are the same as those of u and χ respectively.

• For p, a list of simulation-cell G-vectors must be provided. These are specified in terms of
the reciprocal-lattice vectors. Only one out of each G and −G should be specified. The same
parameter value is used for G-vectors with the same label. Note that the make p stars utility
can be used to generate p terms to paste into the correlation.data file.

• For q, a list of primitive-cell G-vectors must be provided. Again, G-vectors with the same
label have the same parameter value. It is possible to specify a negative relationship between
parameter values by using a negative label for the appropriate G-vectors.

• For ucyl terms, separate cutoff lengths and expansion orders for the radial and axial terms must
be given. See Sec. 22.5.

• For χcyl terms, separate cutoff lengths and expansion orders for the radial and axial terms must
be given. See Sec. 22.6.

• The direction of the cylindrical axis for the ucyl and χcyl terms is specified by giving the spherical
polar and azimuthal angles θ and φ of the cylindrical axis with respect to the Cartesian axes.
For a 2D-periodic system, the cylindrical axis should point in the z direction; hence θ should
be fixed at zero. For a 1D-periodic system, the axis should point in the x direction; hence θ
should be fixed at π/2 and φ should be fixed at zero. For nonperiodic systems the appropriate
direction of the cylindrical axis may be clear on symmetry grounds; if not, the values of θ and
φ can be optimized. For 3D-periodic systems the values of θ, φ and the cutoff lengths should
be chosen with care; casino does not currently check whether they are compatible with the
periodic boundary conditions.

72

7.4.3 Nonstandard Jastrow terms

Additional Jastrow terms are available for model 2D or 3D (only EXJAS) excitonic systems: these
are called ‘BIEX1’, ‘BIEX2’, ‘BIEX3’ and ‘EXJAS’.

The BIEX1 term is appropriate for a biexciton consisting of two opposite-spin electrons and two
opposite-spin holes moving in 2D, where the electrons are confined to one layer and the holes are
confined to another. This models a spatially indirect biexciton in a coupled quantum well III–V
heterostructure. The form of the BIEX1 term is defined in Ref. [27]. The BIEX2 term is a simpler
version of BIEX1. The BIEX3 term provides a Jastrow factor for two interacting 2D excitons whose
centres of mass are pinned a fixed distance apart: see Ref. [28].

The EXJAS term is a flexible two-body term for describing bound charge-carrier complexes in 2D or
3D systems including gapped 2D semiconductors (transition-metal dichalcogenides, indium/gallium
chalcogenides, phosphorene, etc.). The screened interaction (in 2D only) between the charge carriers
is generally of the Keldysh form discussed in Sec. 20.6.1, although the EXJAS term can also be used
for the unscreened 1/r Coulomb interaction (in both 2D and 3D) between charge carriers. The EXJAS
term can be used between any pairs of free or fixed particles; hence one can study excitons, trions,
biexcitons, donor-bound excitons, donor-bound trions, donor-bound biexcitons, The EXJAS
term satisfies the Kato cusp conditions for Coulomb interactions and the analogue of the Kato cusp
conditions for the Keldysh interaction (see Sec. 20.6.1). At long range the EXJAS two-body Jastrow
term falls off as −r, resulting in a wave function that is exponentially localised; thus the complex
being simulated is in principle forced to be bound (although other terms in the Jastrow factor can try
to fight this).

The form of the two-body EXJAS terms for particles interacting via the Keldysh interaction is

uexjas(r) =
[c1 + Γ log(r) + c2r]r

2

1 + c3r2
, (2)

where c1, c2 and c3 are optimisable parameters, with c2 ≤ 0 and c3 ≥ 0, and Γ = −qiqjmimj/[2r∗(mi+
mj)] for distinguishable pairs of particles of charge qi and qj and mass mi and mj , with r∗ being the
parameter defined in Sec. 20.6.1. The same wave-function form is used for the logarithmic interaction,
but the choice of units implies that r∗ is absent from the expression for Γ. For indistinguishable
particles of mass m and charge q, Γ = −mq2/(8r∗) (again without r∗ for the logarithmic interaction).
If the interaction between the charge carriers is of Coulomb 1/r form then

uexjas(r) =
Γr + c1r

2

1 + c2r
, (3)

where c1 ≤ 0 and c2 ≥ 0 are optimisable parameters, and Γ = 2qiqjmimj/[(d − 1)(mi + mj)] for
distinguishable pairs of particles of mass mi and mj and charge qi and qj and d is the dimensionality
(2 or 3). For indistinguishable pairs of particles of charge q and mass m, Γ = q2m/2.

At present the EXJAS term is only implemented for the situation in which all free particles are
distinguishable. In this case the ground-state wave function is nodeless and hence DMC is exact.

The format of the EXJAS Jastrow block in correlation.data is

START EXJAS TERM

Pair spin-dependence

1

Single spin-dependence

1

Parameter value ; Optimizable (0=NO; 1=YES)

END EXJAS TERM

Spin-dependences for the ‘pair’ terms between free particles and the ‘single’ terms between free and
fixed particles are chosen in the same way that one would choose the spin-dependences for the u and
χ terms, respectively.

When the EXJAS term is used, the charge carriers should be defined in the free particles and
fixed particles blocks in input. In the former block, the particles should be chosen to be ‘free’,
because their wave function is entirely of Jastrow form. If fixed particles are present then the χ and
f terms in the Jastrow factor can be used.

73

The varmin-linjas method cannot be used to optimise free parameters in the BIEX or EXJAS terms,
although it can be used to optimise other terms in the Jastrow factor in the presence of the BIEX
and EXJAS terms.

Another nonstandard Jastrow term ‘UHARM’ is available for pairwise correlations between heavy
particles with repulsive interactions (i.e., situations in which the Born–Oppenheimer approxima-
tion is appropriate for the heavy particles). This is a pairwise Jastrow term of the form Uharm =∑
i>j uharm(rij), where uharm(r) = −c(r − r0)

2
. The optimizable parameter r0 is indicative of the

equilibrium bond length, while the parameter c is related to the vibrational frequency. The Jastrow
factor exp(Uharm) arising from this term is a Gaussian vibrational ground-state wave function of in-
terparticle distance. The canonical example of the sort of system for which UHARM is useful is a
dihydrogen molecule, formed of two protons and two electrons; in this case it would be appropriate
to have a UHARM term between the protons.

The format of the UHARM Jastrow block (for a D2 molecule) is

START UHARM TERM

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

1

r0 parameter values ; Optimizable (0=NO; 1=YES)

1.0000000000000000 0 ! r0_1

1.0000000000000000 0 ! r0_2

1.3489599285818805 1 ! r0_3

c parameter values ; Optimizable (0=NO; 1=YES)

0.0000000000000000 0 ! c_1

0.0000000000000000 0 ! c_2

33.608103257293003 1 ! c_3

END UHARM TERM

Notes:

• Both the set of r0 parameters and the set of c parameters can be left blank, in which case default
values will be supplied. By default c is fixed at zero for all except the heaviest pair of particle
types with opposite charges.

• The UHARM term introduces a cusp in the wave function at the coalescence point; this cusp
violates the cusp conditions, which could in principle create problems for DMC. In practice, in
the circumstances in which the UHARM term is to be used, the particles involved should remain
close to r0 and should not approach each other.

• For particle pairs that do not involve heavy nuclei, the corresponding c value should be fixed at
zero.

7.4.4 Backflow parameters

The parameters in the backflow functions are supplied to casino in a data set in the
correlation.data file. The format is analogous to that of the Jastrow-factor data set. Please
see the notes in Sec. 7.4.2 for information on the ‘truncation order’, ‘spin dependence’, etc.

START BACKFLOW

Title

AE Carbon atom - empty parameter set

Truncation order

3

START ETA TERM

Expansion order

8

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

1

Cutoff radii ; Optimizable (0=NO; 1=YES; 2=YES BUT NO SPIN-DEP)

0.d0 1

Parameter ; Optimizable (0=NO; 1=YES)

END ETA TERM

START MU TERM

Number of sets; labelling (1->atom in s cell; 2->atom in p cell; 3->species)

74

1 2

START SET 1

Number of atoms in set

1

Labels of the atoms in this set

1

Type of e-N cusp conditions (0->PP/cuspless AE; 1->AE with cusp)

1

Expansion order

6

Spin dep (0->u=d; 1->u/=d)

1

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

4.5 1

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

END MU TERM

START PHI TERM

Number of sets; labelling (1->atom in s cell; 2->atom in p cell; 3->species)

1 2

START SET 1

Number of atoms in set

1

Labels of the atoms in this set

1

Type of e-N cusp conditions (0=PP; 1=AE)

1

Apply no-curl constraint (0=NO; 1=YES)

1

Electron-nucleus expansion order N_eN

3

Electron-electron expansion order N_ee

3

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 1

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

END PHI TERM

START AE CUTOFFS

Nucleus ; Set ; Cutoff length ; Optimizable (0=NO; 1=YES)

END AE CUTOFFS

START PI TERM

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

0

Number of simulation-cell G-vectors (NB, cannot have both G & -G)

9

G-vector (in terms of rec latt vects) ; label

0 0 1 1

1 0 0 1

0 1 0 1

1 0 1 2

1 0 -1 2

0 1 1 2

0 1 -1 2

1 1 0 2

1 -1 0 2

Parameter value ; Optimizable (0=NO; 1=YES)

END PI TERM

END BACKFLOW

Detailed information about each of the backflow functions can be found in Sec. 23.

Notes:

75

• The polynomial form of η requires the specification of an expansion order as shown above. The
two lines have to be removed when using any of the other two forms.

• The η function has separate cutoff lengths for each of the spin-dependencies. The first one must
be specified; every cutoff length not listed is initially set to the value of the first one. Set the
‘Optimizable’ flag to 2 to constrain all cutoff lengths to be the same during optimization too.

• ‘Type of e-N cusp conditions’ in µ and Φ is used to specify whether to regard the atoms in the
set as all-electron (AE) or pseudo-atoms (PP). PP cusp conditions are less restrictive than AE
ones. The user should set this flag to 0 only if a pseudopotential is being used for the atom in
question.

• ‘Apply no-curl constraint’ in Φ is used to reduce the number of parameters in Φ and Θ when
this number is too large for optimization to succeed. In principle, this flag should always be set
to zero for the best results.

• It is recommended that vm filter be set to T in the input file when optimizing backflow pa-
rameters using unreweighted variance minimization.

• The AE CUTOFFS section will appear automatically in systems with all-electron atoms, and all
cutoffs will be flagged as optimizable by default.

• The plane-wave term Π is of the form of the gradient of the Jastrow P term. The PI TERM block
in the BACKFLOW section of correlation.data is of exactly the same format as the P TERM

block in the JASTROW section. The Π term can be generated using the make p stars utility
(and replacing “P TERM” with “PI TERM”).

7.4.5 Excitations and multideterminant-expansion coefficients

The xwfn.data file contains data that define the orbitals produced by the wave-function generating
code. The file also specifies a reference configuration (the form of the Slater wave function), which
may consist of one or more determinants. The ‘MDET’ block in the correlation.data file allows
one either to use the reference configuration or to specify excitations, additions or subtractions from
the reference configuration. Furthermore, it enables the user to construct an expansion in several
determinants with optimizable expansion coefficients. The MDET block consists of a title followed
by an arbitrary number of lines (up to ‘END MDET’), which contain tokens used to specify the
excitations and the multideterminant configuration.

The simplest case is when we want to use exactly the reference configuration specified in xwfn.data
(this is the default behaviour if no MDET block is supplied). In this case, the single token ‘GS’ is
used:

START MDET

Title

MDET example: use reference configuration in xwfn.data file.

Multideterminant/excitation specification (see manual)

GS

END MDET

Promotions of electrons are specified using the keyword ‘PR’. Several changes to the reference con-
figuration can be made at once. Here is an example of a single-determinant (‘SD’) excited-state
calculation:

START MDET

Title

MDET example: use a single-determinant excited state.

Multideterminant/excitation specification (see manual)

SD

DET 1 2 PR 3 4 5 6

END MDET

For electron gas, and additionally for plane-wave and blip basis calculations, it is also currently
possible to explicitly specify additions and subtractions. For example, if one were to increment the
input parameter neu, the additional electron in a single-determinant plane-wave or blip calculation
would be added to the orbital with smallest associated eigenvalue (supplied in the xfwn.data file by

76

wave function generating code). If one wishes to explicitly specify the band and k-point to which the
additional spin-up electron is added, then one may use an MDET block of the form:

START MDET

Title

MDET example: use a single-determinant excited state.

Multideterminant/excitation specification (see manual)

SD

DET 1 2 PL 3 4

END MDET

START MDET

Title

MDET example: single-determinant addition.

Multideterminant/excitation specification (see manual)

SD

DET 1 2 PL 3 4

END MDET

Where the token ‘PL’ implies ‘plus’. In this case, an extra electron would be added to band 3 at k-point
4 (if it is unoccupied, else an error will be raised). If one were to decrement the input parameter neu,
then by default the electron would cease to occupy the band with the highest associated eigenvalue
(as per the xwfn.data information). Similarly with electron additions, one could control where this
electron is removed from by use of an MDET block of the form:

START MDET

Title

MDET example: single-determinant subtraction.

Multideterminant/excitation specification (see manual)

SD

DET 1 2 MI 1 8

END MDET

Where the token ‘MI’ implies ‘minus’. In this case, an electron would be removed from band 1 at
k-point 8. Addition and subtraction tokens are particularly useful for generating triplet excitations,
where the promotion specification will move electrons of a given spin between orbitals and k-points, two
separate addition and subtraction specifications can facilitate the creation of a triplet. For example,
in the below MDET block, we have specified a triplet excitation between bands 4 and 6 at k-point 1:

START MDET

Title

MDET example: triplet excitation at k-point 1.

Multideterminant/excitation specification (see manual)

SD

DET 1 1 MI 4 1

DET 1 2 PL 6 1

END MDET

This should of course be accompanied by some changes to the input parameters: a decrease of neu
and an increase of ned.

Notes:

• ‘DET 1 2 PR 3 4 5 6’ means ‘in determinant 1, spin 2 (down), promote an electron from band
3, k-point 4, to band 5, k-point 6’.

• For nonperiodic systems, the k-point indices should just be set to 1.

• For electron gas calculations, the band indices should just be set to 1.

• If one subtracts a spin-up electron then the value of the input parameter neu should be de-
creased accordingly. Likewise for spin-down electrons. Similarly if one adds an electron.

• Addition and subtraction tokens should not exist for the same spin and same determinant
number. In this case, one should use promotion to generate the corresponding excitation.

77

• The addition specification will take an electron from the highest occupied orbital, and add it to
the user-specified orbital.

• The subtraction specification will take an electron from the user-specified orbital, and add it to
the lowest unoccupied orbital.

A multideterminant expansion is specified by the keyword ‘MD’:

START MDET

Title

MDET example: use a multideterminant expansion.

Multideterminant/excitation specification (see manual)

MD

3

1.d0 1 0

0.5d0 2 1

* 1.0d0 2 1

DET 2 1 PR 4 5 6 7

DET 3 2 PR 4 5 6 7

END MDET

Notes:

• The ‘3’ in the line after ‘MD’ specifies that there are three determinants in the expansion.

• The next three lines contain the determinant expansion coefficients for the three determinants
(1, 0.5 and 0.5). Each expansion coefficient is followed by a ‘label’ and then an ‘optimizable’
flag.

• The ‘optimizable’ flag must be 0 or 1, specifying that the expansion coefficient is fixed or free
to be optimized.

• All coefficients with the same label must have the same ‘optimizable’ flag. The ratios of these
coefficients will be fixed during the optimization. There is therefore only one optimizable pa-
rameter in the example above, since the coefficients of the second and third determinants are
constrained to be equal.

• At least one determinant expansion coefficient must be fixed.

• The asterisk ‘*’ preceding the coefficient of the third determinant indicates that the value is
relative to the coefficient of the first determinant in the ‘label’, i.e., c3/c2 = 1 in this case, so
c3 = 0.5. If the asterisk is ommitted, the number would be interpreted as the coefficient of the
third determinant. Using the asterisk notation is advantageous in that a configuration state
function can be fully specified when its overall coefficient is set to zero. On output, the MDET
block is always written using the asterisk notation.

• The excitation specifications are of the same form as for the ‘SD’ case. For example, ‘DET 2 1
PR 4 5 6 7’ means ‘in determinant 2 promote an electron of spin 1 (up) from band 4, k-point 5
to band 6, k-point 7’.

Multideterminant expansions and promotion excitations as described above are fully functional for
Gaussian (gwfn.data), plane-wave (pwfn.data) and blip (bwfn.data) orbitals. They may also be
used with numerical atomic (awfn.data) orbitals, although the excitation information must also be
supplied in the awfn.data file (see Sec. 7.10.4).

If blip or plane-wave orbitals are used then the user may specify a phase angle for a particular band
and k point and a particular determinant and spin using

ORB_PHASE <determinant> <spin> <band> <k point> <phase angle>

where the phase angle is given in radians. The phase angle is used in the construction of a real orbital
when the band is occupied at k but not −k, as described in Sec. 15. Specifying a phase has no effect
when the band is occupied at both k and −k, or when the band is unoccupied at k.

If one is studying a HEG and a complex wave function is used (i.e., complex wf = T) then the
orbitals in the Slater determinants are of the form exp(ik · r), where the {k} are simulation-cell

78

reciprocal-lattice points offset by the constant koffset vector specified in the free particles block in
the input file. Before the occupancy of the plane-wave orbitals is worked out, the k vectors are
sorted into increasing order of azimuthal angle φk (innermost), then polar angle θk, then magnitude
|k| (outermost). Hence one can specify excitations of electrons unambiguously. An example of the
labelling of the {k} for a 2D HEG is shown below. Note that adding and subtracting electrons to
or from particular states in a HEG is achieved by increasing or decreasing the electron number and
making appropriate promotions. Note also that the angular sorting of the k vectors is not performed
when the wave function is real, i.e., when complex wf = F.

1 2

3

4

5 9

67

8

13

10

11

12

18

19 20

21

14

1516

1733

28

34

24

35 29 36

25

37

26

30

22

312732

2341

53

48

54

42

43

55 49 56

44

45

57

46

50

38

39

514752

40

The labelling of the k-vectors in a 2D HEG with a square cell. The filled points indicate the doubly occupied

states in a 74-electron paramagnetic ground state. If one wishes to create an excitation of an up-spin electron

from state 25 to state 47 in determinant 1, say, then one should include ‘DET 1 1 PR 1 25 1 47’ in the

excitation specification in the MDET block in correlation.data.

7.4.6 Named special k-points

CASINO knows about various special points within the Brillouin zones of solids. One can use known
special point labels in place of k-point indices in excitation specifications, and if CASINO is able to
identify a lattice in a periodic calculation with a gaussian, blip or plane-wave basis, it will print the
labels (if any) of any special points it detects in the k–point grid, as well as the name of the lattice.

In the following sections, three-dimensional coordinates for special points are given such that harmony
with the source code is kept. Obviously, a one-dimensional Brillouin zone is not three dimensional,
and the trailing zeroes are to be ignored. Supposing that the lattice vectors can generally be given by
v1,v2,v3, we will take

a =
√

v1 · v1 , α = arccos (v1 · v3/ac)

b =
√

v2 · v2 , β = arccos (v2 · v3/bc)

c =
√

v3 · v3 , γ = arccos (v1 · v2/ab) (4)

with angles, as given, in radians.

One-dimensional Lattices

There is only one one-dimensional Bravais lattice. In this case CASINO designates special points (in
the form “label” → “fractional reciprocal lattice coordinates”) as:

Γ (“G”) → (0.0, 0.0, 0.0)

X → (0.5, 0.0, 0.0)

Two-dimensional lattices

In two-dimensions there are five Bravais lattices; square, hexagonal, rectangular (primitive), rectan-
gular (centred) and (the most general) oblique. CASINO recognises square, hexagonal, rectangular
(primitive) and [currently the Γ (“G”) point only] oblique lattices.

79

Square a = b, γ = 90◦:

Γ (“G”) → (0.0, 0.0, 0.0)

M → (0.5, 0.5, 0.0)

X → (0.0, 0.5, 0.0)

Y → (0.5, 0.0, 0.0)

Hexagonal (variant I) a = b, γ = 60◦:

Γ (“G”) → (0.0, 0.0, 0.0)

K →
(

2

3
,

1

3
, 0.0

)
M → (0.5, 0.0, 0.0)

Hexagonal (variant II) a = b, γ = 120◦:

Γ (“G”) → (0.0, 0.0, 0.0)

K →
(

2

3
,

2

3
, 0.0

)
M → (0.5, 0.0, 0.0)

Rectangular (primitive) a 6= b, γ = 90◦:

Γ (“G”) → (0.0, 0.0, 0.0)

S → (0.5, 0.5, 0.0)

X → (0.0, 0.5, 0.0)

Y → (0.5, 0.0, 0.0)

(incomplete) Oblique a 6= b, γ 6= 90◦:

Γ (“G”) → (0.0, 0.0, 0.0)

Three-dimensional lattices

In three dimensions there are fourteen Bravais lattices, which can be grouped into seven crystal sys-
tems: cubic, orthorhombic, tetragonal, monoclinic, rhombohedral, triclinic, and hexagonal. CASINO
knows about the following crystal structures.

Simple cubic a = b = c, α = β = γ = 90◦:

Γ (“G”) → (0.0, 0.0, 0.0)

M → (0.5, 0.5, 0.0)

X → (0.0, 0.5, 0.0)

R → (0.5, 0.5, 0.5)

Face centred cubic a = b = c, α = β = γ = 60◦:

Γ (“G”) → (0.0, 0.0, 0.0)

X → (0.0, 0.5, 0.5)

L → (0.5, 0.5, 0.5)

W → (0.25, 0.75, 0.5)

U → (0.25, 0.625, 0.625)

K → (0.375, 0.75, 0.375)

Body centred cubic a = b = c, α = β = γ = 109.47 . . .◦:

Γ (“G”) → (0.0, 0.0, 0.0)

H → (−0.5, 0.5, 0.5)

P → (0.25, 0.25, 0.25)

N → (0.0, 0.5, 0.0)

80

Hexagonal (variant I) a = b = c, α = β = 90◦, γ = 60◦:

Γ (“G”) → (0.0, 0.0, 0.0)

A → (0.0, 0.0, 0.5)

K →
(

2

3
,

1

3
, 0.0

)
H →

(
2

3
,

1

3
, 0.5

)
M → (0.5, 0.0, 0.0)

L → (0.5, 0.0, 0.5)

Hexagonal (variant II) a = b = c, α = β = 90◦, γ = 120◦:

Γ (“G”) → (0.0, 0.0, 0.0)

A → (0.0, 0.0, 0.5)

K →
(

2

3
,

2

3
, 0.0

)
H →

(
2

3
,

2

3
, 0.5

)
M → (0.5, 0.0, 0.0)

L → (0.5, 0.0, 0.5)

Somewhat generically, if a lattice is not identified, it will be given the name specified “unclassified”
by CASINO. If this happens, the Γ point (labelled as G in excitation specifications) will still always
be indexed (with obvious value. . .).

Excitation specification example

Suppose one wishes to make a promotion of a spin-up electron from band 4 at the Γ point (in Si, for
example) to band 5 at the X point. Assuming that both Γ and X are present in the grid of k-vectors
(they would both be present in a calculation for a 2× 2× 2 supercell, with ks = 0). Using an MDET
block of the form

START MDET

Title

MDET example: single-determinant subtraction.

Multideterminant/excitation specification (see manual)

SD

DET 1 1 PR 4 G 5 X

(or DET 1 1 PR 4 g 5 x)

END MDET

would achieve the required goal. In this way, one need not know the particular k-point indices which
label the Γ and X points.

7.4.7 Atomic orbital modification functions

The format of the data set used to specify atomic orbital modifications in correlation.data is as
follows:

START ORBMODS

Title

Orbital modification functions for 2s and 2p orbitals of neon

Spin-dependence (0->u=d; 1->u/=d)

0

Number of modification functions

2

START MODFN 1

Quantum numbers n and l

2 0

Expansion order

81

3

Parameters in modification function ; Optimizable (0=NO; 1=YES)

END MODFN 1

START MODFN 2

Quantum numbers n and l

2 1

Expansion order

4

Parameters in modification function ; Optimizable (0=NO; 1=YES)

END MODFN 2

END ORBMODS

Notes:

• Atomic orbital modification functions can only be used if atom basis type=‘numerical’ (i.e.,
numerical atomic orbitals are used) and the use orbmods keyword is set to T. When
atom basis type=‘numerical’, the system consists of a single, isolated atom, with the nucleus
lying at the origin.

• The modification functions are of the form

wnl(r) =
(
c0nl + c1nlr + · · ·+ cNnlr

N
)

exp

(
−Anlr2

1 +Bnlr

)
rl, (5)

where Anl, Bnl and {c0nl, . . . , cNnl} are optimizable parameters. n and l are the principal and
orbital-angular-momentum quantum numbers of the orbitals that are modified using wnl.

• Each modification function wnl is added to the corresponding HF radial function, which is
found by interpolation from the data in awfn.data. The resulting radial function can then be
multiplied by the spherical harmonic Ylm(θ, φ) to give the corresponding orbitals for each of
the 2l + 1 possible values of the magnetic quantum number m. (In fact the radial function is
multiplied by appropriate linear combinations of spherical harmonics to give real-valued orbitals.)

• For s orbitals, the value of c1n0 is determined by the electron–nucleus Kato cusp condition:
c1n0 = −Zc0n0, where Z is the atomic number of the atom in an all-electron calculation and Z
is zero in a pseudopotential calculation.

• If the spin-dependence flag is set to 1 then different parameters are used for spin-up and spin-
down electrons; if it is set to zero then the same parameters are used for spin-up and spin-down
electrons.

• If an orbital with quantum numbers n and l occurs in any determinant in the wave function,
but no corresponding modification function is given in correlation.data, then a warning is
printed and the unmodified orbital is used.

• The ‘expansion order’ specifies the value of N in Eq. (5). For s orbitals, the number of free c
parameters is N multiplied by the number of independent spin types; for orbitals with higher
angular momenta the number of c parameters is N +1 multiplied by the number of independent
spin types. The expansion order must be at least 1.

• If parameter values are not supplied (as is the case in the example above) then default values
are used: by default Anl = 1, Bnl = 0 and cinl = 0. If too many parameters are given then the
extra ones are ignored.

• Note that we must have Anl > 0 and Bnl ≥ 0, otherwise the corresponding orbital is unnormal-
izable.

7.4.8 Molecular orbital modifications

The format of the data set used to specify molecular orbital modifications in correlation.data is as
follows:

START MOLORBMODS

Title

Molecular orbital modifications for the XXX molecule

82

START GAUSSIAN MO COEFFICIENTS

Parameter values ; Optimizable (0=NO; 1=YES)

END GAUSSIAN MO COEFFICIENTS

START GAUSSIAN EXPONENTS

Parameter values ; Optimizable (0=NO; 1=YES)

END GAUSSIAN EXPONENTS

START CONTRACTION COEFFICIENTS

Parameter values ; Optimizable (0=NO; 1=YES)

END CONTRACTION COEFFICIENTS

END MOLORBMODS

Each of the three blocks for coefficients, exponents and primitives can be present or absent indepen-
dently.

Notes:

• The success of MOLORBMOD optimization is likely to vary from system to system (it is perhaps
best for small molecules, since the algorithm was designed with such systems in mind). One
of the main problems is that regions of the configuration space where the potential energy is
large and the wave function is near zero are not sampled at all in a VMC run. The subsequent
optimization run then has no incentive to keep the wave function near zero and produces large
fluctuations in the corresponding coefficients, thus severely degrading the wave function.

• Only the optimization of coefficients has been tested successfully. The optimization of exponents
and primitive corrections remains to be explored.

7.4.9 Free orbitals

Model systems such as homogeneous electron(–hole) gases generally require bespoke orbitals, which
are often simple analytical forms that describe the qualitative state of the system, e.g., plane waves
for fluid phases or simple Gaussian functions centred on lattice sites for Wigner crystals. The nature
of the orbitals to be used is specified in the free particles block in the input file. Optimisable
parameters relating to these orbitals are placed in a FREE ORBS block in correlation.data. A
self-explanatory example for a Wigner crystal is as follows:

START FREE_ORBS

Title

Wigner crystal

START WIGNER CRYSTAL

Type of WC orbitals (1: gaussian, 2: plane-waves)

1

Spin dependence (0 -> eu=ed ; 1 -> eu/=ed)

0

Parameter ; Optimizable (0=NO; 1=YES)

0.560882906179200 1 ! exp_1

END WIGNER CRYSTAL

END FREE_ORBS

For fluid phases the orbitals are plane waves with no optimisable parameters and hence no
FREE ORBS block is needed. For particles in a harmonic trap (with quadratic potentials defined
in expot.data), the orbitals are harmonic oscillator eigenfunctions in the confined directions. When
interactions between the particles are present the Gaussian exponents in the harmonic-oscillator may
be regarded as optimisable parameters. The format of the block describing the orbitals is

START FREE_ORBS

Title

Harmonic oscillator orbitals

START HARMONIC

Numbers of confined directions (grouped by equivalence)

2 1

Spin dependence (0 -> eu=ed ; 1 -> eu/=ed)

0

Use same Gaussian exponents for each level (0=NO; 1=YES)

1

Gaussian exponent(s) ; Optimizable (0=NO; 1=YES)

83

0.6 1 ! exp_1,1

0.8 1 ! exp_3,1

END HARMONIC

END FREE_ORBS

Notes:

• In the above example the ground-state wave function is exp(−0.6(x2 + y2) − 0.8z2) for each
electron.

• Excited-state wave functions will be implemented when needed!

7.4.10 Pairing wave functions

There are four basic different types of pairing orbitals available in casino, and any linear combination
of them is allowed. In the following, r represents the vector between the particles being paired,
r = ri − rj .

• The plane-wave pairing orbital is

φ(r) =

Npw∑
l=1

pl exp(ikl · r) , (6)

where the optimizable parameters are the linear pl coefficients. The kl vectors are the recip-
rocal lattice vectors of the simulation cell. Notice that the coefficients for all plane waves in
the same star are constrained to be the same (they need not be supplied more than once in
correlation.data).

• The Gaussian pairing orbital is

φ(r) =

Ng∑
l=1

αl exp(−βlr2) , (7)

where αl and βl are the optimizable parameters. One can optionally constrain the parameters
so that they correspond to the Gaussian expansion of an exponential,

φ(r) ≈ exp (−r/Rex) , (8)

in which case Rex is the only optimizable parameter, and the αl and βl are varied accordingly.

• The polynomial pairing orbital is

φ(r) =

(
Lp − r
Lp

)Cp
Np∑
n=0

anr
n , (9)

where Np and Cp are the order and truncation order of the polynomials, respectively, Lp is the
cutoff radius and an are the polynomial coefficients.

• The Slater pairing orbital is

φ(r) =

Ns∑
s=1

cs exp

(
− asr

2

1 + bsr

)
+

Np∑
p=1

(Cp · r) exp

(
− Apr

2

1 +Bpr

)
(10)

where Ns and Np are the orders of the S-type and P-type expansions, respectively, and cs, as,
bs, Cp, Ap and Bp are optimizable parameters.

If more than one of these forms is defined inside the ‘PAIRING’ section of the ‘FREE ORBS’ block
in correlation.data, they are added together to form the final orbital. In the following example all
four forms are combined.

84

START PAIRING

Spin-pair dependence (CURRENTLY HAS NO EFFECT)

0

START PLANE-WAVE TERM

Number of plane waves

3

Parameter ; Optimizable (0=NO; 1=YES)

1.3 1

2.0 1

2.1 0

END PLANE-WAVE TERM

START GAUSSIAN TERM

Number of Gaussians

3

Fit to exponential

F

Parameter ; Optimizable (0=NO; 1=YES)

0.132550237642873 1 ! g_1,1

0.534558971701745 1 ! exp_1,1

-0.193823021668688 1 ! g_2,1

1.057634525976201 1 ! exp_2,1

0.532728037567208 1 ! g_3,1

1.821074256123948 1 ! exp_3,1

END GAUSSIAN TERM

START POLYNOMIAL TERM

Order of polynomials

3

Truncation Order of polynomial

3

Parameter ; Optimizable (0=NO; 1=YES)

0.774223432432566 1 ! L_p

0.345435431123389 1 ! alpha_0,1

6.477832908479002 1 ! alpha_2,1

5.666348347747839 1 ! alpha_3,1

END POLYNOMIAL TERM

START SLATER TERM

Order of S-type expansion

1

Order of P-type expansion

1

Parameter ; Optimizable (0=NO; 1=YES)

0.999999304258297 0 ! S_c_1,1

1.12494764624888 1 ! S_a_1,1

1.29982910271845 1 ! S_b_1,1

0.000000000000000E+000 0 ! P_c_1,1,1

0.000000000000000E+000 0 ! P_c_2,1,1

1.004203030584676E-003 1 ! P_c_3,1,1

0.872921256476300 1 ! P_a_1,1

0.971277687984812 1 ! P_b_1,1

END SLATER TERM

END PAIRING

Note that it is possible to construct “partial” pairing determinants for systems with more electrons
than holes, in which the excess electrons occupy plane-wave orbitals. To run calculations with partial
pairing determinants, use the syntax “+ m orbitals free” in the free particles block in the input
file; see Sec. 7.3. By default the shortest k-vectors will be populated in the usual order, which can be
modified by specifying excitations in correlation.data.

7.4.11 Mahan wave function parameters

The parameters for the Mahan wave function are supplied to casino in a data set in the
correlation.data file. The format is analogous to that of the Jastrow-factor and backflow data
sets. Please see the notes in Sec. 7.4.2 for information on the ‘truncation order’, ‘spin dependence’,
etc. Detailed information about the Mahan wave function can be found in Sec. 32.

85

START MAHAN

Title

26e HEG + hole --- example correlation.data file

START ETA_G TERM

Expansion order

6

Spin-dep (0->u=d ; 1->u/=d)

0

Number of optimizable stars

2

Truncation orders

3.00000000000000 ! C_2

3.00000000000000 ! C_2

Cutoff radii; Optimizable (0=NO; 1=Yes)

9.63252167718146 1 ! L_2

9.63252167718146 1 ! L_2

Parameters; Optimizable (0=NO; 1=Yes)

END ETA_G TERM

START U_G TERM

Expansion order

6

Spin-dep (0->u=d ; 1->u/=d)

0

Number of optimizable stars

2

Truncation orders

3.00000000000000 ! C_2

3.00000000000000 ! C_2

Cutoff radii; Optimizable (0=NO; 1=Yes)

9.63252167718146 1 ! L_2

9.63252167718146 1 ! L_2

Parameters; Optimizable (0=NO; 1=Yes)

END U_G TERM

END MAHAN

Notes:

• Both the ηG and uG functions contain optimizable parameters for each star of electrons except
the first. The number of optimizable stars for each function is therefore one less than the total
number of stars of electrons.

• The ηG and uG functions have separate cutoff lengths and truncation orders for each of the
optimizable stars. These must be included, one per line, for each optimizable star in the block
as above.

• It is possible to run without the uG block; simply delete the lines from ‘START U G TERM’ to
‘END U G TERM’, inclusive, above.

• The spin-dependence must be 0 for both functions, as only this option has been implemented
so far.

• The lists of parameter values above are blank; casino will supply suitable default values for the
Mahan parameters not listed, usually assigning the value zero, except where the cusp conditions
require non-zero values.

7.5 Pseudopotential file: xx pp.data

casino can carry out all-electron or pseudopotential calculations, but it is normally advantageous
to replace the core electrons by a pseudopotential. casino will automatically treat an atom as all-
electron unless there exists a pseudopotential file xx pp.data in the directory in which casino is run,
where xx is the symbol for the element in question in lower case. This file contains the different angular
momentum components of the pseudopotential given on a radial grid and some auxiliary information
in the following format:

86

LSDA Pseudopotential in real space for Si

Atomic number and pseudo-charge

14 4d0

Energy units (rydberg/hartree/ev):

rydberg

Angular momentum of local component (0=s,1=p,2=d..) for DFT and QMC

0 2

NLRULE override (1) VMC/DMC (2) config gen (0 ==> input/default value)

0 0

Number of grid points

2476

R(i) in atomic units

0.000000000000000E+000

7.178690774405650E-012

.

39.6567798705125

40.0553371342383

r*potential (L=0) in Ry

0.000000000000000E+00

0.131424063731862E-10

.

-8.00000000000000

-8.00000000000000

r*potential (L=1) in Ry

0.000000000000000E+00

-0.574393968349227E-10

.

-8.00000000000000

-8.00000000000000

r*potential (L=2) in Ry

0.000000000000000E+00

-0.128711823920867E-09

.

-8.00000000000000

-8.00000000000000

Core-polarization terms

0.1650 0.5446 ! alpha (a.u.) rbaree (a.u.) usually set to 0.5*(rbars+rbarp)

0.5216 0.5676 0.7172 ! rbar for s,p,d (a.u.)

The nlrule parameters control the grid on which the angular integration is performed (see Sec. 19.2)
and are normally specified in the file input. The values given in input are the default for all atoms in
the system but they can be overridden for particular elements by setting the parameters in this file to
nonzero values. As many angular-momentum components as desired can be supplied, but they must
be in the order l = 0, 1, 2, Unless you explicitly wish to use a core-polarization potential (see Sec.
19.3), the few lines at the bottom relating to this should be omitted. At present the r̄l parameters for
the core-polarization potential should be supplied for l = 0, 1 and 2 only.

casino pseudopotential library: https://vallico.net/casinoqmc/pplib/

On the rare occasions when you might want to use two or more different pseudopotentials for atoms
with the same atomic number (say in a surface, and in an atom or molecule absorbed on that surface),
then you may use additional pseudopotentials renamed as, e.g., xx2 pp.data. Different types of
pseudoatom are flagged in xwfn.data by adding multiples of 1000 to the original atomic number,
e.g., atomic numbers 12, 1012 and 2012 correspond to atoms using pseudopotentials mg pp.data,
mg2 pp.data and mg3 pp.data, etc.

7.6 MPC-interaction file: mpc.data

This contains the Fourier transform of the function f(r) defined in Sec. 19.4.4. It is required when
using the model periodic Coulomb (MPC) interaction to compute the electron–electron interactions.
Before doing a QMC calculation with the MPC interaction, this file should be generated from the
trial wave function given in the [x]wfn.data file by using runqmc to run casino with runtype set

87

https://vallico.net/casinoqmc/pplib/

to ‘gen mpc’ in the input file. The data can be visualized in real space using the supplied plot mpc

utility.

The format of the mpc.data file is as follows:

START MPC DATA

Title

Title of system goes here

File version

1 [this should be an integer that signifies spec version]

START DENSITY DATA

Self consistent charge density in reciprocal space

Real space primitive cell translation vectors (au)

PA1X PA1Y PA1Z

PA2X PA2Y PA2Z

PA3X PA3Y PA3Z

Number of atoms in the primitive cell

nbasis

Positions of atoms (au)

atno(1) basis(1,1) basis(2,1) basis(3,1)

atno(2) basis(1,2) basis(2,2) basis(3,2)

...

atno(n) basis(1,n) basis(2,n) basis(3,n)

Energy cutoff used for G-vectors (au)

energy_cutoff

Number of particle types (1=electrons,2=electrons/holes)

2

Number of G-vectors

den_ngvec

G-vectors (au)

gvec(1,1) gvec(2,1) gvec(3,1)

gvec(1,2) gvec(2,2) gvec(3,2)

...

gvec(1,n) gvec(2,n) gvec(3,n)

START SET 1

Particle type

1

Complex charge density (real part, imaginary part)

Re{den_sc(1)} Im{den_sc(1)}

...

Re{den_sc(n)} Im{den_sc(n)}

END SET 1

START SET 2

Particle type

2

Complex charge density (real part, imaginary part)

Re{den_sc(1)} Im{den_sc(1)}

...

Re{den_sc(n)} Im{den_sc(n)}

END SET 2

END DENSITY DATA

START EEPOT DATA

Real space simulation cell translation vectors (au)

A1X A1Y A1Z

A2X A2Y A2Z

A3X A3Y A3Z

Multiples of primitive translation vectors

2 2 2

Energy cutoff used for G-vectors

energy_cutoff

Number of G-vectors

eepot_ngvec

G-vectors (au) and Fourier coefficients

gvec(1,1) gvec(1,2) gvec(1,3) fg(1)

88

gvec(2,1) gvec(2,2) gvec(2,3) fg(2)

...

gvec(n,1) gvec(n,2) gvec(n,3) fg(n)

END EEPOT DATA

END MPC DATA

Notes:

1. The ‘file version’ is an integer, which is always increased if the specification for this file changes.

2. The charge-density Fourier coefficients may be complex.

3. The EEPOT Fourier coefficients must be real (by definition).

4. This format allows for the existence of different types of particles.

5. Both the primitive-cell and simulation-cell translation vectors are included so that consistency
checks can be made. Furthermore, this allows the data to be scaled appropriately if they are
reused for a system of different size.

6. The normalization of the density should be such that the G = 0 component is equal to the
number of particles per primitive cell. This makes the density independent of simulation-cell
size.

Note: it is not necessary to regenerate this file for different supercell sizes, provided the lattice vectors
in the ‘EEPOT’ set are obtainable from the lattice vectors in [x]wfn.data through scaling by a single
parameter.

7.7 The CASL file format

casino is starting to make use of the casl serialization language and file format for data interchange.
The casl serialization language defines a syntax to specify structured data by means of keyword-
value associations. The file format is inspired by yaml, and is reminiscent of Python code in its use
of indentation.

A casl file, usually named filename.casl, could look like this:

keyword1: value1

keyword2: value2

keyword3:

keyword4: value4

keyword5: [keyword6: value6, value7]

value8

where:

• keyword1 is the label of a scalar item of value value1.

• keyword3 is the label of a block item that contains the items labelled keyword4 and keyword5.

• keyword5 is the label of another block item, represented in-line using square brackets and com-
mas, that contains the item labelled keyword6 and an unnamed item of value value7.

• value7 and value8 are the values of two unnamed items. Unnamed items are intended to be
accessed by sequential order. Unnamed items cannot be block items.

casl keywords are case- and whitespace- insensitive. The : and , characters must have a whitespace
or newline immediately after them to be considered syntactically active.

The specific keyword-value structures available in a given casl block depends on the block, as de-
scribed below, but the underlying syntax is the same for all of them.

Some additional notes on the casl format:

• All named items are identified by their name, not the order in which they appear.

89

• All unnamed items are identified by the order in which they appear.

• The parser treats scalar values as strings, therefore it does not issue data type mismatch errors.
After parsing, specific scalars may be allowed to have one of several data types, or may be
restricted to a single data type.

• Blank lines are ignored.

• Anything following a hash sign “#” in a line is ignored, e.g., Keyword: value # comment.

• Whole blocks can be commented out by prepending “%!” to their name, for example %!This

block: [is, ignored]. This is called a “syntactical comment”; the block is still parsed and
subject to the casl syntax rules, but then it and its contents are discarded after reading them.

• Lines can be divided at any blank that does not follow a colon “:”, and continuation lines must
all have the same indentation which must be greater than that of the line they are continuing.
For example,

Keyword: really long value

which does not fit in

a single line.

Other keyword: value

• Named scalars with an empty value are allowed, e.g., Empty scalar:.

• Empty blocks are allowed and can be declared only in inline form, e.g., Empty block: [].

• The parser interprets “(”, “)”, “{”, “}” and “"” as grouping characters, and will not match
any syntactical tokens inside them. For example, in Complex variables: [a: (0.0, 0.0),

b: (5.0, -2.0)], the value of a is “(0.0, 0.0)”, not “(0.0”, etc.

7.8 Wave function parameter file: parameters.casl

The parameters.casl file is intended as a replacement for correlation.data; when new wave func-
tion parameters are introduced, they are added to parameters.casl.

Each wave function section goes in a different top-level block in parameters.casl. As is the case
with the correlation.data file, optimized wave function parameters are written to disk during
optimization to files called parameters.x.casl, where x is the optimization cycle number.

7.8.1 Generic Jastrow construction framework

Generic Jastrow factors constructed using the framework described and showcased in Ref. [29] are
declared in the JASTROW top-level block of the parameters.casl file. We refer to this Jastrow factor
implementation as gjastrow. The gjastrow allows constructing arbitrary terms involving n electrons
and m nuclei using any of the available basis functions.

In a system of N electrons and M nuclei, an n-electron, m-nuclei gjastrow Jastrow factor term is of
the form,

Jn,m(R) =

N∑
i1<···<in

M∑
I1<···<Im

p∑
{νiαiβ }

n
α<β

q∑
{µiαIγ }

n,m
α,γ

λ
{P}{S}
{ν}{µ}

n∏
α<β

Φ
Piαiβ
νiαiβ

(riαiβ)

n,m∏
α,γ

Θ
SiαIγ
µiαIγ (riαIγ) , (11)

where

• iα and Iγ are the electron and nucleus indices,

• νij and µiI are the electron-electron and electron-nucleus expansion indices (there are n(n−1)/2
and nm such indices, respectively),

• Pij and SiI are integers representing electron-electron and electron-nucleus pair types, which
define the spin-pair and spin-nucleus dependencies of the parameters,

• λ{P}{S}{ν}{µ} are the linear parameters, where the superindices {P}{S} select the appropriate pa-

rameter channel for the electrons and nuclei under consideration,

90

• ΦPν (r) and ΘS
µ(r) are the ν-th electron-electron and µ-th electron-nucleus basis functions; if

they contain optimizable parameters, P and S select the appropriate parameter set for the
corresponding electron-electron or electron-nucleus pair, and

• p and q are the electron-electron and electron-nucleus expansion orders, respectively.

For convenience we factorize Φ and Θ into a basis function times an optional cut-off function which
does not depend on the expansion index, ΦPν (r) = φPν (r)fP (r) and ΘS

µ(r) = θSν (r)gS(r).

The JASTROW casl block may contain a string-valued Title scalar item, and then one block item
named TERM x per term in the Jastrow factor.

The following is a sample Jastrow factor definition for a system consisting of a graphene layer of 50
carbon atoms, and a hydrogen atom, with 201 electrons:

JASTROW:

Title: H on graphite

TERM 1:

Rank: [2, 0]

Rules: [1-1=2-2]

e-e basis: [Type: natural power, Order: 9]

e-e cutoff:

Type: alt polynomial

Constants: [C: 3]

TERM 2:

Rank: [1, 1]

Rules: [Z, 1=2]

e-n basis: [Type: natural power, Order: 9]

e-n cutoff:

Type: alt polynomial

Constants: [C: 3]

TERM 3:

Rank: [2, 1]

Rules: [1-Z6=2-Z6, 1-Z1=2-Z1, 1-1=1-2=2-2]

e-e basis: [Type: natural power, Order: 3]

e-n basis: [Type: natural power, Order: 3]

e-n cutoff:

Type: alt polynomial

Constants: [C: 3]

This example serves us to introduce how the gjastrow is defined:

• Rank is a block item containing two integer-valued unnamed scalars which define the number of
electrons n and of nuclei m involved in the term. In the above example, term 1 is an e–e term
(u term), term 2 is an e–n term (χ term), and term 3 is an e–e–n term (f term).

• Rules is a block item containing any number of grouping rules. These define the P and S
matrices by specifying which particles, particle pairs, nuclei, or particle-nucleus pairs are to
be regarded as equivalent, thus determining the parameter channels required for each group of
particles and nuclei present in the system. For example, in term 1 above we force up-spin–
up-spin electron pairs (1-1) to be equivalent to down-spin–down-spin electron pairs (2-2). In
term 2 we make all nuclei with the same Z equivalent (Z), thus grouping all carbon atoms,
and up-spin and down-spin electrons are regarded as equivalent (1=2). In term 3 we request
that the pair formed by up-spin electrons and carbon atoms (1-Z6) be treated as equivalent
to that formed by down-spin electrons and carbon atoms (2-Z6), that up-electron–hydrogen be
equivalent to down-electron–hydrogen (1-Z1=2-Z1), and that up-up, up-down and down-down
electron pairs be equivalent (1-1=1-2=2-2). Different rule specifications may yield the same
results; for example, in term 3 above we could have specified Rules: [Z, 1=2] to the same
effect. See below for the channel splitting achieved by the rules in this example, and further
down for a fuller description of rules.

• e-e basis, e-e cutoff, e-n basis and e-n cutoff are blocks containing the necessary details
to define which basis function the Jastrow factor term is expanded into and which cut-off func-
tions, if any, are applied. Type is a string-valued scalar item which chooses the basis functions, a
list of which can be found later in this section; “none” is a valid value. Order is an integer-valued

91

scalar item which selects the expansion order to be used for the e–e and e–n basis functions (not
available for cut-offs). Note that basis functions are indexed starting from 1 in the gjastrow, not
0 as is done in the Jastrow factor defined in the correlation.data file. Some basis functions
contain constants, which must be declared in a Constants block, and some contain optimizable
parameters, which are declared in a Parameters block. For example, term 3 above uses natural
powers for the basis functions with an expansion order of 3 (i.e., r0, r1 and r2 are the basis
functions), no electron-electron cut-off function, and the Alt polynomial cut-off function for
the electron-nucleus cut-offs, with a truncation order constant C of 3.

Note that there are no parameters defined in the above example. After optimization, the
parameters.casl file is populated with the optimized parameters, resulting in, for example:

JASTROW:

Title: H on graphite

TERM 1:

Rank: [2, 0]

Rules: [1-1=2-2]

e-e basis: [Type: natural power, Order: 9]

e-e cutoff:

Type: alt polynomial

Constants: [C: 3]

Parameters:

Channel 1-1:

L: [11.352023756975679, optimizable, limits: [0.50000000000000000,

11.645421058099613]]

Channel 1-2:

L: [11.352023756975679, optimizable, limits: [0.50000000000000000,

11.645421058099613]]

Linear parameters:

Channel 1-1:

c_2: [-8.1899486572157494E-005, optimizable]

c_3: [5.1184567229701015E-006, optimizable]

c_4: [1.8827600991665889E-006, optimizable]

c_5: [-8.7213298031161725E-007, optimizable]

c_6: [1.1125342957423828E-007, optimizable]

c_7: [7.3652204644128116E-009, optimizable]

c_8: [-2.2870664337997183E-009, optimizable]

c_9: [1.1138335392155449E-010, optimizable]

Channel 1-2:

c_2: [-2.1396334655704384E-004, optimizable]

c_3: [6.0234443089333439E-005, optimizable]

c_4: [-1.4480264142099425E-005, optimizable]

c_5: [4.1747844178600060E-006, optimizable]

c_6: [-1.1839016098212222E-006, optimizable]

c_7: [2.0853997270042511E-007, optimizable]

c_8: [-1.8336515915250190E-008, optimizable]

c_9: [6.1723787079640366E-010, optimizable]

TERM 2:

Rank: [1, 1]

Rules: [Z, 1=2]

e-n basis: [Type: natural power, Order: 9]

e-n cutoff:

Type: alt polynomial

Constants: [C: 3]

Parameters:

Channel 1-n1:

L: [6.0700477330152580, optimizable, limits: [0.50000000000000000,

11.645421058099613]]

Channel 1-n51:

L: [3.7337378814861637, optimizable, limits: [0.50000000000000000,

11.645421058099613]]

Linear parameters:

Channel 1-n1:

c_2: [-2.7080127539095265E-003, optimizable]

c_3: [9.1801079749774387E-004, optimizable]

92

c_4: [-2.1689705811039064E-003, optimizable]

c_5: [2.0357040900787675E-003, optimizable]

c_6: [-9.1125883025703280E-004, optimizable]

c_7: [2.0898033728911013E-004, optimizable]

c_8: [-2.3699765748611267E-005, optimizable]

c_9: [1.0225781416020435E-006, optimizable]

Channel 1-n51:

c_2: [-1.6245605563919808E-003, optimizable]

c_3: [-3.9939657824912926E-003, optimizable]

c_4: [1.9993939109752307E-002, optimizable]

c_5: [-4.1150138201955976E-002, optimizable]

c_6: [3.8713128982571968E-002, optimizable]

c_7: [-1.9167699173502323E-002, optimizable]

c_8: [4.8731383835212486E-003, optimizable]

c_9: [-5.0240854042510926E-004, optimizable]

TERM 3:

Rank: [2, 1]

Rules: [1-Z6=2-Z6, 1-Z1=2-Z1, 1-1=1-2=2-2]

e-e basis: [Type: natural power, Order: 3]

e-n basis: [Type: natural power, Order: 3]

e-n cutoff:

Type: alt polynomial

Constants: [C: 3]

Parameters:

Channel 1-n1:

L: [5.8227027247545742, optimizable, limits: [0.50000000000000000,

11.645421058099613]]

Channel 1-n51:

L: [2.8697151605618441, optimizable, limits: [0.50000000000000000,

11.645421058099613]]

Linear parameters:

Channel 1-1-n1:

c_1,2,2: [-5.9197710909612964E-007, optimizable]

c_1,3,2: [-3.5400241136773510E-007, optimizable]

c_1,3,3: [-1.0268299593198822E-007, optimizable]

c_3,1,1: [-1.0458640505715438E-006, optimizable]

c_3,2,1: [2.5749897254695416E-007, optimizable]

c_3,2,2: [-2.0195608511354725E-008, optimizable]

c_3,3,2: [-1.5698588458262213E-008, optimizable]

c_3,3,3: [1.1525211735158285E-008, optimizable]

Channel 1-1-n51:

c_1,2,2: [-2.0702547828979545E-003, optimizable]

c_1,3,2: [-7.0607939146236269E-003, optimizable]

c_1,3,3: [7.2263427882358795E-003, optimizable]

c_3,1,1: [8.3725219208974691E-005, optimizable]

c_3,2,1: [1.2560947012457320E-003, optimizable]

c_3,2,2: [-3.6945139699129980E-003, optimizable]

c_3,3,2: [4.8378566108180792E-004, optimizable]

c_3,3,3: [-1.3437750629367575E-003, optimizable]

In this example note the following:

• The parameters in the basis functions and cut-off functions appear in their respective blocks
under the Parameters sub-block, grouped by particle-pair/particle–nucleus channel. The linear
parameters of the Jastrow factor appear in the Linear parameters block grouped by their full
n-particle–m-nuclei channels.

• The parameters in the basis functions and cut-off functions have names that depend on the
selected Type. The linear parameters are always named c indices.

• All parameter declaration blocks have the parameter value as their first unnamed item and the
string optimizable or fixed as their second unnamed item. The parameter value can be set
to default, or, if the parameter has both an upper limit and a lower limit, a string such as
50% will initialize the parameter value relative to the limits. It is possible to omit the second
unnamed item, or both of them.

93

• Channels are named after the group of particles and nuclei with the lowest indices that belongs
in the channel, e.g., the electron-electron-nucleus linear-parameter channel in term 3 above that
involves two any-spin electrons and a hydrogen nucleus is called 1-1-n51.

• The values of all optimizable parameters can be limited using the Limits sub-block, as in the
case of the L cut-off lengths above. Limits are not shown for parameters which have no default
limits, but the Limits block can be added manually for them if necessary, e.g., c 1,3,3: [

Limits: [-0.01, 0.01]]. The special values Inf, -Inf and default are allowed in place
of the limits, or, if the parameter has both a default upper limit and a default lower limit, a
string such as 37.5% will redefine the corresponding limit relative to the default limits. Default
parameter limits can only be redefined to reduce the parameter range, not to extend it.

The available basis functions are:

• Natural power basis

– Type: natural power

– Description: a natural power basis for localized Jastrow terms.

– Functional form:
φk(r) = rk−1 (12)

– Constants: none

– Parameters: none

– Notes:

∗ This is the natural-power basis used in the standard casino Jastrow factor for the U ,
χ, f , H, W and D terms.

• Cosine basis

– Type: cosine

– Description: a cosine basis for periodic systems.

– Functional form:
φk(r) =

∑
G∈kth

star

cos (G · r) (13)

– Constants: the G vectors in terms of the reciprocal lattice vectors, expressed as integers
grouped in periodicity-sized vectors, in turn organized in stars. For example,

Constants:

Star 1:

G_1: [0, 0, 0]

Star 2:

G_1: [0, 0, 1]

G_2: [1, 0, 0]

G_3: [0, 1, 0]

Star 3:

G_1: [1, 0, 1]

G_2: [1, 0, -1]

G_3: [0, 1, 1]

G_4: [0, 1, -1]

G_5: [1, 1, 0]

G_6: [1, -1, 0]

There are periodicity×number-of-G-vectors integer-valued constants. If left unspecified,
casino will generate the shortest G vectors up to the requested number of stars (which is
what one almost always wants).

– Parameters: none

– Notes:

∗ This is the cosine basis used in the standard casino Jastrow factor for the P term.

∗ The expansion order is the number of stars, not the number of G vectors as in the
standard Jastrow.

94

∗ G = 0 is included by default in the set of G vectors. If used in a two-body term
without a cut-off, the G = 0 basis function will be flagged as redundant (since it is a
constant) and its linear coefficient will be fixed at a value of zero.

• Cosine basis with k-cutoff

– Type: cosine with k-cutoff

– Description: a cosine expansion where the coefficients of the cosines are computed as a
polynomial function of the modulus of the G vectors, intended to improve transferability
between different system sizes.

– Functional form:

φk(r) =
1

Ω

ns∑
s

|Gs|p0+δp(k−1)
(|Gs| − kc)

C
∑

G∈sth
star

cos (G · r) (14)

where Ω is the volume/area/length of the simulation cell in 3D/2D/1D.

– Constants: p0, δp (reals), kc (real, in a.u.) and C (integer), called “p 0”, “delta p”, “k cut”
and “C”. The k-cutoff kc has a default value of 1 a.u. (not necessarily sensible, kc should be
set by hand); the truncation order C has a default value of 1; the exponent offset p0 and
exponent step δp have respective default values of −2 and 1 in 3D-periodic systems, −3/2
and 1/2 in 2D-periodic systems, and 0 and 1 in other cases.

– Parameters: none

– Notes:

∗ This basis is designed to construct a p-like e–e term where the coefficients of the cosines
are not the optimizable parameters, but are themselves a parametrized function α of
|G|. The ij contribution to such a term looks like

p(r) =

ns∑
s

α(|Gs|)
∑

G∈sth
star

cos (G · r) . (15)

If we choose to parametrize α as a polynomial of |G| times a polynomial cut-off,

α(|G|) = (|G| − kc)
C
∑
k

ck |G|k , (16)

substituting into the previous equation and swapping the summation signs gives the
expression for φk above, with {ck} turned into linear parameters of the Jastrow factor.

∗ Note that, unlike for the cosine basis, the expansion order is not the number of stars
ns in the cosine expansion. ns is the number of stars up to |G| = kc and is calculated
automatically, while the expansion order is the number of terms in the polynomial
expansion of α(|G|).

∗ The G vectors are calculated automatically for this functional basis and cannot be
provided by the user. G = 0 is never included in this set of G vectors.

• ν basis

– Type: nu

– Description: basis functions that interpolate between the isotropic, radially symmetric
natural powers at short radius and functions with the simulation cell symmetry at large
distances [30].

– Functional form:

φk(r) =

∣∣∣∣∣∣
∑
i

Ai ·Aif
2(wi) + 2

∑
j>k

Aj ·Akg(wj)g(wk)

∣∣∣∣∣∣
k/2

, (17)

where wi = Bi · r,

f(w) = |w|
(

1− |w/π|
3

4

)
, (18)

95

g(w) = w

(
1− 3

2
|w/π|+ 1

2
|w/π|2

)
, (19)

{B} are the reciprocal lattice vectors of the simulation cell and (optionally) all symmetry-
equivalent vectors, and {A} are their real-space counterparts.

– Constants: the {A} and {B} vectors in atomic units grouped in 3-dimensional vectors, for
example,

Constants:

a_1: [0.61833763416878673, 0.0000000000000000, 0.0000000000000000]

a_2: [0.0000000000000000, 0.61833763416878673, 0.0000000000000000]

a_3: [0.0000000000000000, 0.0000000000000000, 0.61833763416878673]

b_1: [1.6172394250986690, 0.0000000000000000, 0.0000000000000000]

b_2: [0.0000000000000000, 1.6172394250986695, 0.0000000000000000]

b_3: [0.0000000000000000, 0.0000000000000000, 1.6172394250986695]

There are 6×number-of-B-vectors real-valued constants. If left unspecified, casino will
use the optimal set of vectors for simple cubic, FCC, BCC, 3D hexagonal, square and 2D
hexagonal lattices, and the “basic”, dimensionality-sized set of vectors for other lattices.

– Parameters: none

– Notes:

∗ This basis function can only be used in periodic systems.

∗ This basis function is intended to capture the same correlations as the natural power
basis with polynomial cutoff combined with the cosine basis.

∗ This basis function is locally isotropic at r = 0, and can therefore be used to apply
Kato cusp conditions.

∗ This basis function does not require a cutoff function, automatically satisfying periodic
boundary conditions in the simulation cell.

• Fractional power basis

– Type: r/(r^b+a) power (also r/(r+a) power and 1/(r+a) power, see notes below)

– Description: powers of fractions which tend to a constant as r →∞.

– Functional form:

φk(r) =

(
r

rb + a

)k−1

(20)

– Constants: none

– Parameters: a and b (reals), called “a” and “b”, whose default values are 3 and 1.3,
respectively, and have default limits of a ∈ [1.1× 10−8,+∞), and b ∈ [1,+∞)

– Notes:

∗ This is a good functional basis for finite systems, especially for atoms where it performs
significantly better than natural powers with polynomial cut-offs.

∗ Also available are a basis of powers of r/(r + a) (“Type: r/(r+a) power”), and one
with powers of 1/(r + a) (“Type: 1/(r+a) power”). According to our tests, these
alternatives seem to be slightly inferior to the powers of r/(rb + a).

∗ It is often useful to impose stricter limits on the non-linear parameters for this basis
to avoid issues during optimization, for example with

a: [limits: [1, 8]]

b: [limits: [1.1, 2]]

• Exponential power basis

– Type: exp power

– Description: powers of [1− exp(−ar)]/a which tend to a constant as r →∞.

– Functional form:

φk(r) =

(
1− exp(−ar)

a

)k−1

(21)

– Constants: none

96

– Parameters: a (real), called “a”, whose default value is 1 and has default limits of a ∈
[1.1× 10−8,+∞)

– Notes:

∗ This is similar to the fractional power basis in nature.

• Natural polynomial basis

– Type: natural polynomial

– Description: a polynomial, optionally broken up into pieces if Order is greater than 1.

– Functional form:

φk(r) = r
k0+
∑k−1

p=1
kp

k0+
∑k

p=1
kp∑

l=k0+
∑k−1

p=1
kp+1

clr
l (22)

– Constants: the exponent offset k0 (integer) and the Order lengths of the sub-expansions in
which the polynomial is split, kp, which are specified as, e.g.,

Order: 2

Constants:

k_0: 0

Split: [3, 3]

which results in the basis functions φ1 = 1 + c1r + c2r
2 and φ2 = r3 + c4r

4 + c5r
5.

– Parameters: the polynomial coefficients cl, called c l. Note that the first coefficient in
each basis function is not variable to avoid redundancies with the linear coefficients of the
Jastrow term, and is fixed at a value of one.

– Notes:

∗ The most straight-forward use of this basis is with an Order of one, where Split

contains a single integer which is the order of the polynomial minus one.

∗ The natural power basis is recovered by setting k0 = 0 and kp = 1 ∀ p, in which case
a Parameters block need not be given.

∗ This functional basis is mainly intended to be used with a low Order in the construction
of terms with high Rank, i.e., those involving many electrons and/or nuclei. Compared
with the natural power basis, the use of a polynomial reduces the cost of evaluating
the Jastrow factor substantially by reducing the number of possible products of basis
functions, at the cost of giving up the variational freedom of having independent coef-
ficients for each product of natural powers. Splitting the polynomial into pieces allows
one to recover some of this variational freedom.

• Natural power basis for dot-product terms

– Type: natural power vectorial (also natural polynomial vectorial, see notes be-
low)

– Description: a natural power basis for dot-product terms.

– Functional form:
φk(r) = rINT(k−1

d) rMOD(k,d)

r
(23)

where d is the dimensionality of the system and ri is the ith Cartesian component of r.

– Constants: none

– Parameters: none

– Notes:

∗ This basis is intended to be used in conjunction with the Dot-product indexing con-
straint (see below).

∗ There exists an analogous natural polynomial vectorial basis.

∗ For example, the W term in the standard casino Jastrow factor translates into:

97

TERM 2:

Rank: [3, 0]

Rules: [1=2]

Indexing:

e-e dot product: T

e-e basis:

Type: natural polynomial vectorial

Order: 3

Constants:

k0: 1

Split: [7]

e-e cutoff:

Type: alt polynomial

Constants: [C: 2]

• RPA electron-electron Jastrow factor form

– Type: RPA

– Description: the RPA form of the electron-electron Jastrow factor.

– Functional form:
φ1(r) = − [1− exp(−r/F)] /r (24)

in three dimensions, and

φ1(r) = −
[
1− exp

(
−r/2F −

√
r/F

)]
/
√
r (25)

in two dimensions.

– Constants: none

– Parameters: F (real), called “F”, whose default value is 1 and has default limits of F ∈
[10−7,+∞).

– Notes:

∗ The maximum expansion order for this basis is 1.

∗ In periodic systems it is recommended to combine this basis function with a cusp-
less cut-off function (e.g., gaussian or spline) in order to preserve the short-range
behaviour of the RPA Jastrow factor.

• Specialized cusp condition functions

– Type: logarithmic cusp / dipole cusp / tilted dipole cusp

– Description: function to enforce cusp conditions with non-Coulomb interactions

– Functional forms (respectively for logarithmic cusp / dipole cusp / tilted dipole

cusp):

φ1(r) = r2 log r

φ1(r) = 1/
√
r

φ1(r) =
[
a0(θ) + a2(θ)(x2/r2 − 1)

]
/
√
r

(26)

where a0(θ) and a2(θ) are fixed functions of the tilt angle θ.

– Constants: none

– Parameters: for tilted dipole cusp, the tilt angle θ, called theta, of default value zero
and given in radians.

– Notes:

∗ The logarithmic cusp / dipole cusp / tilted dipole cusp are intended for use
with the logarithmic / dipole / 2D tilted dipole interactions defined in the
manual interaction block; see Sec. 20.

∗ The maximum expansion order for these bases is 1.

∗ In periodic systems these bases must be combined with a cuspless cut-off function (e.g.,
gaussian or spline) in order to preserve the cusp behaviour.

98

• Half-integer (and general non-integer) power basis

– Type: half-integer power

– Description: a half-integer power basis.

– Functional form:

φk(r) = rs(k)/2 , s(k) > 0

log(r) , s(k) = 0 (27)

(28)

– Constants: the exponents s(k) (reals), named kk, which are by default set to s(k) = k/2−1
(i.e., generating the basis r−1/2, log(r), r1/2, etc.).

– Parameters: none

– Notes:

∗ This basis has been used for work on cusp conditions in the presence of non-Coulomb
interactions, but it is likely not to be very useful in practical applications.

The available cut-off functions are:

• Polynomial cut-off function

– Type: polynomial

– Description: a polynomial of selectable truncation order C that goes smoothly to zero at
the cut-off length L, and goes to 1 at r = 0.

– Functional form:
f(r) = (1− r/L)

C
Θ(L− r) (29)

– Constants: the truncation order C (integer), called C, with a default value of 3.

– Parameters: the cut-off length L, called L, which in periodic systems has an upper limit of
the radius of the sphere inscribed in the Wigner-Seitz cell, and has a default value which
depends on various system characteristics.

– Notes:

∗ This is the cut-off function used in casino for the functions in the backflow transfor-
mation, and in the standard Jastrow factor for the H three-body term.

∗ This cut-off function is technically equivalent to alt polynomial below, but is thought
to improve numerical stability during optimization in some cases.

• Alternative polynomial cut-off function

– Type: alt polynomial

– Description: a polynomial of selectable truncation order C that goes smoothly to zero at
the cut-off length L.

– Functional form:
f(r) = (r − L)

C
Θ(L− r) (30)

– Constants: the truncation order C (integer), called C, with a default value of 3.

– Parameters: the cut-off length L, called L, which in periodic systems has an upper limit of
the radius of the sphere inscribed in the Wigner-Seitz cell, and has a default value which
depends on various system characteristics.

– Notes:

∗ This is the cut-off function used in the standard Jastrow factor for the u, χ, f , W and
D terms.

• Gaussian cut-off function

– Type: gaussian

– Description: Gaussian cut-off function (with hard cut-off at long distance).

99

– Functional form:
f(r) = exp(−r2/L2)Θ(Lhard − r) (31)

– Constants: the hard cut-off length Lhard (real), called L hard, which has a default value of
the radius of the sphere inscribed in the Wigner-Seitz cell in periodic systems, or 1000 a.u.
in finite systems.

– Parameters: the Gaussian width L, called L, which has a default value of 3 a.u.

• Smoothed-out step cut-off function

– Type: spline

– Description: smoothed-out step cut-off function which is minimally invasive at short range.

– Functional form:

f(r) = 1 , r < xL

hC

(
r − xL
L− xL

)
, xL < r < L (32)

0 , r > L

where hC(s) is a polynomial such that hC(0) = 1, hC(1) = 0, and the first C derivatives
at 0 and 1 are zero.

– Constants: the spline order C (integer), named C, of default value 2, constrained to 0 ≤
C ≤ 3.

– Parameters: the hard cut-off length L (real), called L, which in periodic systems has an
upper limit of the radius of the sphere inscribed in the Wigner-Seitz cell and has a default
value which depends on various system characteristics, and the relative length of the con-
stant portion of the function x (real), called x, which is limited to x ∈ [0.05, 0.95] and has
a default value of 0.5.

• Anisotropic cut-off function

– Type: anisotropic polynomial

– Polynomial cut-off times a spherical harmonic to construct anisotropic terms.

– Functional form:

f(r) = (1− r/L)
C

Θ(L− r)
∑
i

ci

d∏
β

[
r · ûβ
r

]p(i)

β

(33)

where d is the dimensionality and ûβ is the βth unit vector of a potentially rotated reference
frame.

– Constants: The truncation order C (integer), called “C”, with a default value of 3, the

coefficients ci and the exponents p
(i)
β (reals), and optionally the û vectors (which can be

given unnormalized) that define any required rotated reference frames—see below for an
example.

– Parameters: the cut-off length L, called L, which in periodic systems has an upper limit of
the radius of the sphere inscribed in the Wigner-Seitz cell, and has a default value which
depends on various system characteristics.

– Notes:

∗ For e–e cut-offs it is possible to specify one rotated reference frame, while for e–n
cut-offs up to one reference frame per nucleus can be defined. If no rotated reference
frames are given, the standard one is used.

∗ The sum of the exponents
∑
β p

(i)
β should be the same for all terms in the sum for the

function to be a valid spherical harmonic.

∗ For example,

Constants:

C: 3

xyz_1: [c: 3.0, p: [2, 1, 1]]

xyz_2: [c: -1.0, p: [0, 3, 1]]

100

Frame 1:

Atoms: [1, 2]

u_1: [1.0, 1.0, 0.0]

u_2: [-1.0, 1.0, 0.0]

u_3: [0.0, 0.0, 1.0]

Frame 1:

Atoms: [3, 4]

u_1: [1.0, 0.0, 0.0]

u_2: [0.0, 1.0, 1.0]

u_3: [0.0, -1.0, 1.0]

defines two rotated reference frames, one for atoms 1 and 2 and another for atoms 3
and 4. This function pre-multiplies the Jastrow factor term by the spherical harmonic(
3x2yz − y3z

)
/r4 times the isotropic cut-off function (1− r/L)

3
.

• Quasi-cusp function

– Type: quasicusp

– Quasi-cusp function for multi-layer/multi-wire systems.

– Functional form:

f(r) =
(√

r2 + z2 −
√
L2 − z2

) [
1− 6(r/L)

2
+ 8(r/L)

3 − 3(r/L)
4
]

Θ(L− r) (34)

where z is the inter-layer separation.

– Constants: none

– Parameters: the cut-off length L, called L, which in periodic systems has an upper limit of
the radius of the sphere inscribed in the Wigner-Seitz cell, and has a default value of 1 a.u.

– Notes:

∗ This function is intended to be used in a Rank: [2, 0] term without an e-e basis.
It allows transitioning smoothly from, e.g., a single-layer 2D electron-hole gas to the
bilayer case by introducing a cuspless wave function feature which tends to the electron-
hole cusp as z → 0. It should not be used in other circumstances since it is not a
particularly good cut-off function.

• Orbital cusp correction function

– Type: orbital cusp

– Function designed to replicate the effect of orbital-based cusp-correction schemes from
within the Jastrow factor.

– Functional form:

f(r) =
[
log
(
e
∑4

k=0
αkr

k

+ C
)
− log φs(r)

]
Θ(L− r) (35)

where φs(r) is the spherical average of the orbital being cusp corrected (this is in practice
a linear combination of norb orbitals, φs(r) =

∑norb

j=1 ajφj(r), each evaluated as a spline
interpolation of values on a grid provided as contants).

– Constants: the number of orbitals norb, called “norb” (integer), the tabulation grid length
Lgrid, called “L grid” (real), the number of points n|rmgrid on the tabulation grid, called
“ngrid” (integer), the nuclear charge Z, called “Z” (real), the function offset C, called “C”
(real), and the norb × (ngrid + 1) tabulated orbital values φj(ri) at ri = (i/ngrid)/Lgrid for
i = 0, . . . , ngrid, called “Orbital < j >:phi < i >”.

– Parameters: the cusp radius L, called L, which is constrained to be between Lgrid/ngrid

and Lgrid, coefficient α0, named alpha 0 (to be internally determined by the Kato cusp
condition), and the orbital mixing coefficients ai for i = 2, . . . , norb, called “a < i >” (NB,
a1 is fixed to 1).

– Notes:

∗ This function is intended to be generated by CASINO using runtype: gen gpcc, with
cusp correction: F and use gpcc: T. After moving the contents of the resulting
gpcc.casl to the Jastrow factor in the parameters.casl file, using the Jastrow-based
cusp correction requires setting cusp correction: F and use gpcc: F.

101

∗ In tests, the Jastrow-based cusp correction yields very similar results to the orbital
cusp correction; in fact, the ability to optimize the cusp radius gives the Jastrow-based
cusp correction a slight edge in some cases.

∗ Using just the 1s orbital in the Jastrow-based cusp correction appears to suffice in
small molecules.

There exist casl keywords to control the behaviour of the gjastrow terms. The full keyword listing
is:

• Rank: [n, m]

Defines the number of electrons n and nuclei m involved in the term.

• Rules: [rule1, rule2, ...]

Declares the symmetries that define parameter channels for two-body and many-body param-
eters. The empty ruleset, Rules: [], corresponds to all particles and nuclei being regarded
as different. By default casino generates a set of rules based on the basic symmetries of the
system. To declare rules without removing the default rules, the syntax Rules: [default,

rule1, ...] can be used. Rules can be specified in any order. The available rule formats are:

Example Effect
1=2 Makes two particle types equivalent
1-1=1-2 Makes two particle-particle pairs equivalent
n1=n2 Makes two nuclei equivalent
1-n1=2-n1 Makes two particle-nucleus pairs equivalent
N Makes periodic images of all nuclei in the primitive cell equivalent
N1 Makes nucleus n1 equivalent to all its periodic images
N1=N2 Makes two nuclei equivalent to each other, and to all their periodic

images (same as [N1, N2, n1=n2])
1-N1=2-N2 Makes two particle-nucleus pairs equivalent, and each nu-

cleus equivalent to all its periodic images (same as [N1, N2,

1-n1=2-n2])
Z Makes nuclei with the same atomic number equivalent
Z6 Makes nuclei with a certain atomic number (6) equivalent
Z1=Z11 Makes all the nuclei with the given atomic numbers (1 and 11)

equivalent (note that this is in general not terribly sensible)
1-Z1=2-Z11 Makes two particle-nuclei pairs equivalent
!1 Removes a particle type from a term
!n1 Removes a nucleus from a term
!N1 Removes a nucleus and all its periodic images from a term
!Z1 Removes all nuclei with the given atomic number from a term

• e-e basis (block)
e-n basis (block)
e-e cutoff (block)
e-n cutoff (block)
Define the type, expansion order, constants and parameters of the basis functions and cut-offs
of the term. See above for details.

• e-e cusp: boolean
e-n cusp: boolean
By default casino applies the e–e cusp conditions on the first declared term which is capable of
describing an e–e cusp, forcing any other such terms to be cuspless at coalescence points, and
makes all terms capable of describing an e–n cusp cuspless. Setting e-e cusp and/or e-n cusp

to T changes this behaviour.

Note that it is rarely possible to apply cusp conditions to anything other than e–e and e–n terms.
However casino is capable of applying cusp conditions to higher-rank terms when it is possible.

Note that the use of these flags could in principle could result in multiple terms having cusp
conditions imposed on, which may or may not be sensible. casino will issue warnings if the
cusp condition for any e–e or e–n pair is imposed more than once.

• Waive e-e cusp: [e-e-pair1, e-e-pair2, . . .]

Waive e-n cusp: [e-n-pair1, e-n-pair2, . . .]

102

When a term is used to impose the e–e and/or e–n cusp conditions, by default all e–e and/or e–n
pairs in the term are forced to have cusps. The Waive e-e cusp and Waive e-n cusp blocks
allow defining a list of e–e and e–n pairs which are to be kept cuspless. For example, an e–e term
in an electronic system with Waive e-e cusp: [1-1, 2-2] would have cuspless channels for
same-spin electrons and apply a cusp to the anti-parallel-spin channel (1-2) only.

• Indexing (block)
The construction of some terms require imposing constraints on the linear parameters. These
constraints could take the form of a linear system involving the parameters, for example. “In-
dexing constraints” are a class of constraints which instead manipulate the list of available
parameter index sets, which is an efficient way of eliminating linear parameters.

An index value of zero is given the special meaning of removing a basis function and its associated
cut-off function in some of the indexing constraints below, allowing further flexibility in the
construction of terms. This is only useful when a cut-off function is used or if the functional
basis does not contain the function φ = 1.

The Indexing block may contain the following keyword-value pairs:

– Maximum sum: integer
The Maximum sum indexing constraint allows the construction of terms following a Boys-
Handy-style indexing, where sum of the linear parameter indices is constrained not to
exceed a certain value. This type of indexing is an efficient way of constructing affordable
high-rank terms to accurately describe small assemblies of particles.

– All masks: boolean
If set to T, indices are allowed to take the value zero. For example this allows pure e–e,
e–e–e, e–n and e–e–n contributions in an e–e–e–n term.

In the generation of the list of valid index sets, boolean masks determining which indices
are allowed to be non-zero are used. By default the only mask used is a vector filled with
true. “All masks” refers to the fact that all possible masks are used in the generation of
the list of index sets.

– e-e dot product: boolean
e-n dot product: boolean
If e-e dot product (or e-n dot product) is set to T, the list of valid index sets will
contain only index sets where all but two e–e (or e–n) indices are zero, i.e., the index
generator uses only masks which contain two trues. Also, the two non-zero indices are
required to have the same remainder when divided by the dimensionality of the system,
and a linear constraint is imposed to equate parameters whose two non-zero indices divided
by the dimensionality give the same integer. Used in conjunction with a vectorial basis this
can be used to construct dot-product terms, such as the W and D terms in the standard
casino Jastrow factor.

Note that, by construction, the use of e-e dot product and e-n dot product is incom-
patible with the use of All masks.

• Linear parameters (block)
Defines the linear parameters of the Jastrow factor term. See above for details.

Note that the name given to channels inside this block is used as a model for cusps. E.g., if a
cusp-imposing electron-electron term has the rule 1=2, then both parallel (1-1) and antiparallel
(1-2) electron pairs will have the same cusp condition applied; if one explicitly provides a
Linear parameters block containing an empty Channel 1-2 block, the cusp value will be that
corresponding to antiparallel-spin electrons. Note that by default the first-occurring pair in a
natural enumeration will be used as the model (i.e., 1-1, unless there is only one up-spin electron
in the system in which case 1-2 is used instead).

In addition to the parameters, the Channel blocks may contain the following keywords to further
fine-tune the cusp behaviour:

– e-e cusp: boolean
e-n cusp: boolean
Per-channel override of e–e and e–n cusp condition application flags (see analogous per-term
flags above).

103

– e-e cusp model: string
e-n cusp model: string
Per-channel override of e–e and e–n cusp model, e.g., 1-2 or 2-n3.

– e-e cusp value: real
e-n cusp value: real
Per-channel override of e–e and e–n cusp value, e.g., 0.5 or -6.0. (This is the target value
of 1

Ψ
dΨ
dr

∣∣
r=0

, sometimes referred to as the Kato Γ value elsewhere in this manual).

7.8.2 Multi-geminal wave functions

Geminal and multi-geminal wave function parameters are defined in the GEMINAL top-level block of
the parameters.casl file. More information about the specifics of these wave functions and on the
format of the casl block is available on request.

7.9 Compressed multi-determinant expansions: mdet.casl and cmdet.casl

casino will produce an mdet.casl file when runtype is set to gen mdet casl while using a multi-
determinant expansion (see Sec. 7.4.5). This file describes the multi-determinant expansion (referring
to the orbitals as integer indices but not specifying what they are), and is used by the det compress
utility to produce a cost-efficient compressed version of the expansion.

The mdet.casl file looks like this:

MDET:

Title: Ne atom (numerical orbitals)

Expansion:

Term 1:

Coefficient: [-0.98314330000000005, Group: 1]

Spin 1: [1, 2, 3, 4, 5]

Spin 2: [1, 2, 3, 4, 5]

Term 2:

Coefficient: [2.9915557225902840E-003, Group: 2]

Spin 1: [1, 2, 3, 4, 5]

Spin 2: [1, 2, 3, 4, 6]

Term 3:

Coefficient: [2.9915557225902840E-003, Group: 2]

Spin 1: [1, 2, 3, 4, 5]

Spin 2: [1, 2, 4, 5, 7]

Term 4:

Coefficient: [2.9915557225902840E-003, Group: 2]

Spin 1: [1, 2, 3, 4, 6]

Spin 2: [1, 2, 3, 4, 5]

Term 5:

Coefficient: [2.9915557225902840E-003, Group: 2]

Spin 1: [1, 2, 4, 5, 7]

Spin 2: [1, 2, 3, 4, 5]

Term 6:

Coefficient: [-2.9915557225902840E-003, Group: 2]

Spin 1: [1, 2, 3, 4, 5]

Spin 2: [1, 2, 3, 5, 8]

Term 7:

Coefficient: [-2.9915557225902840E-003, Group: 2]

Spin 1: [1, 2, 3, 5, 8]

Spin 2: [1, 2, 3, 4, 5]

...

The det compress utility will produce a cmdet.casl file describing the original, de-duplicated and
compressed expansion. If a cmdet.casl is present in the directory where casino is being run, it will
be used automatically.

The cmdet.casl file looks like this:

CMDET:

104

Title: Ne atom (numerical orbitals)

Original expansion:

Term 1:

Coefficient: [-0.98314330000000005, Group: 1]

Spin 1: [1, 2, 3, 4, 5]

Spin 2: [1, 2, 3, 4, 5]

Term 2:

Coefficient: [2.9915557225902840E-003, Group: 2]

Spin 1: [1, 2, 3, 4, 5]

Spin 2: [1, 2, 3, 4, 6]

...

Deduplicated coefficients:

c_1: [1]

c_2: [2]

...

c_103: [-124]

c_104: [125, 150]

...

c_764: [993]

c_765: [994]

c_766: [995]

c_767: [996]

...

Compressed expansion:

Orbital pool:

Orbital 1:

Component 1: [1]

Orbital 2:

Component 1: [2]

...

Orbital 47:

Component 1: [2]

Component 2: [-9, Num: [764], Den: [1]]

Component 3: [-51, Num: [766], Den: [1]]

Orbital 48:

Component 1: [-9, Num: [765], Den: [767]]

Component 2: [-51]

...

Expansion:

Term 1:

Coefficient: [Num: [-1]]

Spin 1: [1, 2, 3, 4, 5]

Spin 2: [1, 3, 4, 5, 47]

Term 2:

Coefficient: [Num: [-767]]

Spin 1: [1, 3, 4, 5, 48]

Spin 2: [1, 2, 3, 4, 5]

...

For more details on the compression algorithm see Ref. [31]. The file utils/det compress/README

in the distribution also contains important information on the method and the format of these files.

7.10 Orbital files: awfn.data, bwfn.data, dwfn.data, gwfn.data, pwfn.data

and stowfn.data

These files contain the geometry and the orbital and determinant data produced by the wave-function
generating code. The data can be given in a Gaussian basis set (gwfn.data), in a plane-wave basis
set (pwfn.data) or in a blip function basis set (bwfn.data). The awfn.data file contains a trial wave
function for an atom with the orbitals given explicitly on a radial grid.

Without going into details of specific formats, the files basically contain the following information:

• Basic information about the trial wave-function generating calculation (e.g., DFT/HF/etc.),
including total energy and components;

105

• Geometry of the system;

• Details of the k-space net used by the program that generated the trial wave function (only if
the systems is periodic);

• Details of the basis set:

– Exponents, contraction coefficients and shell types (Gaussians);

– G-vectors of the plane waves;

– Blip grid;

• Multideterminant properties of the trial wave function (if any);

• Specification of the orbitals:

– Gaussian coefficients;

– Plane-wave coefficients;

– Blip coefficients;

• Eigenvalue spectrum (used to work out which orbitals to occupy and, crudely, whether the
system is a metal or an insulator);

• The output file from the program that generated the trial wave function (not read by casino—
for reference only).

These files are generated automatically by various utilities available for different electronic structure
programs (see Secs. 8 and 9). The format of the different files should be clear from looking at the
various examples for different dimensionalities and basis sets.

If correlated sampling is introduced into casino, it may be necessary to define several xwfn.data
files. These will be named xwfn.data.1, xwfn.data.2, xwfn.data.3, . . .

7.10.1 gwfn.data file specification

The gwfn.data file contains orbitals expanded in a Gaussian basis set. The original specification is
below, followed by an actual example:

Dimensions of allocated arrays are shown.

For the larger fields I use the following formatting.

% strings (title,code,method,functional) may be up to 80 characters long.

* free format

$ FORMAT(3(1PE20.13)) - for reals naturally grouped in triples (e.g. coords)

& FORMAT(4(1PE20.13)) - other reals (e.g. gaussian exponents)

@ FORMAT(8I10) - lengthy lists of integers

use e.g. write(IO,format=&)(array(i),i=1,size)

First line of file is TITLE field.

MDT 1997

--

% TITLE (the title)

BASIC INFO

% CODE:

name of code producing this file

(i.e. CRYSTAL95/98/03/06/09/14/17 GAUSSIAN94/98/03/09, TURBOMOLE)

% METHOD:

Comment - RHF/ROHF/UHF/DFT/S-DFT/CI/etc.

% FUNCTIONAL

106

DFT functional name. If method not DFT then ‘none’.

* PERIODICITY:

system dimension 0,1,2,3 => molecule, polymer, slab, solid

* SPIN_UNRESTRICTED:

.true. or .false. (i.e. different orbitals for different spins)

* EIONION:

nuclear-nuclear repulsion energy (au/atom)

* NUM_ELECTRONS:

number of electrons per primitive cell

GEOMETRY

* NUM_ATOMS:

number of atoms per primitive cell

$ BASIS(3,NUM_ATOMS):

atomic positions(au)

@ ATNO(NUM_ATOMS):

atomic numbers for each atom (add 200 to flag atom with pseudopotential)

& VALENCE_CHARGE(NUM_ATOMS):

valence charges for each atom (=atno for all-electron case or e.g. H pseudo)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PERIODIC INSERT%%%%%%%%%%%%%%%%%%%%%%%%%%%%

$ LATTICE_VECTORS(3,3):

primitive lattice vectors (au)

K SPACE NET

* NUM_K:

no. of k points in BZ

* NUM_REAL_K:

no. of ‘real’ k points

(all components of ‘real’ k points are either zero or half a

reciprocal lattice vector)

$ KVEC(3,NUM_K):

k point coordinates (a.u.)

NB: coordinates of ‘real’ k points must occupy the first num_real_k

positions in kvec.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END PERIODIC INSERT%%%%%%%%%%%%%%%%%%%%%%%%

BASIS SET

* NUM_CENTRES

number of centres with associated Gaussian functions

(i.e. number of atoms + number of nonatom Gaussian sites) per primitive cell

* NUM_SHELLS:

number of shells per primitive cell

* NUM_AO:

number of basis functions (’AO’) per primitive cell

* NUM_PRIMS:

number of Gaussian primitives per primitive cell

* HIGHEST_ANG_MOM:

highest angular momentum of shells (max 4 for periodic, 5 for finite system)

@ SHELL_AM(NUM_SHELLS):

code for shell type

s=1, sp=2, p=3, d= 4, f= 5 etc. (harmonic representation)

d=-4, f=-5 (cartesian representation - not implemented)

@ NUMPRIMS_IN_SHELL(NUM_SHELLS):

Number of primitive Gaussians in each shell

@ FIRST_SHELL(NUM_CENTRES+1)

Sequence number of first shell on each Gaussian centre.

Allows e.g.

do n=1,num_centres

do shell=first_shell(n),first_shell(n+1)-1

blah.

enddo

enddo

to loop over shells on each centre

107

Note dimension.

& EXPONENT(NUM_PRIMS):

exponents of Gaussian primitives

& C_PRIM(NUM_PRIMS)

contraction coefficients ’normalized’ without m-dependent normalization

(see note above)

& C_PRIM2(NUM_PRIMS) **must be omitted if no sp shells in basis**

2nd contraction coefficients ’normalized’ without m-dependent normalization

(i.e. p coefficient for sp shells, zero otherwise)

(see note above)

$ SHELL_POS(3,NUM_SHELLS)

positions of shells (not necessarily atom-centred)

MULTIDETERMINANT INFORMATION

% GS - Ground state calculation

or

% SD - Single determinant inc. excitations/additions/subtractions

Example:

SD Single det calculation

DET 1 1 PR 2 1 5 1 Promote electron in band 2 kpoint 1

to band 5 kpoint 1 in determinant 1,

spin 1 ("up")

or

% MD - Multiple determinants

MD Multideterminant

3 3 determinants

1.d0 Determinant 1 prefactor

2.d0 Determinant 2 prefactor

-1.d0 Determinant 3 prefactor

DET 3 1 PR 2 1 5 1 Promotion as examples above

ORBITAL COEFFICIENTS

& CK(NUM_REAL_K*NUM_AO*NUM_AO + NUM_COMPLEX_K*NUM_AO*NUM_AO)

block as follows

----spin (spin-polarized calcs only)---------------------------------

/ \

----k (for solids)-------------------------------

/ \

----bands-(solids)_or MOs (molecules)------

/ \

-AO-basis functions grouped by shell-

/ \

Complex coefficients are given as 2 adjacent real numbers (real,imaginary).

Ordering of d orbital coefficients;

z2, xz, yz, x2-y2, xy

Ordering of f,g,..: m=0,1,-1,2,-2,3,-3,4,-4.....

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PERIODIC INSERT%%%%%%%%%%%%%%%%%%%%%%%%%%%%

EIGENVALUES

* k K_INDEX KX KY KZ

& List of the eigenvalues of the MOs at this k point.

(likewise for the remainning k points)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END PERIODIC INSERT%%%%%%%%%%%%%%%%%%%%%%%%

108

OTHER STUFF

* Anything you like can be written here - intended for copy of input/output

files from DFT/HF/etc. program.

Note the potential issues with ‘normalizing’ contraction coefficients, e.g., with the crystal program
the contraction coefficients are multiplied by that part of the normalization factor which is independent
of m; the crystal output does not in fact contain the m-dependent part at all. This must be
artificially multiplied into the orbital coefficients by the crystal to casino converter. Authors of
other interfaces must ensure this is done properly.

A second issue is that for d functions only (not f or g), the scale factors of the real solid harmonics (e.g.,
the 3 in 3xy) are not explicitly evaluated by the casino orbital evaluator, but must be pre-multiplied
into the orbital coefficients. Again, the crystal to casino converter does this.

These issues are discussed with reference to the crystal code in MDT’s document in
CASINO/examples/generic/gauss dfg/README which also contains a ‘test suite’ to verify that higher
angular momentum functions are being treated correctly.

The expressions for the real solid harmonics assumed by casino are given in the table on p. 170 of
Pisani, Dovesi and Roetti, Hartree–Fock ab initio treatment of crystalline systems (Springer-Verlag,
1988). This can be found online.

An example of a gwfn.data file for a silicon crystal is given below:

Silicon RHF

BASIC INFO

Generated by:

CRYSTAL2003

Method:

RHF

DFT functional:

None

Periodicity:

3

Spin unrestricted:

.false.

Nuclear repulsion energy (au/atom):

-4.200509061764448

Number of electrons per primitive cell

8

GEOMETRY

Number of atoms

2

Atomic positions (au)

1.2824155389174E+00 1.2824155389174E+00 1.2824155389174E+00

-1.2824155389174E+00-1.2824155389174E+00-1.2824155389174E+00

Atomic numbers for each atom

214 214

Valence charges for each atom

4.0000000000000E+00 4.0000000000000E+00

Primitive lattice vectors (au)

0.0000000000000E+00 5.1296621556694E+00 5.1296621556694E+00

5.1296621556694E+00 0.0000000000000E+00 5.1296621556694E+00

5.1296621556694E+00 5.1296621556694E+00 0.0000000000000E+00

K SPACE NET

Number of k points

8

Number of ‘real’ k points on BZ edge

109

8

k point coordinates (au)

0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00

-3.0621828087817E-01 3.0621828087817E-01 3.0621828087817E-01

3.0621828087817E-01-3.0621828087817E-01 3.0621828087817E-01

3.0621828087817E-01 3.0621828087817E-01 3.0621828087817E-01

3.0621828087817E-01 3.0621828087817E-01-3.0621828087817E-01

6.1243656175634E-01 0.0000000000000E+00 0.0000000000000E+00

0.0000000000000E+00 6.1243656175634E-01 0.0000000000000E+00

0.0000000000000E+00 0.0000000000000E+00 6.1243656175634E-01

BASIS SET

Number of Gaussian centres

2

Number of shells per primitive cell

10

Number of basis functions (’AO’) per primitive cell

42

Number of Gaussian primitives per primitive cell

10

Highest shell angular momentum (s/p/d/f/g... 1/2/3/4/5...)

3

Code for shell types (s/sp/p/d/f... 1/2/3/4/5...)

2 2 2 4 2 2 2 2

4 2

Number of primitive Gaussians in each shell

1 1 1 1 1 1 1 1

1 1

Sequence number of first shell on each centre

1 6 11

Exponents of Gaussian primitives

2.0871000000000E+00 1.1464000000000E+00 3.4240000000000E-01 4.4610000000000E-01

1.1830000000000E-01 2.0871000000000E+00 1.1464000000000E+00 3.4240000000000E-01

4.4610000000000E-01 1.1830000000000E-01

’Normalized’ contraction coefficients without m-dependent normalization

3.0098420484637E+00 1.9203853959954E+00 7.7586574622601E-01 9.7474724462951E-01

3.4964298562377E-01 3.0098420484637E+00 1.9203853959954E+00 7.7586574622601E-01

9.7474724462951E-01 3.4964298562377E-01

2nd ’normalized’ contraction coefficients (p coeff for sp shells, 0.0 otherwise)

8.6965165911299E+00 4.1123159952884E+00 9.0799499001157E-01 0.0000000000000E+00

2.4051778078084E-01 8.6965165911299E+00 4.1123159952884E+00 9.0799499001157E-01

0.0000000000000E+00 2.4051778078084E-01

Position of each shell (au)

1.2824155389174E+00 1.2824155389174E+00 1.2824155389174E+00

1.2824155389174E+00 1.2824155389174E+00 1.2824155389174E+00

1.2824155389174E+00 1.2824155389174E+00 1.2824155389174E+00

1.2824155389174E+00 1.2824155389174E+00 1.2824155389174E+00

1.2824155389174E+00 1.2824155389174E+00 1.2824155389174E+00

-1.2824155389174E+00-1.2824155389174E+00-1.2824155389174E+00

-1.2824155389174E+00-1.2824155389174E+00-1.2824155389174E+00

-1.2824155389174E+00-1.2824155389174E+00-1.2824155389174E+00

-1.2824155389174E+00-1.2824155389174E+00-1.2824155389174E+00

-1.2824155389174E+00-1.2824155389174E+00-1.2824155389174E+00

MULTIDETERMINANT INFORMATION

GS

ORBITAL COEFFICIENTS

7.9927874568142E-02 0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00

-2.8262251738009E-01 0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00

<snip>

-1.8480536384432E-03 0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00

0.0000000000000E+00 0.0000000000000E+00 3.1778950736229E-01 0.0000000000000E+00

110

EIGENVALUES

k 1 0.00000000 0.00000000 0.00000000

-8.3654527718958E-01-2.0855050412594E-01-2.0855050412594E-01-2.0855050412594E-01

1.1891116371242E-01 1.1891116371242E-01 1.1891116371242E-01 1.6642614221042E-01

4.8905871448045E-01 5.5993323168592E-01 5.5993323168592E-01 7.0605030728642E-01

8.6499950558517E-01 8.6499950558517E-01 8.6499950558517E-01 1.0845740016273E+00

1.0845740016273E+00 1.0845740016273E+00 1.1874293233021E+00 1.1874293233021E+00

1.3682921598936E+00 1.3682921598936E+00 1.3682921598936E+00 1.5285057402088E+00

1.5285057402088E+00 1.5285057402088E+00 3.0863962899448E+00 3.0863962899448E+00

3.0863962899448E+00 3.1999760552302E+00 3.6143223221555E+00 3.6143223221555E+00

3.6143223221555E+00 3.6584331265112E+00 9.0595232556836E+00 9.0998780449430E+00

9.0998780449430E+00 9.0998780449430E+00 9.4963012296477E+00 9.4963012296477E+00

9.4963012296477E+00 9.5221533702082E+00

k 2 -0.30621828 0.30621828 0.30621828

-8.3195540313868E-01-2.4528906228096E-01-2.1458434393753E-01-2.1458434393753E-01

1.2112567282366E-01 1.2873111845318E-01 1.2873111845318E-01 1.9164631417601E-01

5.0097442550864E-01 5.5884325681737E-01 5.5884325681737E-01 6.8605998196272E-01

8.7087516518368E-01 8.7097496240349E-01 8.7097496240349E-01 1.0564198656000E+00

1.0687921848831E+00 1.0687921848831E+00 1.1911137685880E+00 1.1911137685880E+00

1.3813695578425E+00 1.3957621401173E+00 1.3957621401173E+00 1.5386574220184E+00

1.5386574220184E+00 1.5619812446828E+00 3.0953070972747E+00 3.1171873104694E+00

3.1171873104694E+00 3.1553855866583E+00 3.6172352384823E+00 3.6172352384823E+00

3.6473503138099E+00 3.7104355682694E+00 9.0295682518751E+00 9.1131656229938E+00

9.1189605126448E+00 9.1189605126448E+00 9.4985126051165E+00 9.4985126051165E+00

9.5096928174714E+00 9.5640262470037E+00

k 3 0.30621828 -0.30621828 0.30621828

<snip>

Input and output files for this calculation (not read by CASINO)

==

<deleted>

7.10.2 pwfn.data file specification

The pwfn.data file contains orbitals expanded in a plane-wave basis set. An example is shown below:

Si diamond

BASIC INFO

Generated by:

CASTEP

Method:

DFT

DFT Functional

LDA

Pseudopotential

LDA Trouiller-Martin (1551 coeff)

Plane-wave cutoff (au)

7.5

Spin polarized:

F

Total energy (au per primitive cell)

-7.84635517057440

Kinetic energy (au per primitive cell)

3.24780615624099

Local potential energy (au per primitive cell)

-1.03508540683458

Nonlocal potential energy (au per primitive cell)

0.144898714904598

Electron-electron energy (au per primitive cell)

-1.80295658630558

111

Ion-ion energy (au per primitive cell)

-8.40101804857984

Number of electrons per primitive cell

8

GEOMETRY

Number of atoms per primitive cell

2

Atomic numbers and positions of atoms (au)

14 1.2824155389173550 1.2824155389173550 1.2824155389173550

14 -1.2824155389173550 -1.2824155389173550 -1.2824155389173550

Primitive lattice vectors (au)

0.000000000000000E+000 5.12966215566942 5.12966215566942

5.12966215566942 0.000000000000000E+000 5.12966215566942

5.12966215566942 5.12966215566942 0.000000000000000E+000

G VECTORS

Number of G-vectors

341

Gx Gy Gz (au)

0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

<snip>

2.44974624702536 2.44974624702536 2.44974624702536

WAVE FUNCTION

Number of k-points

8

k-point # ; # of bands (up spin/down spin) ; k-point coords (au)

1 4 0 0.0 0.0 0.0

Band, spin, eigenvalue (au)

1 1 -2.432668987064920E-002

Eigenvector coefficients

-0.953978956601082 OR (1.123456789, 9.876543210) if complex

<snip>

0.000000000000000E+000

Band, spin, eigenvalue (au)

2 1 0.417639684278199

Eigenvector coefficients

-1.576227515378431E-012

<snip>

0.000000000000000E+000

Band, spin, eigenvalue (au)

3 1 0.417639711691157

Eigenvector coefficients

6.348405363267598E-008

<snip>

0.000000000000000E+000

Band, spin, eigenvalue (au)

4 1 0.417639745897256

Eigenvector coefficients

-2.030042411030856E-009

<snip>

0.000000000000000E+000

k-point # ; # of bands (up spin/down spin) ; k-point coords (au)

2 4 0 -0.3062182808781698 -0.3062182808781698 0.3062182808781698

Band, spin, eigenvalue (au)

1 1 6.261478573034787E-002

Eigenvector coefficients

0.683590846620266

<snip>

0.000000000000000E+000

Band, spin, eigenvalue (au)

2 1 0.156856931414136

112

etc. for all 8 k points with 4 bands per k point in this case.

OTHER STUFF

* Anything you like can be written here - intended for copy of input/output

files from the PW DFT program.

7.10.3 bwfn.data file specification

The bwfn.data file contains orbitals represented by blip functions (though these files can get so large
that they are normally converted by casino to the binary format bwfn.data.bin. An alternative
binary format bwfn.data.b1 is produced natively by the pwscf code.) An example of a formatted
bwfn.data file is shown below:

Bulk Si

BASIC INFO

Generated by:

PWSCF

Method:

DFT

DFT Functional:

unknown

Pseudopotential

unknown

Plane-wave cutoff (au)

7.5

Spin polarized:

F

Total energy (au per primitive cell)

-62.76695352625196

Kinetic energy (au per primitive cell)

0.E+0

Local potential energy (au per primitive cell)

0.E+0

Non local potential energy(au per primitive cell)

0.E+0

Electron electron energy (au per primitive cell)

0.E+0

Ion ion energy (au per primitive cell)

-67.208144397949283

Number of electrons per primitive cell

64

GEOMETRY

Number of atoms per primitive cell

16

Atomic number and position of the atoms(au)

14 -1.282415538750 -1.282415538750 -1.282415538750

14 -1.282415538750 3.847246616250 3.847246616250

:

:

14 11.541739848750 6.412077693750 6.412077693750

14 11.541739848750 11.541739848750 11.541739848750

Primitive lattice vectors (au)

10.259324310000 10.259324310000 0.000000000000

0.000000000000 10.259324310000 10.259324310000

10.259324310000 0.000000000000 10.259324310000

G VECTORS

Number of G-vectors

113

2085

Gx Gy Gz (au)

0.000000000000 0.000000000000 0.000000000000

-0.306218280918 -0.306218280918 -0.306218280918

-0.306218280918 -0.306218280918 0.306218280918

:

:

2.143527966427 2.755964528263 1.531091404591

1.531091404591 3.368401090099 0.918654842754

Blip grid

20 20 20

WAVE FUNCTION

Number of k-points

1

k-point # ; # of bands (up spin/down spin) ; k-point coords (au)

1 32 0 0.0000000000000000 0.0000000000000000 0.0000000000000000

Band, spin, eigenvalue (au), localized

1 1 -0.015443213499 F

Blip coefficients

-0.347534087942

-0.517756216863

-0.528529751776

:

:

-0.450993755155

0.024823593723

-0.022992059309

Band, spin, eigenvalue (au)

2 1 -0.009057759900

Blip coefficients

-0.097602672632

-0.176031268912

-0.188226226118

:

:

(for 32 bands)

7.10.4 awfn.data file specification

The awfn.data file contains atomic orbitals represented numerically on a radial grid. An example is
shown below:

Atomic Be wave function in real space

Atomic number

4

Total number of orbitals

2

The 1s(2)2s(2) [1S] state electronic configuration

Number of up, down spin electrons

2 2

States

1 1 0 0 % label of spin up electron, quantum number n, l, m

2 2 0 0

1 1 0 0 % label of spin down electron, n, l, m

2 2 0 0

Radial grid (a.u.)

301 % Number of radial grid points are given

0.000000000000000E+00 % Distance from centre of atom r

0.457890972218354E-02

0.477372816593466E-02

0.497683553179352E-02

0.518858448775392E-02

0.540934270674177E-02

114

0.563949350502860E-02

:

:

0.108431746952108E+04

0.113045182349640E+04

0.117854905151603E+04

Orbital # 1 [1s]

0 1 0 % spin type [0=unpolarized, 1=up, 2=down], n, l

0.000000000000000E+00 % r * Value of trial wave function at point r

0.659528705936585E-01

0.687054582044431E-01

0.715705591983797E-01

:

:

0.000000000000000E+00

0.000000000000000E+00

0.000000000000000E+00

Orbital # 2 [2s]

0 2 0

0.000000000000000E+00

0.120187930416515E-01

0.125203784849961E-01

0.130424628552784E-01

:

:

0.000000000000000E+00

0.000000000000000E+00

0.000000000000000E+00

0.000000000000000E+00

7.10.5 dwfn.data file specification

The dwfn.data file contains molecular dimer orbitals represented numerically on a radial grid. An
example is shown below (given in full in CASINO/examples/numerical dimer/o2):

Tabulated dimer wave functions in real space

O2 R=2.283

Nuclei-Nuclei distance

2.283

Atomic numbers

8 8

Total number of orbitals

9

Number up/downspin electrons, determinants

9 7 12

States

1 1 0 0

2 2 0 0

3 3 0 0

4 4 0 0

:

:

4 4 0 0

5 5 0 0

6 8 1 -1

7 8 1 1

Grid, niXmu

169 193

0.186999562713678E-01 0.221327072304881E-01

Orbital number 1 (sigma g)

0.860779272842285E+01

0.859406979250750E+01

0.855304113006462E+01

0.848512471670455E+01

:

115

:

0.833254905465229E-32

0.556321049814705E-32

0.389883298880131E-32

0.334392266810106E-32

Orbital number 2 (sigma u)

-0.860882690581978E+01

-0.859510169013196E+01

-0.855406620855265E+01

-0.848613849691955E+01

-0.839200713356398E+01

etc. etc.

7.10.6 stowfn.data file specification

The stowfn.data file contains Slater-type orbitals for atoms, molecules, polymers, slabs or solids. An
example is shown here:

CH4 molecule

BASIC INFO

Generated by:

ADF

Periodicity:

0

Spin unrestricted:

.false.

Nuclear repulsion energy (au/atom):

2.696727236672644

Number of electrons

10

GEOMETRY

Number of atoms

5

Atomic positions (au)

0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00

1.1849716639362E+00 1.1849716639362E+00 1.1849716639362E+00

-1.1849716639362E+00-1.1849716639362E+00 1.1849716639362E+00

1.1849716639362E+00-1.1849716639362E+00-1.1849716639362E+00

-1.1849716639362E+00 1.1849716639362E+00-1.1849716639362E+00

Atomic numbers for each atom

6 1 1 1 1

Valence charges for each atom

6.0000000000000E+00 1.0000000000000E+00 1.0000000000000E+00 1.0000000000000E+00

1.0000000000000E+00

BASIS SET

Number of STO centres

5

Position of each centre (au)

0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00

1.1849716639362E+00 1.1849716639362E+00 1.1849716639362E+00

-1.1849716639362E+00-1.1849716639362E+00 1.1849716639362E+00

1.1849716639362E+00-1.1849716639362E+00-1.1849716639362E+00

-1.1849716639362E+00 1.1849716639362E+00-1.1849716639362E+00

Number of shells

51

Sequence number of first shell on each centre

1 16 25 34 43

Code for shell types (s/sp/p/d/f/g 1/2/3/4/5/6)

1 1 1 1 1 1 1 3

116

3 3 3 4 4 5 5 1

1 1 1 1 3 3 4 4

1 1 1 1 1 3 3 4

4 1 1 1 1 1 3 3

4 4 1 1 1 1 1 3

3 4 4

Order of radial prefactor r in each shell

0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

Exponent in each STO shell

1.1400000000000E+01 6.6000000000000E+00 4.8500000000000E+00 5.9000000000000E+00

2.5500000000000E+00 1.6500000000000E+00 1.1600000000000E+00 5.1500000000000E+00

2.4000000000000E+00 1.3000000000000E+00 7.8000000000000E-01 2.5000000000000E+00

1.5000000000000E+00 4.0000000000000E+00 2.0000000000000E+00 3.3000000000000E+00

2.0000000000000E+00 1.4000000000000E+00 1.0000000000000E+00 7.1000000000000E-01

2.0000000000000E+00 1.0000000000000E+00 2.5000000000000E+00 1.5000000000000E+00

3.3000000000000E+00 2.0000000000000E+00 1.4000000000000E+00 1.0000000000000E+00

7.1000000000000E-01 2.0000000000000E+00 1.0000000000000E+00 2.5000000000000E+00

1.5000000000000E+00 3.3000000000000E+00 2.0000000000000E+00 1.4000000000000E+00

1.0000000000000E+00 7.1000000000000E-01 2.0000000000000E+00 1.0000000000000E+00

2.5000000000000E+00 1.5000000000000E+00 3.3000000000000E+00 2.0000000000000E+00

1.4000000000000E+00 1.0000000000000E+00 7.1000000000000E-01 2.0000000000000E+00

1.0000000000000E+00 2.5000000000000E+00 1.5000000000000E+00

Number of basis functions (’AO’)

127

Number of molecular orbitals (’MO’)

5

MULTIDETERMINANT INFORMATION

GS

ORBITAL COEFFICIENTS (normalized AO)

1.6988226730536E-02 2.5547553149910E-01 8.0520564294501E-01-7.6530531473020E-02

-1.0796538835168E-02 1.8427415395707E-02-2.8375885251793E-02 0.0000000000000E+00

0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00

:

:

-4.4321439503424E-02-2.6719231703795E-03-1.4778027220273E-03 1.4778027220273E-03

-5.8839059140813E-04-3.2662239102706E-20 9.3447725407852E-04 4.2896698516357E-03

-4.2896698516357E-03-1.7516507584000E-03-9.7236150153889E-20

7.11 External-potential file: expot.data

This file contains a representation of an external potential and of the orbitals associated with it.
The potential is built up as a sum over one-dimensional sets, each of which is a potential of a stated
representation (see the list below) varying as a function of r either isotropically or in a stated direction.
Each individual potential set may be finite or periodic (with certain restrictions depending on whether
the system itself is finite or one-, two-, or three-dimensionally periodic). Periodic external potentials
must be commensurate with the underlying lattice if the system is periodic along axes not orthogonal
to the potential direction.

The specification of the file is as follows (comments in square brackets):

START HEADER

User may put any comments here. CASINO will ignore this section.

END HEADER

117

START VERSION

1

END VERSION

START EXPOT

Title

title

Number of sets

1

START SET 1

Particle types affected

All

Periodicity [APERIODIC/PERIODIC]

APERIODIC

Type of representation

SQUARE

Direction [ISOTROPIC/A1/A2/A3/X/Y/Z/CUSTOM]

ISOTROPIC

[If CUSTOM then add direction vector after keyword e.g. CUSTOM 1.0 1.0 0.0]

Number of such potentials to add

1

Origin(s) for each potential (au)

0.0 0.0 0.0

Potential

... insert potential specification of appropriate type (see below)

END SET 1

... insert as many sets as required, consistently with ‘Number of sets’ above

END EXPOT

START EXPOT_WFN

Title

title

Number of sets

1

START SET 1

Periodicity [APERIODIC/PERIODIC]

PERIODIC

Type of orbitals

FOURIER

Direction [ISOTROPIC/A1/A2/A3/X/Y/Z/CUSTOM]

Z

[If CUSTOM then add direction vector after keyword e.g. CUSTOM 1.0 1.0 0.0]

Origin of orbitals

0.d0 0.d0 0.d0

Orbitals

... insert orbital specification of appropriate type (see below)

END SET 1

... insert as many sets as required, consistently with ‘Number of sets’ above

END EXPOT_WFN

Notes:

1. The Type of representation may take the following values for APERIODIC potentials (the
form of the corresponding Potential section is also given):

‘SQUARE’ Square well/barrier potentials centred at specified points. ‘Height’ can be set to
INF or -INF for generating infinite barriers or wells, respectively.

Potential

Width (au)

1.d0

Height (au)

-2.d0

‘LINEAR’ Linear potential corresponding to constant force field F (= −dV/dx) passing
through 0 at specified point. Note that (i) that the charge of particles is not taken into

118

account and (ii) the potential energy of the nuclei is not calculated. Use the ‘ELEC-
TRIC FIELD’ representation if this is desired.

Potential

Gradient (au)

1.d0

‘ANALYTIC’ Analytic aperiodic functions (for example, Gaussians, harmonic wells) centred
at specified points. Type of function to be specified in the Potential section:

Potential

Function type and defining parameters [(choose one; extra types definable)]

GAUSSIAN 1.d0 2.d0 0.d0 ! c,a,b in c*exp(-a*r^2)+b

HARMONIC 2.d0 0.d0 ! a,b in ar^2+b

SLAB 20.0 2.0 ! Slab width, 2D r_s param.

‘GAUSSIAN’ Aperiodic Gaussian expansion.

Potential

Number of Gaussians

2

Coefficients and exponents

1.d0 6.d0

1.d0 2.d0

‘NUMERICAL’ Numerical representation on a grid.

Potential

Number of grid points

2000

Grid point ; function value

0.01 2.345

0.02 2.456

...

2.d0 0.000

‘ELECTRIC FIELD’ Linear potential corresponding to constant electric field E. Unlike
‘LINEAR’ this representation takes account of particle charge and calculates the electro-
static energy of the nuclei. For charged complexes in the absence of fixed nuclei, the
electrostatic potential of the total charge at the centre of mass of the system is subtracted.

Potential

Electric Field (au)

1.d0

2. The Type of representation may take the following values for PERIODIC potentials (the
form of the corresponding Potential section is also given):

‘CONSTANT’ Constant potential.

Potential

Constant

0.d0

‘SQUARE PERIODIC’ Periodically repeated square well/barrier potential (‘square wave’).
‘Height’ can be set to INF or -INF for generating infinite barriers or wells, respectively.

Potential

Repeat distance (au)

3.d0

Width (au)

1.d0

Height (au)

-2.d0

‘SAWTOOTH’ Periodically repeated linear potential corresponding to electric field E (=
−dV/dx). (‘sawtooth wave’).

Potential

Repeat distance (au)

3.d0

Electric field (au)

1.d0

119

‘COSINE’ Cosine wave of given wavelength and amplitude.

Potential

Amplitude

1.d0

Wavelength (au)

3.d0

‘ANALYTIC PERIODIC’ Simple analytic aperiodic function (for example, Gaussians, har-
monic) periodically repeated. Type of function to be specified in the Potential section:

Potential

Repeat distance (au)

3.d0

Function type and defining parameters [(choose one; extra types definable)]

GAUSSIAN 1.d0 2.d0 0.d0 ! c,a,b in c*exp(-a*r^2)+b

SLAB 20.0 2.0 ! Slab width, 2D r_s param.

‘FOURIER’ 1D Fourier series a0/2 +
∑n
i=1 [an cos (2πnx/L) + bn sin (2πnx/L)]

Potential

Period L (au)

3.d0

Symmetry [ODD/EVEN/NONE]

NONE

Number of terms n (excluding a0)

2

Fourier coeffs [a_0 then a_n, b_n pairs; omit all a or b if symm ODD/EVEN]

1.d0

1.d0 3.d0

2.d0 4.d0

‘GAUSSIAN PERIODIC’ Periodic Gaussian expansion.

Potential

Repeat distance (au)

3.d0

Number of Gaussians

2

Coefficients and exponents

1.d0 6.d0

1.d0 2.d0

‘NUMERICAL PERIODIC’ Periodic numerical representation on a grid.

Potential

Repeat distance

3.d0 au

Number of grid points

2000

Grid point ; function value

0.01 2.345

0.02 2.456

...

2.d0 0.000

3. The Type of orbitals may take the following value (more to be added on request/need):

‘FOURIER’ One-dimensional Fourier series in the z-direction, plane waves in the XY plane.

Period L (au)

20.0

Symmetry (even/odd/none)

NONE

Number of terms n (excluding a0)

15

Number of bands

2

START BAND 1

Occupation

13

120

Fourier coefficients (a0 ; a_i,b_i {i=1,n}. Omit a/b if symm ODD/EVEN)

0.08197602811796 [a0]

0.00000000000000 0.00000000011629 [a1 b1]

-0.07488206414295 -0.00000000158436 [a2 b2]

... [13 more rows, according to the value of n=15 given above]

END BAND 1

START BAND 2

Occupation

11

Fourier coefficients (a0 ; a_i,b_i {i=1,n}. Omit a/b if symm ODD/EVEN)

...

END BAND 2

4. The file version is an integer, which is always increased if the specification for this file changes.

5. Where more than one set is given, the potentials defined in the different sets are added to give
the final potential at a particular point.

6. The Direction parameter gives the direction along which a particular potential varies. This
may be along one of the three lattice vectors (periodic systems), along the x, y or z axes, or
along a custom direction given in input. If the Direction parameter is ‘ISOTROPIC’ then the
potential varies radially as a function of distance from the given point.

7. In the case of the Fourier expansion, complex coefficients need to satisfy cG = c∗−G if the
potential is to be real. This will be checked for. With pure real coefficients the option exists of
omitting the imaginary part of the Fourier coefficients section in order to save disk space.

8. For periodic types the external potential will be checked for being commensurate with the
underlying lattice.

9. Clearly, the total number of possible forms of external potential is infinite, and the associated
geometries can be arbitrarily complex. It is therefore envisaged that new representations and,
if necessary, new ways of describing the geometry will be added to the expot.data file on a
case-by-case basis. At some stage, the ability to do full 2D and 3D Fourier expansions of the
external potential will be added.

10. The orbital bands will be filled in order, e.g., the second band will be started once the first one is
full. This is in contrast with an energy-based filling method which could also be implemented (on
request). All of the orbitals in a band have the z dependency given by the Fourier series, while
a different xy plane-wave will multiply each of them. Be sure to have odd occupation numbers
to keep translational symmetry—casino will stop otherwise—and to occupy your bands with
the right numbers to ensure isotropy as well, if required—casino will perform no checks in this
sense.

11. Fourier-expanded orbitals are pretty inefficient if what you want to represent is a set of orbitals
localized in the z direction. Numerical orbitals would be a neat alternative, and are easy to
implement, but as none of us is interested in this so far, this is unavailable. Contact us if you
would like to use such a thing.

12. Used with care, the plane-wave terms p and q in the Jastrow factor, together with the u term, can
often provide variational freedom that reflects the geometry of the external potential in periodic
systems. If you believe that your choice of external potential necessitates the development of
new types of term in the Jastrow factor then please discuss with the developers.

13. Note that the external potential is only applied to the quantum particles that are simulated;
constant potential energy contributions arising from, e.g., interactions with fixed nuclei are
not calculated by casino and must be added by hand (except when the ‘ELECTRIC FIELD’
potential is used; in this case the ionic energy contributions are included).

14. Magnetic fields are also specified in the expot.data file. See Sec. 38.

121

7.12 Raw QMC data files: vmc.hist and dmc.hist

The raw VMC and DMC energy data are stored in files called vmc.hist and dmc.hist, respectively.
Although the files have different names, they have the same format. The .hist files contain the
local energy and its components as calculated during the QMC simulation; by averaging these, one
obtains estimates of the total energy, etc. Note that the raw data in the .hist files are the averages
of the local energies across the MPI processes of a parallel machine. Furthermore, the VMC local
energies are averaged over vmc ave period evaluations before being written out, while the DMC
local energies are averaged over the current population of configurations. One cannot, therefore,
calculate the variance of the energy by computing the variance of the total-energy data in vmc.hist

and dmc.hist. The energy data can be analysed using the reblock utility (or quickblock if the file
is very large). The data in vmc.hist and dmc.hist can be extracted for plotting using the plot hist

utility.

An example of a vmc.hist file is given below.

Title

My CASINO vmc.hist file.

File version number

1

QMC method (VMC, DMC, PIMC, AFMC or RMC)

VMC

Electron-electron interaction type (interaction keyword)

ewald

Constant (ion-ion) energy

2.34

Number of electrons (and other particles) in simulation

48

Number of atoms per primitive cell

12

Number of primitive cells

1

Basis type (from atom_basis_type keyword - formerly btype)

gaussian

Periodic (0=NO; 1=YES)

0

Number of data columns (excluding iteration number)

6

Data items (For DMC, must have WEIGHT,POP,ETOT_PROP,EREF,EBEST as 1st 5)

ETOT

KEI

TI

VCPPEE

VCPPEI

VCPPE

Raw QMC data

1 1.2 2.3 3.6 4.7 5.89 6.3

2 1.3 2.5 3.8 4.8 5.5 6.43

3 1.2 2.3 3.4 4.3 5.67 6.4

4 1.23 2.3 3.4 4.5 5.7 6.7

Notes:

• It is not envisaged that ordinary users will ever need to look directly at the contents of this file.

• The header lines of the file start with ‘#’ so that it is easy to plot the raw data using xmgrace.
This is used by the graphdmc utility, for example. Note that graphdmc requires the first five
columns of DMC to be as indicated in the comment line in the example above.

• The file version number is an integer which is increased each time the format of the .hist files
changes.

• The total energy in vmc.hist or dmc.hist uses the Ewald or MPC interaction energy, as deter-
mined by the value of interaction.

122

• The first column is always the iteration number. This is not included in the number of data
columns, and no label for the iteration number needs to be supplied.

• All energies are quoted in a.u. per primitive cell (per electron for electron phases, per particle
for electron–hole phases). Information about the different components of the energy and how
they are calculated may be found in Secs. 19–19.4.4.

• The following column labels may be used:

ETOT Total local energy;

KEI K (Used to evaluate the local kinetic energy: see Sec. 19.1);

TI T (Used to evaluate the local kinetic energy: see Sec. 19.1);

EWALD Electron–electron interaction energy (1/r or Ewald);

LOCAL Local electron–ion interaction energy (plus external potential energy);

NONLOCAL Nonlocal electron–ion interaction energy.

SHORT Short-range part of MPC;

LONG Long-range part of MPC;

CPPEI Electron–ion core-polarization potential (CPP) term;

CPPE Electron part of CPP term;

CPPEE Electron–electron part of CPP;

MASSPOL Mass-polarization term (‘relativistic’);

MASSVEL Mass-velocity term (relativistic);

DARWINEN electron–nucleus Darwin term (relativistic);

DARWINEE Electron–electron Darwin term (relativistic);

RETARD Retardation term (relativistic).

WEIGHT (DMC only) Total weight of all configurations;

NCONF (DMC only) Number of configurations at this time step;

EREF (DMC only) Reference energy;

EBEST (DMC only) Best estimate of the ground-state energy (mixed estimate);

ACC (DMC only) Acceptance ratio at this time step;

TEFF (DMC only) Effective time step;

DIPOLE1–3 x-, y- and z-components of the dipole moment.

DIPOLESQ Squared magnitude of the dipole moment.

FUTURE0–10 (DMC only) Future-walking data.

• The end of equilibration and the start of statistics accumulation in DMC is indicated by the line
‘#### START STATS’. If there is more than one occurrence of this line in the file then the last
occurrence is taken to mark the boundary (though recent—10/2011—modifications to the code
have sought to reduce the likelihood of this happening, since it can be confusing).

7.13 Expectation-value file: expval.data

The expval.data file may contain a large variety of data sets. This specification describes the format
of the density, spin density, spin-density matrix, reciprocal-space pair-correlation function, spherically
averaged pair-correlation function, structure factor, spherically averaged structure factor, one-electron
density matrix, two-electron density matrix, momentum density and ionic population sets. When new
expectation values are implemented in casino, appropriate data sets can be added to this file. Each
set is optional. The overall format is the same as that of correlation.data, as described in Appendix
D. The expval.data file also acts as an input file. If a data set is already present and casino is
asked to accumulate data for that particular set then the newly accumulated data will be added to
the existing data.

The format of the expval.data file is as follows. (Note that the text in square brackets below should
not actually appear in the file.)

123

START HEADER

User may put any comments in here. CASINO will ignore this section

and is required to copy it verbatim if this file is written to.

END HEADER

START EXPVAL

Title

Some system

File version

1

Number of particle types (e.g. 2=electrons,4=electrons+holes)

4

Number of each type of particle

nele(1) nele(2) nele(3) nele(4)

Dimensionality

3

Periodicity

3

Primitive translation vectors (au)

-1.2345 1.2345 1.2345

1.2345 -1.2345 1.2345

1.2345 1.2345 -1.2345

Supercell matrix

S(1,1) S(2,2) S(3,3) S(1,2) S(1,3) S(2,1) S(2,3) S(3,1) S(3,2)

Volume of simulation cell (area/length for 2D/1D)

volume

Radius of sphere inscribed in Wigner-Seitz cell of simulation cell

1.2345678

Number of available G-vector sets

1

START GVECTOR SET 1

Energy cutoff used to generate set

e_cutoff

Number of G-vectors in set

ng

Primitive/supercell reciprocal lattice vectors (au)

g1(1) g1(2) g1(3)

g2(1) g2(2) g2(3)

g3(1) g3(2) g3(3)

G-vector components (Gx, Gy, Gz) in atomic units

gvec(1,1) gvec(2,1) gvec(3,1)

...

gvec(1,ng) gvec(2,ng) gvec(3,ng)

END GVECTOR SET 1

START DENSITY

Accumulation carried out using

VMC/DMC

Use G-vector set

1

Number of sets

2

START SET 1

Particle type (1=electron,2=hole)

1

Total weight

expval_den_weight_total

Complex charge-density coefficients (real part, imaginary part)

Re{expval_den_total(1)} Im{expval_den_total(1)}

...

Re{expval_den_total(ng)} Im{expval_den_total(ng)}

END SET 1

START SET 2

Particle type (1=electron,2=hole)

2

124

Total weight

expval_den_weight_total

Complex charge-density coefficients (real part, imaginary part)

Re{expval_den_total(1)} Im{expval_den_total(1)}

...

Re{expval_den_total(ng)} Im{expval_den_total(ng)}

END SET 2

END DENSITY

START SPIN DENSITY

Accumulation carried out using

VMC/DMC

Use G-vector set

1

Number of sets

4

START SET 1

Particle type (1=up elec,2=dn elec,3=up hole, 4=dn hole)

1

Total weight

expval_sden_weight_total

Complex spin density coefficients (real part, imaginary part)

Re{expval_sden_total(1)} Im{expval_sden_total(1)}

...

Re{expval_sden_total(ng)} Im{expval_sden_total(ng)}

END SET 1

START SET 2

...

...

END SET 4

END SPIN DENSITY

START SPIN-DENSITY MATRIX

Accumulation carried out using

VMC/DMC

Use G-vector set

1

Number of sets

2

START SET 1

Particle type (1-4)

1

Total weight

expval_sdenmat_weight_total

Component

1 1

Complex coefficients (real part, imaginary part)

Re{expval_sdenmat_total(1)} Im{expval_sdenmat_total(1)}

...

Re{expval_sdenmat_total(ng)} Im{expval_sdenmat_total(ng)}

Component

1 2

Complex coefficients (real part, imaginary part)

...

Component

2 1

Complex coefficients (real part, imaginary part)

...

Component

2 2

Complex coefficients (real part, imaginary part)

...

END SET 1

START SET 2

Particle type

3

125

...

END SET 2

END SPIN-DENSITY MATRIX

START RECIPROCAL-SPACE PCF

Accumulation carried out using

VMC/DMC

Fixed particle type (1-4)

1

Fixed particle coordinate (in atomic units)

Rx Ry Rz

Use G-vector set

2

...

[format of the rest identical to spin density]

...

END RECIPROCAL-SPACE PCF

[example below is for fixed particle mode in inhomogeneous system]

START SPHERICAL PCF

Accumulation carried out using

VMC/DMC

Number of bins

nbin

Cutoff radius (in atomic units)

rcutoff [usually the wigner_seitz radius]

Accumulation mode (1=fixed particle, 2=homogeneous system)

1

Fixed particle type (1-4)

1

Fixed particle position

Rx Ry Rz

Number of sets

2

START SET 1

Types of particles in pair (1-4, 1-4)

1 1

Total weight

upbin_numall

Bin contents

matuptotbin(1)

...

matuptotbin(nbin)

END SET 1

START SET 2

Types of particles in pair (1-4, 1-4)

1 2

Total weight

dnbin_numall

Bin contents

matdntotbin(1)

...

matdntotbin(nbin)

END SET 2

END SPHERICAL PCF

[this example is for homogeneous system]

START SPHERICAL PCF

Accumulation carried out using

VMC/DMC

Number of bins

nbin

Cutoff radius (in atomic units)

rcutoff [usually the wigner_seitz radius]

Accumulation mode (1=fixed particle, 2=homogeneous system)

2

126

Number of sets

3

START SET 1

Types of particles in pair

1 1

Total weight

no. of accum steps

Bin contents

corrdata(1,1,1)

...

corrdata(nbin,1,1)

END SET 1

START SET 2

Types of particles in pair

1 2

...

END SET 2

START SET 3

Types of particles in pair

2 2

...

END SET 3

END SPHERICAL PCF

START STRUCTURE FACTOR

Accumulation carried out using

VMC/DMC

Use G vector set

1

Number of sets for rho_a(G)*rho_b(-G)

3

START SET 1

Types of particles in pair

1 1

Total weight

1000.0

rho_a(G)*rho_b(-G)

16.0

4.12345

...

1.0123

END SET 1

START SET 2

Types of particles in pair

1 2

...

END SET 2

START SET 3

Types of particles in pair

2 2

...

END SET 3

Number of sets for spin density part

2

START SET 1

Particle type

1

Total weight

1000.0

Complex spin density coefficients (real part, imaginary part)

4.0 0.0

0.12345 0.0

...

1.0 0.0

END SET 1

START SET 2

127

Particle type

2

...

END SET 2

Total weight

expval_sden_weight_total

Complex spin density coefficients (real part, imaginary part)

Re{expval_sden_total(1)} Im{expval_sden_total(1)}

END STRUCTURE FACTOR

START SPHERICAL STRUCTURE FACTOR

Accumulation carried out using

VMC/DMC

Radial k point grid : (k1, k2, nk)

0.d0 10.d0 11

Number of sets

1

START SET 1

Particle type

1

Total weight

expval_sf_sph_weight_total

k, SF(k)

0.d0 0.0

1.d0 0.12345

...

10.d0 1.0

END SET 1

END SPHERICAL STRUCTURE FACTOR

START ONE-PARTICLE DENSITY MATRIX

Accumulation carried out using

VMC

Number of sets

1

Number of bins

100

Number of random points to sample

20

START SET 1

Number of particle types in set

2

Particle types

1 2

r,Weight(r),One-Particle-DM(r)

(...)

END SET 1

END ONE-PARTICLE DENSITY MATRIX

START TWO-PARTICLE DENSITY MATRIX

Accumulation carried out using

VMC

Number of sets

1

Number of bins

100

Number of random points to sample

20

START SET 1

Number of particle-pair types in set

2

Particle-pair types

1 4 2 3

r,Weight(r),Two-Particle-DM(r)

(...)

128

END SET 1

END TWO-PARTICLE DENSITY MATRIX

START MOMENTUM DENSITY

Accumulation carried out using

VMC

Number of sets

1

Number of random points to sample

2

START SET 1

Number of particle types in set

2

Particle types

1 2

Weight for this set

1000.000000

|k|/k_F,MOM_DEN(k)**2,MOM_DEN(k)

(...)

END SET 1

END MOMENTUM DENSITY

START FINITE DENSITY

Not yet documented.

END FINITE DENSITY

START MOLECULAR DENSITY

Accumulation carried out using

VMC

Grid size

100 100 1

Coordinates of A

3.0000000000000000 3.0000000000000000 2.9999999999999999E-002

Coordinates of B

-3.0000000000000000 -3.0000000000000000 -2.9999999999999999E-002

Nstep, Total weight, Total weight^2

1000000.0000000000 1000000.0000000000 1000000.0000000000

START SET 1

n_i,(n_i)**2

(...)

END SET 1

START SET 2

n_i,(n_i)**2

(...)

END SET 2

END MOLECULAR DENSITY

START POPULATION

Accumulation carried out using

VMC

Number of sets

1

Number of ions

2

START SET 1

Number of particle types in set

2

Particle types

1 2

Weight for this set

1000.000000

ion, population^2, population

(...)

END SET 1

END POPULATION

129

START LOCALIZATION TENSOR

Not yet documented.

END LOCALIZATION TENSOR

END EXPVAL

1. General notes:

(a) Information about the expectation values can be found in Sec. 34.

(b) The ‘file version’ is an integer, which is always increased if the specification for this file
changes.

(c) The data in this file should always be normalized. For example, they should be divided by
the total weight, which is usually the total number of accumulation steps. However, the
total weight must always be included alongside the data so that further accumulation steps
can be carried out. The correct way to perform additional accumulation is to set

new tot. weight = old tot. weight + new weight (36)

new tot. data =
old tot. weight× old tot. data + new weight× new data

new tot. weight
. (37)

The ‘new total weight’ and ‘new total data’ should be written out to expval.data.

(d) Sets of reciprocal space vectors (‘G-vectors’) are specified at the start of the file and are
then referenced by the different sets in the file, because expectation values for different
operators are often accumulated using the same set of G-vectors.

(e) Each of the subsequent data sets is optional. If a data set is present when this file is read
as input, but casino is not accumulating further data for this set, then the set must be
copied verbatim on output.

(f) It is permitted to have, for example, the VMC-accumulated charge density present in this
file, to be used for the MPC interaction in a DMC calculation whilst accumulating, for
example, the pair-correlation function.

2. Notes on the ‘density’ data set:

(a) There should be one set of data present for each type of particle (electron, hole).

(b) The normalization of the data for a given particle type is such that the G = 0 component
is equal to the total number of particles of that type in the primitive cell. This is naturally
the result if the data is accumulated during the simulation, then divided by the total weight
(that is, the number of accumulation steps) then divided by the number of primitive cells
in the simulation cell.

(c) The QMC charge density may be used in the MPC interaction, if desired.

3. Notes on the ‘spin density’ data set:

(a) The format of this section is the same as that of the ‘density’ section, except that there are
two sets of data for each particle type, to allow for up and down spins.

4. Notes on the ‘spin-density matrix’ data set:

(a) These data can be obtained when using the noncollinear-spin mode of casino. There are
separate 2× 2 spin-density matrices for each particle type.

(b) Due to the way in which noncollinear spins are implemented in casino, it would be possible
in principle to have a separate set of data for up-like electrons, down-like electrons, up-like
holes and so on. In practice this does not make sense, and only one type of electron and
one type of hole should be used.

(c) The plot expval utility will give you the option to plot either the spin-density matrix
itself or the magnetization density, which is derived from the spin-density matrix.

5. Notes on the ‘molecular density’ data set:

(a) There should be one set of data present for each type of particle (electron, hole).

130

(b) The plot expval utility allows the user to perform a cylindrical or spherical average of
the molecular density.

6. Notes on the ‘reciprocal-space pair-correlation function’ data set:

(a) This data set contains the Fourier coefficients of the pair-correlation function, accumulated
with the position of one particle being fixed.

(b) Apart from information on the type and location of the fixed particle, the format of this
data set is identical to the ‘spin density’ set.

7. Notes on the ‘spherical pair-correlation function’ data set:

(a) This set contains a real-space representation of the pair-correlation function, obtained by
binning particle separations.

(b) There are two slightly different ways in which spherical PCFs may be accumulated. For
homogeneous and finite systems, we accumulate the spherical PCF based on the relative
distances of all pairs of particles. For inhomogeneous and periodic systems, we must accu-
mulate the spherical PCF as the distance of all other particles from one fixed particle.

(c) The format of this set is flexible enough to allow for both methods. Two examples are
given above to show the two possible scenarios.

(d) When the data is for fixed-particle accumulation, the first of the two particle types appear-
ing on the ‘Types of particles in pair’ line must be that of the fixed particle.

8. Notes on the ‘population’ data set:

(a) The ionic populations are determined by partitioning space into Voronoi polyhedra about
the ions and binning the number of times each electron is found in each ion’s polyhedron.
The results quoted are the mean numbers of electrons in each ion’s Voronoi polyhedron.

(b) The population (number of electrons) for each ion is reported in expval.data. There is no
need to run plot expval.

(c) By using two sets (one for spin-up and one for spin-down electrons), spin-resolved popula-
tions can be accumulated.

(d) Please see the comments in Sec. 34.9 about the interpretation and use of the population
data.

8 Generating CASINO trial wave functions with other pro-
grams

The following third-party codes have support for producing casino trial wave function xwfn.data

files. The exact degree of support will depend on time; in particular the interfaces may stop working
if the developers release a new version of their code without bothering to check that casino support
still works. If you find this is the case, please let us know. All voluntary contributions to maintaining
these interfaces is gratefully accepted, since doing so is very boring indeed. Our personal support
for the codes can be greatly enhanced if we have someone working in Cambridge who is a dedicated
user of the code in question. When they leave, our group knowledge may become non-existent (e.g.,
currently, none of us know anything about the Gaussian code).

Example input files for some of the codes below can be found in the distribution directory exam-
ples/wfn generation. Instructions are in accompanying READMEs.

A summary of the current status of the various interfaces—which supplements and may be more
up-to-date than the information given here—can be found on the casino web site here:

https://vallico.net/casinoqmc/interfaces/

and a page of advice for developers who wish to create their own interfaces is here:

https://vallico.net/casinoqmc/interface_development/

Developers should note that for Gaussian basis set codes, there is a special test suite in the directory
examples/generic/gauss dfg. The README file there should be consulted for conventions on solid

131

https://vallico.net/casinoqmc/interfaces/
https://vallico.net/casinoqmc/interface_development/

harmonics/normalization etc., and calculations should be run using the provided set of input files to
test the treatment of d, f and g functions.

8.1 ABINIT

Website: http://www.abinit.org.

To produce a wave function suitable for use as a casino trial wave function, certain abinit parameters
must be set correctly. To tell abinit to write the wave function in casino format, set prtwf to 2
in the abinit input file. casino (and QMC methods generally) can only take advantage of time-
reversal symmetry, and not the full set of symmetries of the crystal structure. Therefore, abinit
must be instructed to generate k points not just in the irreducible Brillouin zone, but in a full half
of the Brillouin zone (using time-reversal symmetry to generate the other half). Additionally, unless
instructed otherwise, abinit avoids the need for internal storage of many of the coefficients of its
wave functions for k points that have the property 2k = Glatt, where Glatt is a reciprocal lattice
vector, by making use of the property that ck(G) = c∗k(−G−Glatt). abinit must be instructed not
to do this in order to output the full set of coefficients for use in casino. See the abinit theoretical
background documents ABINIT/Infos/Theory/geometry.pdf and ABINIT/Infos/Theory/1WF.pdf

for more information.

The first of these requirements is met by setting the abinit input variable kptopt to 2 (see
ABINIT/Infos/varbas.html#kptopt) and the second by setting istwfk to 1 for all the k points (see
ABINIT/Infos/vardev.html#istwfk). Since casino is typically run with relatively small numbers
of k points, this is easily done by defining an array of ‘1’s in the input file.

For example, for the eight k points generated with ‘ngkpt 2 2 2’, we add the following lines to the
abinit input file:

Turn off special storage mode for time-reversal k-points

istwfk 1 1 1 1 1 1 1 1

Use only time reversal symmetry, not full set of symmetries.

kptopt 2

Write a CASINO pwfn.data wave function file

prtwf 2

Other useful input variables of relevance to the plane waves abinit will produce include ecut,
nshiftk, shiftk, nband, occopt, occ, spinat and nsppol (see relevant input variable documents
in ABINIT/Infos/). If abinit is run in multiple dataset mode, the different wave functions for the
various datasets are exported as pwfn1.data, pwfn2.data, . . . , pwfnn.data where the numbers are
the contents of the contents of the input array jdtset (defaults to 1,2,. . . ,ndtset).

The exporter does not currently work on multiple processors if k-point parallelism is chosen. abinit
does not store the full wave function on each processor but rather splits the k points between the
processors, so no one processor could write out the whole file. The sort of plane wave DFT calculations
usually required to generate QMC trial wave functions execute very rapidly anyway and will generally
not require a parallel machine. The outqmc routine currently bails out with an error if this combination
of modes is selected.

If there is any doubt about the output of this routine, the first place to look is the log file produced
by abinit: if there are any warnings about incorrectly normalized orbitals or noninteger occupation
numbers there is probably something set wrong in the input file.

There exists a utility called abinit sc to convert abinit pseudopotentials, as long as they are in
grid-based formats, i.e., pspcod=1 or pspcod=6, to casino x pp.data format. The utility does not
currently work for the non-grid-based or outdated pseudopotential formats (2,3,4 and 5).

8.2 ADF

See http://www.scm.com.

The converter adf2stowf.py was developed for version 2008.01 of the adf code. It takes the output
of a molecular adf calculation and produces a casino trial wave function in a Slater-type basis. The
cusp condition is implemented as a simple linear constraint, which is enforced by projection in the
converter. The effect of this projection may be significant for small basis sets.

132

http://www.abinit.org
http://www.scm.com

In our experience, the ZORA/QZ4P basis set has been found to perform well.

adf does not support pseudopotentials, but uses the frozen-core approximation to reduce the com-
putational time. Importing frozen-core states is supported in principle. However, frozen-core states
are not implemented in casino (no QMC algorithm for this is available at present). Therefore, adf
frozen-core states are used as regular orbitals within casino.

The adf converter and the Slater-type orbital implementation in casino have not yet been tested
heavily, so expect bugs and limitations, which we could try to fix when reported (but note that if you’re
using the code at all, you almost certainly know more about it than we do, since the author of the
converter has left physics behind and the collective experience amongst the main casino developers
has therefore been reduced to zero.)

8.3 ATSP2K

atsp2k is a numerical orbital multi-determinant (and Hartree–Fock) atomic package (see http:

//nlte.nist.gov/cgi-bin/MCHF/download.pl?d=ATSP2K). Output from this program may be con-
verted into casino’s awfn.data numerical atomic orbital format by the converter ‘extractdet’ (writ-
ten by John Trail) which is provided as a casino utility. At a numerical level the qtsp2k code works
with radial orbitals and Configuration State Functions (CSFs) rather than determinants constructed
from 3-d orbitals, hence this conversion is non-trivial.

Further information is provided in the file CASINO/utils/wfn converters/a2sp2k/Extractdet/README.
Note that the converter is not automatically installed by the casino build system (not least because
it requires an atsp2k library to compile); it must therefore be compiled and installed manually.

8.4 CASTEP

The modern castep [7] is an entirely new Fortran 90 version of the venerable Cambridge plane-wave
program which it is designed to replace. It is distributed by BIOVIA as part of its Materials Studio
package: see http://www.accelrys.com/products/mstudio/index.html. It is freely available to
UK academics: see http://www.castep.org. Mail Chris Pickard (cjp20 @ cam.ac.uk) to discuss
castep and how to get hold of a copy.

We assume that the reader is familiar with castep. (It takes about five minutes to learn how to
perform basic castep calculations.) To generate a trial wave function using castep:

1. Download the pseudopotentials that you need from https://vallico.net/casinoqmc/pplib/.
You need to download the ‘tabulated’ file pp.data, which should be renamed as ‘x pp.data’,
where x is the chemical symbol in lower-case letters, and the ‘casino awfn.data’ file for the
ground state, which should be renamed as ‘x pp.awfn’. In your castep seedname.cell file
allocate the pseudopotential to species ‘X’ using

%block SPECIES_POT

X x_pp.data

%endblock SPECIES_POT

Note that both x pp.data and x pp.awfn must be present.

2. If you want to relax the geometry using these pseudopotentials, do so at this point. (However,
it is generally best not to use casino’s HF pseudopotentials for DFT geometry optimization.)

3. Specify your list of k points explicitly using the kpoints list block in seedname.cell (otherwise
castep will apply symmetry operations to the k points in the grid). If you intend to use a
complex wave function then you should supply the complete list of k points; otherwise you
should only supply one out of each ±k pair. For example, the orbitals for a real wave function
in a supercell consisting of 2 × 2 × 2 primitive cells could be constructed using the following
k-point grid:

%block kpoints_list

0.25 -0.25 -0.25 0.25

0.25 -0.25 0.25 0.25

0.25 0.25 -0.25 0.25

0.25 0.25 0.25 0.25

%endblock kpoints_list

133

http://nlte.nist.gov/cgi-bin/MCHF/download.pl?d=ATSP2K
http://nlte.nist.gov/cgi-bin/MCHF/download.pl?d=ATSP2K
http://www.accelrys.com/products/mstudio/index.html
http://www.castep.org
https://vallico.net/casinoqmc/pplib/

This is a 2× 2× 2 k-point mesh offset so that Γ is exactly in between the grid points, with only
one out of each ±k being given, and equal weight being assigned to each k point in the DFT
calculation. The symmetry generate flag should be given in seedname.cell.

4. Run a castep single-point energy calculation (not geometry optimization, etc.) using castep
〈seedname〉.

5. Then run the castep2casino converter, which is part of the castep distribution using
castep2casino 〈seedname〉.13

6. Rename seedname.casino as pwfn.data.

7. The pwfn.data can be read by casino, but it’s usually best to convert to a blip basis by
performing a preliminary blip-conversion casino calculation by setting runtype to ‘gen blip’.
(See Sec. 9.)

The ae pp maker utility allows the user to generate a castep-format .recpot file holding a bare
Coulomb potential, to fool castep into performing an all-electron calculation. This is useful for
accurate calculations featuring light elements such as hydrogen, helium and perhaps lithium. Note
that casino does not require a pseudopotential file for all-electron calculations, but you will certainly
want to set use gpcc to T to apply cusp corrections to your all-electron plane-wave or blip orbitals.

8.5 CFOUR

“CFOUR (Coupled-Cluster techniques for Computational Chemistry) is a program package for per-
forming high-level quantum chemical calculations on atoms and molecules. The major strength of the
program suite is its rather sophisticated arsenal of high-level ab initio methods for the calculation of
atomic and molecular properties. Virtually all approaches based on Møller-Plesset (MP) perturbation
theory and the coupled-cluster approximation (CC) are available; most of these have complementary
analytic derivative approaches within the package as well.”

Website: http://www.cfour.de//

Support for this Gaussian basis set quantum chemistry code is provided through the molden2qmc

utility by Mike Deible and Vladimir Konjkov, which can convert files written in the quasi-standard
MOLDEN format into casino’s gwfn.data format.

cfour’s implementation of MOLDEN is somewhat special. . . and requires various vectors
to be reordered before the standard casino molden2qmc converter will work. To
do this, replace the file /libr/reorderdf.f in the cfour distribution with the file
utils/wfn converters/cfour/reorderdf.f from the casino distribution, then recompile cfour.

To generate a gfwn.data file, sit in a directory containing suitable MOLDEN output, type
‘molden2qmc’, then follow the prompts.

See the file CASINO/examples/generic/gauss dfg/RESULTS for the current status of the interface.

8.6 CRYSTAL

[See ~/CASINO/utils/wfn converters/crystal 9x/, /crystal 03/, /crystal 06, /crystal 09,
/crystal 14 and /crystal 17.]

8.6.1 The CRYSTAL program

crystal is a commercially available quantum-mechanical package (free for UK academics?) which is
able to calculate the electronic structure of both molecules and systems with periodic boundary condi-
tions in 1, 2 or 3 dimensions (polymers, slabs or crystals) using either HF or DFT. The latest version
of the program was written by Roberto Dovesi, Vic Saunders, Carla Roetti, Roberto Orlando, Clau-
dio Zicovich-Wilson, F. Pascale, Bartolomeo Civalleri, Klaus Doll, Nic Harrison, Ian Bush, Philippe
D’Arco, Miquel Llunell, Mauro Causà, Y. Noel, L. Maschio, A. Erba, M. Rerat and Silvia Casassa.

13If you are using an old version of castep then you will need to insert the line ‘continuation : 〈seedname〉’ in the
seedname.param file before running castep2casino.

134

http://www.cfour.de//

The official web page can be found at http:/www.crystal.unito.it. See also https://vallico.

net/mike_towler/crystal.html and the various links from there for more information from a
CASINO perspective (though this page has not been maintained for many years).

casino supposedly supports the official releases crystal95, crystal98, crystal03, crystal06,
crystal09, crystal14, crystal17 (but not 88 or 92).

With the now very obsolete crystal95 or crystal98 you must use a separate utility crysgen98 —
included with the casino distribution—which transforms the contents of various crystal temporary
Fortran files into a casino gwfn.data file.

crystal03 was supposed to contain a facility to write out a casino gwfn.data file directly. The
necessary routines were written by MDT following a specification agreed by the Daresbury authors
of crystal but its incorporation into crystal was then vetoed by the Torino group. MDT was
then asked to change the routines into a separate utility, but necessary information regarding the
crystal source code was not available. The practical upshot of this is that casino is only supported
in MDT’s private version of crystal03 which he is not allowed to distribute. Best to use crystal06
or crystal09 instead.

crystal06 is able to write out all the information required by external programs but as this is not
specific to casino a utility crysgen06 is required to convert the data into casino gwfn.data format.

crystal09 is able to write out all the information required by external programs but as this is not
specific to casino a utility crysgen09 is required to convert the data into casino gwfn.data format
(the size of the overlap matrix in the API was changed in going from 06 to 09 for some reason, hence
the different utility).

crystal14 is essentially the same as crystal09 as far as casino is concerned, though the conversion
utility is mildly changed and renamed as crysgen14. Note that the initial release of crystal14
contained several bugs which meant that the data written by its API was incorrect; if casino users
downloaded their version of crystal14 before 30th Jan 2014, they should download it again in order
for the interface to work.

crystal17 is essentially the same as crystal14 as far as casino is concerned, though the conversion
utility is mildly changed and renamed as crysgen14.

If you want to use pseudopotentials with crystal you can use the Trail-Needs ones on the casino
website, which are given in the crystal format. For some of these a Gaussian basis set in the
appropriate format which is optimized with respect to the pseudopotential is included in the ‘Further
data’ column.

8.6.2 Generating gwfn.data files with CRYSTAL95/98

These early versions of crystal are absolutely not designed to communicate with other programs so
we will need to jump through some hoops in order to get things to work.

Basically, MDT’s crysgen98 utility is used to convert the output of crystal95 or crystal98
into a gwfn.data file readable by casino. We will assume in what follows that you know
how to use crystal. You need to run the program using the runcrystal script, which lives in
~/CASINO/wfn converters/crystal9x/run script/, using the -qmc flag as an argument (this should
be set up automatically for you during utilities compilation). The publicly available run script on
MDT’s crystal website does not contain this flag, so you need to use the script included with casino
instead. You may need to change some environment variable definitions in the run and crysgen98
scripts to get them to work properly on your system.

If you want to use your own copy of crystal95 or crystal98 to generate QMC wave func-
tions, you will need to make some minor modifications to the source code (see the accompanying
~/CASINO/wfn converters/crystal to qmc/README CHANGES file). If you are working in Cambridge,
you can use the programs that have already been so modified by MDT—please ask.

(NOTE: 4/2003—the above changes involve turning off the use of symmetry in k space—for some
metallic calculations this seems to cause a problem (Gilat net?) unless you also manually turn off all
symmetry in the input file with the keyword symmremo. This is unlikely to be fixed in the future.)

crystal will produce three binary files in the scratch directory you define in the run script—namely
fort.12 (basis set, geometry, common variables), fort.10 (orbital coefficients) and fort.30 (eigen-
values). These files would normally be deleted at the end of a crystal run. Including the -qmc flag

135

http:/www.crystal.unito.it
https://vallico.net/mike_towler/crystal.html
https://vallico.net/mike_towler/crystal.html

as an argument to the run script means these files will be grabbed and renamed as silicon.f12,
silicon.f10 and silicon.f30 (or whatever). They will be kept in the scratch directory since they
can become very large.

Sit in the directory where these three files live and type crysgen98. This script will run the crystaltoqmc
program, which will ask you some questions and then generate the gwfn.data file.

crysgen06/09 will ask you for the size of the Monkhorst–Pack k-point net in the crystal calculation,
and the desired size of supercell in the QMC calculation. These need not be the same (if not, you are
‘plucking’ to use the local vernacular), but the former must be divisible by the latter. For example,
a 12×12×12 MP net in crystal will allow you to generate gwfn.data for 1×1×1, 2×2×2, 3×3×3,
4×4×4 and 6×6×6 supercell cases. Note that it is desirable to carry out the calculation on a higher
density k-point grid than you actually need so that the orbital coefficients are calculated accurately.

Note that for polymer and slab calculations the last one and two numbers in the MP net and supercell
specifications should be 1 to reflect the fact that the system is not periodic in those dimensions. For
example, polymer (12×1×1 −→ 1×1×1, 2×1×1, 3×1×1, 4×1×1, 6×1×1) slab (12×1×1 −→ 1×1×1,
2×2×1, 3×3×1, 4×4×1, 6×6×1). For molecular calculations, just imagine you have a 1×1×1 MP
net.

So, to summarize, to produce gwfn.data from the crystal input file dna:

% run -qmc dna

The -qmc flag invokes generation of relevant QMC files in temp.

% cd /temp/mdt

. . . or whatever the temp directory is called in your crystal runscript.

% crysgen06 or % crysgen09

Then answer the questions.

% mv gwfn.data ~ ; rm dna.*

Then run casino.

8.6.3 Generating gwfn.data files with CRYSTAL03

NOTE: THE FOLLOWING INSTRUCTIONS WILL NOT WORK WITH THE STANDARD
RELEASE OF CRYSTAL03—SEE DISCUSSION ABOVE. THE BEST WAY AROUND THIS
NOW IS TO USE CRYSTAL06/09.

The gwfn.data file can be generated directly using the crystal03 properties program.

Note that this facility only exists in the official version of crystal03 in binaries produced after
December 2003, and that some early versions of crystal03 had a broken pseudopotential evaluator
(which should now be fixed).

The crystal run script included with casino will actually force the production of gwfn.data auto-
matically if you invoke it with the -qmc flag when running the calculations, so all you need to do is
type run -qmc input filename. If the calculation is periodic, the script will ask you how many different
supercell sizes N you wish to generate, and then to input N sets of integer triplets indicating the
supercell sizes (these must be a subset of the MP shrinking factors in the crystal input file). For
example,

% run -qmc h

Number of different QMC supercell sizes to calculate? (Maximum 5)

% 1

Size of cell 1? (e.g., 2 2 2)

% 2 2 2

Put the script in the background with ‘Ctrl-Z’ then ‘bg’.

If you want to do this by hand, rather than letting the run script do it for you, then the relevant part
of the crystal properties input file looks like this (for periodic systems):

136

QMC

2 ! want to generate 2 supercell sizes i.e.

2 2 2 ! a 2x2x2 one

3 3 3 ! and a 3x3x3 one

END

For molecules, only the keyword ‘QMC’ is required with no additional input.

8.6.4 Generating gwfn.data files with CRYSTAL06/09/14/17

Note this is only possible with versions of crystal06 from 1 0 2 onwards, since the 1 0 1 version does
not recognize the required CRYAPI OUT keyword. Note also that the initial release of crystal14
contained a broken CRYAPI OUT function; casino users must therefore use a version of crystal14
produced after 4th March 2014 when this error was fixed.

The entire process is automated by running crystal06/09/14/17 with our supplied script runcrystal.
If you choose to do this, then simply typing runcrystal -qmc input filename will run the SCF
calculation as normal then invoke all the necessary post-processing to generate the gwfn.data file
automatically. The crystal17 version is run by default; crystal06 may be selected using the -06
flag, crystal09 with the -09 flag, and crystal14 with the -14 flag.

The only complication is in periodic systems where, before executing the crystal code, the run script
will ask you how many different supercell sizes you require. You then need to input that many integer
triplets (divisors of the crystal ‘shrinking factors’) to specify the size of each of the supercells. A
gwfn.data file will then be generated for each required cell (appropriately labelled with the integer
triplet—rename them before running with casino).

Running the gwfn.data generation procedure manually

If you choose to run crystal06/09/14/17 without our runcrystal script (say, with the scripts pro-
vided by the Torino people) then you will need to carry out the following manual procedure to generate
the gwfn.data file(s).

Note that runcrystal is an old csh script that does not support the CASINO architecture system
(like, e.g., runqmc, runpwscf, runlouis). It is hoped that a modernized bash version which does this
might appear in the future.

Molecules

After completing a converged DFT/HF run with the crystal06/09/14/17 crystal binary, the prop-
erties program needs to be run to produce the formatted data files needed by the casino crys-
gen06/09/14/17 utilities. A minimal input file for the properties program in the case of a nonperiodic
system is:

NEWK

1 0

CRYAPI_OUT

END

After successfully running properties, the directory should contain the files GRED.DAT and KRED.DAT.
Note that GRED.DAT has a slightly different format from crystal09 onwards.

Running the casino utility crysgen06, crysgen09, crysgen14 or crysgen17 in the same directory
reads these files and writes gwfn.data for use in casino.

1D/2D/3D periodic systems

For periodic systems, the k-point mesh used within crystal should be an integer multiple of the
supercell size that is used in casino. Within crystal06/09/14/17, the mesh is defined using the
SHRINK keyword followed by 1, 2 or 3 integers depending on the number of periodic dimensions.

Next, the input for the properties program needs one additional line after the NEWK keyword. To
simply output the full k-point mesh that was used with crystal, use the following:

NEWK

0 0

1 0

CRYAPI_OUT

END

137

After running properties successfully, the directory should contain the files GRED.DAT and KRED.DAT

IMPORTANT: In periodic systems the program crysgen17 (or crysgen06/09/14) now needs to know
some parameters related to the size of the supercells required (the converter can output several sizes
of supercells in one run). These can be taken from a file called crysgen.dat (which is normally
automatically produced by the runqmc script)—but if this file is not present crysgen will ask you to
input this data on the command line.

For reference, a typical crysgen.dat indicating that three supercells of sizes 222, 333 and 444 should
be generated might look like:

QMC

3

2 2 2

3 3 3

4 4 4

END

The first number it reads after the QMC line is the number N of different super cell sized is should
produce. After this, it takes N triples of integers each specifying one size of a supercell. These
supercells have to be integer dividers of the k-point mesh that was output by the properties program.
After all N triples have been given, the individual gwfn.data files are produced for use by casino.

Differences between CRYSTAL03 and CRYSTAL06/09/14/17 input files

The crystal03 and crystal06/09/14/17 codes have minor irritating and mutually incompatible
differences in their input formats. The differences that casino users are most likely to encounter
using old example input files from our distributions are as follows:

• In crystal06/09/14/17 there are now three sections to the input file rather than four. To
update earlier input files, delete the superfluous END statement after the third section.

• The shrinking factors of the Monkhorst and Gilat nets are now given by the SHRINK keyword
followed by, e.g., ‘8 16’, rather than the old three numbers at the start of the fourth section.

• The TOLSCF keyword—which is common in input files round here—no longer works. Replace
this block with the TOLDEE block which contains one number (the usual energy threshold, e.g.,
7).

• In crystal09 the format of user-defined INPUT pseudopotentials changed. If you happen to
be using a pseudopotential taken from our online library before February 2012, then it will
cease to work, and crystal09 will stop with an error message ‘RADIAL POWER IN INPUT
PSEUDO OUT OF RANGE’. The solution is to add a zero to the line after ‘INPUT’ in each
pseudopotential. The casino online library and examples were updated to reflect this change
in February 2012. See Question D4 of the casino FAQ.

Parallel CRYSTAL

The runcrystal script supplied with the casino distribution supports parallel running of the crystal
program (on machines without batch queues)—simply use the -np flag to indicate the desired number
of cores. You also need to manually set up the name of the parallel run command at the top of the
runcrystal script to be ‘mpirun -np’ or whatever it is.

The standard version of crystal will only run on a single core. To run in parallel you must have
produced a Pcrystal (replicated data, small Ncore) or MPPcrystal (distributed data, large Ncore)
binary from the set of pre-compiled object files and Makefiles that the Torino people distribute (my
experience: in the build/Xmakes/Linux-ifort-11.1 emt64.inc file, set MPIBIN to be the location
of your mpif90 compiler (e.g., /opt/openmpi intel/bin), set MKLPATH to be the location of your
MKL libraries (e.g., /opt/intel/mkl/lib/intel64) and change the apparently incorrect default value
of F90 from ‘ifort’ to ‘mpif90’ or it won’t pick up mpif.h etc. Then type ‘make’ in the build

directory.)14.

Note when running parallel crystal with the runcrystal script, there is no need to rename the input
file to be ‘INPUT’ (the script will do this for you). You do however have to add the ‘MPP’ keyword to
the bottom of the crystal input file if you are running the distributed data MPPcrystal.

14Isn’t the casino install script cool?

138

A summer school introduction to parallel crystal by Ian Bush is available online at: http://www.

crystal.unito.it/mssc2009/lezioni/friday/t25_bush.pdf.

8.7 DALTON

Website: http://www.daltonprogram.org/

Support for this Gaussian basis set quantum chemistry code is provided through the molden2qmc

utility by Mike Deible and Vladimir Konjkov, which can convert files written in the quasi-standard
MOLDEN format into casino’s gwfn.data format.

To generate a gfwn.data file, sit in a directory containing suitable MOLDEN output, type
‘molden2qmc’, then follow the prompts.

See the file CASINO/examples/generic/gauss dfg/RESULTS for the current status of the interface.

8.8 GAMESS-US

“gamess is a program for ab initio molecular quantum chemistry. Briefly, gamess can compute
SCF wave functions ranging from RHF, ROHF, UHF, GVB, and MCSCF. Correlation corrections to
these SCF wave functions include Configuration Interaction, second order perturbation Theory, and
Coupled-Cluster approaches, as well as the Density Functional Theory approximation. Excited states
can be computed by CI, EOM, or TD-DFT procedures.”

Website: http://www.msg.chem.iastate.edu/gamess

There are two alternatives for the casino interface to the gamess-us package:

(1) An old set of perl scripts distributed with the main casino distribution, the main one of which is
called ‘gamess2qmc’ These live, along with a README file with instructions and some basic examples,
in the directory CASINO/utils/wfn converters/gamess. They were originally written by Alexander
Badinski many years ago. Support for f functions was added in 2015 by Kevin Gasperich. The script
has considerable limitations, but providing you have some idea of what you’re doing and you’re not
doing anything weird it is not so difficult to make it work.

(2) Albert Defusco of the University of Pittsburgh has implemented native casino support into
gamess independently of the gamess2qmc script. This is certainly available in the current standard
gamess distribution; the facility has been evolving and it might be best to say you should use the
most recent version available (I—MDT—have been made aware [July 2015] of a problem occurring
when basis functions are automatically discarded because of quasi-linear dependence. . . last I heard a
fix was being worked on).

8.9 GAUSSIAN94/98/03/09

[See ~/CASINO/utils/wfn converters/gaussian9x-03/.]

gaussian is an extremely large and widely used commercially available quantum chemistry package.
More details are available from http://www.gaussian.com.

gaussiantoqmc is a utility to read the wave function from the output of a gaussian94/98/03/09
(g94/g98/g03/g09) calculation and output it in a form compatible with casino. gaussiantoqmc

was originally written by Andrew Porter (2000).

If gaussiantoqmc does not work for some reason, you may like to ask Katharina Doblhoff-Dier
(k.doblhoff-dier ‘at’ umail.leidenuniv.nl), who has written her own converter for this pur-
pose which overcomes some infelicities in the casino-supplied version.

The gaussiantoqmc code requires the existence of a formatted checkpoint file (produced by putting
FormCheck=(MO,Basis) in the route section of the gaussian job file for g94/g98, produced auto-
matically by g03 and g09). It expects this file to have a ‘.Fchk’ suffix (‘.fchk’ for g09). The output
file of the gaussian job is also required. It is assumed that this has a ‘.out’ suffix. If the original
gaussian job file is present then it will be appended to the end of the QMC input file (as is the
gaussian output file).

Note that although more recent versions of gaussian contains a limited facility for treating periodic
systems, the gaussiantoqmc converter does not support this, since it was written before the periodic

139

http://www.crystal.unito.it/mssc2009/lezioni/friday/t25_bush.pdf
http://www.crystal.unito.it/mssc2009/lezioni/friday/t25_bush.pdf
http://www.daltonprogram.org/
http://www.msg.chem.iastate.edu/gamess
http://www.gaussian.com

functionality was introduced. People who wish to do this should use the (superior) crystal program
instead (or volunteer to update the converter).

If you want to use pseudopotentials with gaussian you can use the Trail-Needs ones on the casino
website, which are given in the gaussian format. For some of these a Gaussian basis set in the
appropriate format which is optimized with respect to the pseudopotential is included in the ‘Further
data’ column.

Note that there is an associated utility called egaussian which extracts the SCF energy (and com-
ponents) from a gaussian output file.

8.9.1 How to use GAUSSIANTOQMC

If you have a gaussian job file called dna (say), and you run it to produce dna.out and Test.FChk,
then you must:

% mv Test.FChk dna.Fchk

run gaussiantoqmc . . . and follow the prompts

% mv dna.qmc gwfn.data

run casino.

The code should automatically detect what sort of gaussian job it is and give you the opportunity
to construct an excited-state wave function if applicable.

It can deal with the following sorts of calculation:

• HF and DFT ground states, open and closed shell.

• CIS excited states, open and closed shell.

• CASSCF states. Getting gaussian to output these can be problematic for large calculations.
It is possible that gaussiantoqmc will get confused if you use some combination of IOps other
than those described in Sec. 8.9.3.

• Time-dependent HF (TD-HF) or DFT (TD-DFT) excited states.

If the user chooses to output a CIS or TD-DFT wave function, they are given the option of resumming
it. The wave function must also be resummed if the user wishes to analyse its composition. As
distributed, gaussiantoqmc will not do this analysis but if you wish to switch this option on then the
flag analyse cis in cis data.f90 must be set to T and gaussiantoqmc recompiled.

With this flag set the code evaluates the percentage contribution of each single excitation to the CIS
expansion. Degenerate virtual and occupied orbitals are identified and their contributions summed.
The final output takes the form of files called fromi j.dat where i–j indicates a range of degenerate
occupied orbitals (if i = j then i is a nondegenerate orbital). These files detail all excitations out
of the specified orbitals along with a percentage giving their contribution to the CIS expansion as a
whole. The sum of the percentages (final column) from each of the fromi j.dat should be 100 if
everything is working OK.

8.9.2 Other features of GAUSSIANTOQMC

The code also contains some crude normalization and plotting routines that are really just debugging
aids. By setting the flag test=T in gaussiantoqmc.f90 and recompiling, the user is given the option
of plotting and testing the normalization of individual molecular orbitals. The axis along which the
plotting is done is set in wfn construct.f90 and this must be hacked if the user wishes to change
things.

8.9.3 Getting GAUSSIAN to do what you want

In principle, gaussian can do an awful lot of things. In fact, some of these things seem to require
magical incantations. These will be described in this section, broken down into the different calcu-
lations to which they apply. The comments on g98 refer to revision A9 and may depend on which
version is used.

140

General bits and pieces

Some points to note:

• Both g94 and g98 appear to have formatting errors when printing out the Gaussians used in
the ECP expansion—large exponent values are replaced with stars. This does not affect the
subsequent calculation.

• g94’s ECP (pseudopotential) package will not accept expansions containing more than 13 Gaus-
sians per angular-momentum channel.

• g98’s ECP integral package crashes when one attempts to do a large (both in terms of basis
and ECP expansion) calculation with symmetry switched on. The solution to this is to switch
symmetry off using ‘Nosymm’.

• One cannot use basis functions containing g and higher basis functions with a pseudopotential
in g94.

• Obviously, gaussiantoqmc needs the molecular orbitals (MOs) produced by the calcula-
tion. It gets these from the formatted checkpoint file which is produced by putting ‘Form-
check=(Basis,MO)’ in the route section of the gaussian job. Alternatively, it may be obtained
from the binary checkpoint file (.chk) using the formchk utility: see the gaussian manual.

• Many (but not all) of the IOps mentioned here are described on gaussian’s website at http:

//www.gaussian.com/iops.htm.

CIS

• Performing a ‘HF test’ for an excited state: It is possible to get gaussian to output a breakdown
of the energy of a CIS excited state which may be compared with the results of a determinant-
only VMC run. The key to this is the density used to perform the population analysis and other
post-SCF calculations. By default, gaussian uses the density produced by the original SCF
run. To get the kinetic, nuclear-nuclear potential and electron-nuclear potential energies you
must tell it to use the one-particle CI density via ‘density=RhoCI’. You must also specify the
excited state that you are interested in via ‘Root=N ’ in the CIS options. With all of this done
properly, gaussian produces some output like:

N-N= 6.9546274D+00 E-N=-2.3781323D+01 KE= 3.3771062D+00

(units of a.u.), which is hidden in the density analysis right at the end of the output.

• Some trouble has been encountered with the ‘Add=N ’ option to CIS (which reads converged ex-
cited states from the checkpoint file and then calculatesN more). The IOp alternative which does
work is IOp(9/49=2) (use guess vectors from the checkpoint file) combined with IOp(9/39=N)
(make N additional guesses to those present).

• Using the ‘50–50’ option to CIS to calculate singlet and triplet excitations simultaneously can
cause problems. It appears best to do the singlet (‘singlets’) and triplet (‘triplets’) calculations
separately.

• For QMC, we want the complete CIS expansion. gaussian may be persuaded to output all
excited states with coefficients > 10−N by using IOp(9/40=N). Typically N = 5 is good
enough. gaussiantoqmc outputs the sum of the square of the coefficients so that the user
can see how complete the wave function is. (Standard gaussian output has the coefficients
normalized so that the sum of their squares for a complete expansion would be unity.)

CISD

Although gaussiantoqmc cannot read a CISD wave function it might be worth mentioning that
IOp(9/6)=N is equivalent to MAXCYCLE=N for such a calculation.

CASSCF

• As described in Foresman and Frisch’s book [32], getting CASSCF to converge for a singlet state
is difficult. The following procedure normally works:

141

http://www.gaussian.com/iops.htm
http://www.gaussian.com/iops.htm

1. Run a ROHF calculation for the lowest triplet state of the system and save the checkpoint
file.

2. Run CASSCF for the second triplet state (‘Nroot=2’) taking the initial guess from the
checkpoint file. (gaussian calculates the first and second triplets but converges on the
second.)

3. Run CASSCF for the first triplet (‘Nroot=1’) taking the initial guess from the checkpoint
file.

4. Run CASSCF for the singlet excited state (‘Nroot=2’) taking the initial guess from the
triplet checkpoint file.

5. Finally, run CASSCF for the singlet ground state (‘Nroot=1’).

• By default, gaussian uses spin configurations (combinations of Slater determinants) in a
CASSCF calculation. It is best to converge the CASSCF state that you want using this option.
However, for input to the QMC code, the wave function must be in terms of Slater determinants.
In principle, the ‘SlaterDet’ option to CASSCF will do this, but I never succeeded in getting it
to work. Instead, specifying IOp(4/21=10) does the trick, as does IOp(4/46=3).

• For large CASSCF calculations on the alpha cluster Columbus, the diagonalization method must
be changed by specifying IOp(5/51=1).

• In large CASSCF calculations where very many determinants are involved, gaussian currently
only prints the first fifty determinants in the expansion (those with the largest coefficients).
The significance of the truncation may be judged by looking at the sum of the squares of the
coefficients that gaussiantoqmc outputs when it reads the wave function. Unfortunately, this
truncation prevents a full ‘HF test’ (i.e., running the wave function in VMC without a Jastrow
factor and checking that the result agrees with that of gaussian), but the energy returned by
such a test should be above that reported by gaussian.

• As well as this truncation to fifty determinants, gaussian has a formatting error which means
that if the index number of a determinant is greater than 99,999 then it is replaced by stars and
is thus useless. gaussiantoqmc deals with this by simply throwing away such configurations
which further truncates the expansion.

• gaussian switches to direct mode for large CASSCF calculations and in doing so automatically
stops printing the definitions of the Slater determinants used in the calculation. In order to recon-
struct the wave function we do of course need to know what the Slater determinants are. gaus-
sian may be persuaded to print them by using IOp(4/46=3) IOp(4/21=10) IOp(4/21=100).
The first two of these both tell gaussian to use Slater determinants (I specified both to be on
the safe side) and the last one in theory tells it to ‘just print the configurations’ although in fact
it still proceeds to do the calculation as well.

• Restarting a CASSCF calculation from a previously converged run fails when symmetry is
switched on. Use ‘Nosymm’ to avoid this problem.

TD-HF and TD-DFT

As far as converting the resulting wave function for use in casino is concerned, these two methods
are no different to CIS apart from the issue of normalization. In CIS, the default output is normalized
so that the sum of the squares of the coefficients is equal to unity. In a TD-HF or TD-DFT calcu-
lation (which involves solving a non-Hermitian eigenvalue problem) a different scheme is used which
essentially means that the sum of the squares of the coefficients is arbitrary.

It should also be noted that gaussian cannot do gradients within TD-DFT yet and so cannot relax
excited states.

142

8.9.4 Summary of routines used in GAUSSIANTOQMC

Routine Purpose
analyse cis state Break the selected CIS/TD-DFT state down into excita-

tions from each distinct occ. MO
awk like Module and subroutines to give AWK-like functionality.

Used in parsing the gaussian output files
cas wfn Brings each of the CAS configurations into maximum co-

incidence with the reference configuration and (optionally)
calls resum cas

cas write Outputs the CAS wave function (i.e., the determinant ex-
pansion) to the gwfn.data file

cis data MODULE—holds data defining the CIS and other multi-
determinant wave functions

con coeffs Multiplies the common part of shell normalization factors
into the contraction coefficients and adjusts their storage
for improved accessibility

fatal Echoes a string and then kills the program
g94 wave function MODULE—holds the data about the type of gaussian run

as well as the data defining the MOs etc.
gaussiantoqmc Main driver unit
g d type Evaluates a primitive d-type Gaussian basis function at a

specified location in 3D space
g s type Evaluates a primitive s-type Gaussian basis function at a

specified location in 3D space
get gauss version Reads the gaussian output file and identifies whether it is

from gaussian94 or gaussian98
integ params MODULE—holds parameters defining granularity of plot-

ting and integration grids as well as which MO to plot/test
max coincidence Brings a CIS configuration into maximum coincidence with

a specified ‘reference’ determinant
normalization check Tests the normalization of a specified MO
normalise ci Normalizes the CIS expansion. Not necessary for QMC but

keeps things tidy and output gives an idea of how complete
the expansion is

numsrt Sort an array into descending (numeric) order and (option-
ally) keep track of reordering

numsrt 2way As for numsrt but has additional argument to specify as-
cending or descending order

numsrt signchange As for numsrt but returns an associated sign change given
by multiplying by −1 for each exchange

pack evcoeffs Stores the alpha and beta eigenvector coefficients separately
and multiply in remaining normalization factors (which dif-
fer between dxx,dx2−y2 etc.)

paramfile MODULE—contains define pi and also defines conversion
factors for Hartree to eV and Bohr to Ångstrom

psi Evaluates an MO of a given spin at a specified point in
space

143

Routine Purpose
qmc write Writes the gwfn.data file
re sum Resums a CIS/TD-DFT wave function
read G9xout Reads the output file produced by the gaussian job. Gets

the nuclear-nuclear potential energy, CIS/TD-DFT/CAS
expansion (if present) and HF eigenvalues

read fchk Reads the formatted checkpoint file produced by the gaus-
sian job. Gets the MOs etc.

rejig MODULE—contains numsrt and hence prototypes it which
is necessary because it has an optional argument

resum cas Partially resums a CAS expansion
set parameter values Sets the value of Pi and related constants
shell centres Identifies the positions of the distinct shell centres and store

the first shell index corresponding to each
sum degen excite Called by analyse cis. Loops over excitations out of a

given range (i–j) of (degenerate) occ. MOs and sums those
that correspond to degenerate final (virtual) MOs. Outputs
the results to a fromi j.dat file.

user control Calls the major reading routines and asks the user about
excited states and resumming

wfn construct Plot an MO (debugging option). Called by wfn test

wfn test Asks user about plotting and normalization testing. Op-
tionally calls wfn construct and normalization check.

8.9.5 Confession

The guy who wrote this left Cambridge years ago and nobody here understands how this works or
has ever used gaussian.

Here is a sequence of emails between me (MDT) and Katie Schwarz which might help for some things.

Dear Mike Towler,

I am a graduate student in Richard Hennig’s group, and we have been studying

the benzene dimer with CASINO. I have recently started performing CISD

calculations in Gaussian03 for CASINO, and I spent a very long time trying

to figure out how to output all of the determinant coefficients. I emailed

Gaussian, and they suggested using the IOp 9/28, which has worked for me.

Richard mentioned that this may also be useful to you (or to people who use

the CASINO manual), so I am sending this information along.

Hopefully it will save someone from scrolling through the IOps!

-Katie Schwarz

Dear Katie,

Thanks for this info.

However - I have to confess I’ve never used Gaussian or the converter (which

was written by some student who disappeared about ten years ago) and I’m not

quite sure what your email means. Could you elaborate?

Also, someone just asked me whether the converter will work in the

unrestricted CI case. Did you happen to notice whether this is the case? (just

to save me the trouble of analyzing the source code - I presume the info is not

in the manual..).

Best wishes,

Mike

Hi Mike,

To try to answer your question about gaussiantoqmc and the unrestricted CI

case: I don’t think that gaussiantoqmc will work for full, unrestricted CI, and

it definitely doesn’t work for unrestricted CISD. I personally couldn’t make

144

gaussiantoqmc work for multi-determinant wave functions, but according to the

manual, it works for CASSCF and CIS files.

To explain what I wrote earlier, Gaussian has a list of internal options (IOps,

http://www.gaussian.com/iops.htm) which allow users more flexibility in

calculations than the standard Gaussian keywords. The keywords are

well-documented on the Gaussian site, but the IOps are just listed by number on

a separate site. In order to print all of the wave function coefficients for

the single and double excitations in CISD, the IOp 9/28 is necessary. The

CASINO manual does not list this IOp, and other users might benefit from a

mention of it.

Because I wanted to use Gaussian’s CISD calculations, I wrote a short unix

shell script to convert the Gaussian output to a CASINO-readable form for the

correlation.data file. The script is currently messy, but if it would help

other users, I can clean it up and send it to you once I finish testing it.

Actually, do you know of researchers using CISD calculations with CASINO, or do

most users use CASSCF wave functions?

Thanks,

-Katie

8.10 GP

We used to support an old Lawrence Livermore code which, when we played with it years ago, was
called gp. It also appears to have been called jeep, and has now morphed into something called qbox
which has a website at http://eslab.ucdavis.edu/software/qbox/index.htm.

There is a converter called ‘jeep to pwfn’ supplied with casino which used to read in gp ‘jeep.wf’
and ‘atoms.sys’ files to produce a casino pwfn.data file. It is highly unlikely that this still works
with modern versions of qbox. If anyone out there would like to update this information, or to make
the converter work in a modern context, then they would be very welcome.

8.11 MCEXX

mcexx is a code written by A. Görling, S. Rohra, P. Carrier, A. Hesselmann, H. Schulz and E. Trushin
at the University Erlangen Nuremberg in Germany. It is a plane wave electronic structure code for
conventional Kohn–Sham calculations (LDA/GGAs), Hartree–Fock calculations, DFT calculations
with hybrid functionals, exact-exchange (EXX) Kohn–Sham calculations, and calculations treating
electron correlation within the random-phase approximation (RPA). Spin-orbit interactions, non-
collinear spin, and accompanying magnetization currents can be treated. With explicitly temperature-
dependent functionals calculations for the very high temperatures relevant in warm dense matter
physics (e.g., in the context of nuclear fusion or matter in stars) can be carried out. An interface
between mcexx and casino was implemented in November 2013. For further information contact
andreas.goerling @ fau.de.

8.12 MOLPRO

Website: http://www.molpro.net

Support for this Gaussian basis set quantum chemistry code is provided through the molden2qmc

utility by Mike Deible and Vladimir Konjkov, which can convert files written in the quasi-standard
MOLDEN format into casino’s gwfn.data format.

To generate a gfwn.data file, sit in a directory containing suitable MOLDEN output, type
‘molden2qmc’, then follow the prompts.

See the file CASINO/examples/generic/gauss dfg/RESULTS for the current status of the interface.

145

http://eslab.ucdavis.edu/software/qbox/index.htm
http://www.molpro.net

8.13 ORCA

Website: http://cec.mpg.de/forum/

Support for this Gaussian basis set quantum chemistry code is provided through the molden2qmc

utility by Mike Deible and Vladimir Konjkov, which can convert files written in the quasi-standard
MOLDEN format into casino’s gwfn.data format.

To generate a gfwn.data file, sit in a directory containing suitable MOLDEN output, type
‘molden2qmc’, then follow the prompts.

See the file CASINO/examples/generic/gauss dfg/RESULTS for the current status of the interface.

There is an online forum for orca here: http://cec.mpg.de/forum/index.php, where the developers
can give you direct support.

8.14 PSI-4

Website: http://www.psicode.org/

Support for this Gaussian basis set quantum chemistry code is provided through the molden2qmc

utility by Mike Deible and Vladimir Konjkov, which can convert files written in the quasi-standard
MOLDEN format into casino’s gwfn.data format.

To generate a gfwn.data file, sit in a directory containing suitable MOLDEN output, type
‘molden2qmc’, then follow the prompts.

See the file CASINO/examples/generic/gauss dfg/RESULTS for the current status of the interface.

8.15 PWSCF/Quantum Espresso

Website: http://www.quantum-espresso.org

This is probably the best-supported free plane-wave DFT package. pwscf supports casino directly
(properly so only from version 4.3). Note that versions 5.1 and 5.1.1 of the code were released with
an (easily fixable) bug that affected its casino converter—see the note at the end of this section.

The text below is taken from the README pwscf file in the utils/wfn converters/pwscf directory,
hence the repetition.

The utils/wfn converters/pwscf directory contains a run script runpwscf which may be used to
run the pwscf program on all the architectures that casino supports (it uses the same architecture
information in CASINO/arch). It understands more or less the same set of command line flags as
runqmc, one important addition being the --qmc/-w option which toggles the creation of wave function
files. The script assumes the two distributions are in $HOME/CASINO and $HOME/espresso; if this is
not the case the defaults can be changed with the --chome and --ehome flags. Fine-grained control
over parallelism in pwscf is done by defining the number of images, pools, task groups and linear
algebra groups (see the Espresso documentation); these may be specified with the --image, --npool,
--ntg and --ndiag flags to runpwscf.

Note that if your casino arch file defines a command for running casino and pwscf (such as
SCRIPT RUN: mpirun -np &NPROC& &BINARY&), then it must include a tag &BINARY ARGS& follow-
ing the &BINARY& tag. This is because the pwscf executable takes command line arguments such as
-pw2casino, -npool etc., which are not required by casino. For this reason an arch file which works
for casino may not necessarily work for pwscf without this modification. To check this on a batch
machine, type ‘runpwscf --qmc --check-only’ and examine the resulting ‘pw.x’ batch file. If the
line containing, e.g., the mpirun command above does not have ‘-pw2casino’ following ‘pw.x’, then
you will need to add &BINARY ARGS& to your arch file.

The interface between pwscf and casino is provided through a file with a standard format containing
geometry, basis set and orbital coefficients. For SCF calculations, the name of this file may be
pwfn.data, bwfn.data or bwfn.data.b1 depending on user requests (see below). If the files are
produced from an MD run, the files have a suffix ‘.1’, ‘.2’, ‘.3’, etc., corresponding to the sequence of
time steps.

casino support is implemented by three routines in the PW directory of the espresso distribution:

• pw2casino.f90: the main routine,

146

http://cec.mpg.de/forum/
http://cec.mpg.de/forum/index.php
http://www.psicode.org/
http://www.quantum-espresso.org

• pw2casino write.f90: writes the casino xwfn.data file in various formats,

• pw2blip.f90: does the plane wave to blip conversion, if requested.

Relevant behaviour of pwscf may be modified through an optional auxiliary input file, named
pw2casino.dat (see below).

In some versions prior to 4.3, this functionality was provided through separate post-processing utilities
available in the PP directory: these are no longer supported. For QMC-MD runs, pwscf, etc.,
previously needed to be ‘patched’ using the patch script PP/pw2casino-MDloop.sh; this is no longer
necessary.

Note that ‘twist-averaged’ calculations may be done with pwscf/casino using the twistav pwscf

script. See Sec. 28.3.5.

How to generate xwfn.data files with PWSCF

Use the ‘-pw2casino’ option when invoking pw.x, e.g.:

pw.x -pw2casino < input file > output file

The xfwn.data file will then be generated automatically.

If running using the supplied runpwscf script, then one would type (with assumed in.pwscf and
out.pwscf i/o files):

runpwscf --qmc OR runpwscf -w

On parallel machines, one could type, e.g.,

runpwscf --qmc -p 128

to run the calculation on 128 cores, or whatever.

pwscf is capable of doing the plane wave to blip conversion (see Sec. 9) directly (a casino blip-
generation calculation with runtype set to ‘gen blip’ is not required) and so by default, pwscf
produces the ‘binary blip wave function’ file bwfn.data.b1.

Various options may be modified by providing a file ‘pw2casino.dat’ with the following format:

&inputpp

blip_convert=.true.

blip_binary=.true.

blip_single_prec=.false.

blip_multiplicity=1.d0

n_points_for_test=0

/

Some or all of the five keywords may be provided, in any order. The default values are as given above
(and these are used if the pw2casino.dat file is not present).

The meanings of the keywords are as follows:

blip convert Re-expand the converged plane-wave orbitals in localized blip functions prior to writing
the casino wave-function file. This is almost always done, since wave functions expanded in
blips are considerably more efficient in QMC calculations. If blip convert is F, a pwfn.data

file is produced (orbitals expanded in plane waves); if blip convert is T, either a bwfn.data file
or a bwfn.data.b1 file is produced, depending on the value of blip binary (see below).

blip binary If T, and if blip convert is also T, write the blip wave function as an unformatted
binary bwfn.data.b1 file. This is much smaller than the formatted bwfn.data file, but is not
generally portable across all machines.

blip single prec If F, the orbital coefficients in bwfn.data or bwfn.data.b1 are written out in double
precision; if the user runs into hardware limits blip single prec can be set to T, in which case
the coefficients are written in single precision, reducing the memory and disk requirements at
the cost of a small amount of accuracy.

blip multiplicity The quality of the blip expansion; this is xmul in Sec. 9.

147

n points for test Number of points in overlap test: see Sec. 9.

Pseudopotentials in pwscf and casino

DFT trial wave functions produced by pwscf must be generated using the same pseudopotential as
in the subsequent QMC calculation. This requires the use of tools to switch between the different file
formats used by the two codes.

casino uses the ‘casino-tabulated format’, pwscf officially supports the UPF (version 2) format
(though it will read other ‘deprecated’ formats).

It should be noted that ultrasoft and projector-augmented-wave pseudopotentials cannot be used with
the casino code.

There are two options for switching between the various file formats:

(1) casino2upf/upf2casino (written by Simon Binnie)

Converts casino tabulated format to and from UPF version 2 (UPFv2) format.

This is included in the Quantum Espresso distribution (see directory upftools).

In the casino distribution, see in addition the README and INSTRUCTIONS files in the
utils/pseudo converters/pwscf/casino2upf directory.

Note the following pitfall. The casino2upf utility marks any UPF files it creates as having been
generated using Hartree–Fock (since they generally are). If you do not supply a value for the input dft
keyword in the ‘system’ section of the pwscf input file, then pwscf will attempt to use the functional
specified in the pseudopotential file, i.e., it will try to do a Hartree–Fock calculation, and—given that
this is only possible with pwscf if you compiled it having invoked configure with the --enable-exx

flag—then the code may stop and whine about not having been compiled with support for hybrid
functionals. This can be confusing. Solution: specify input dft in the input file.

(2) casino2gon (written by John Trail)

Converts casino tabulated format to the (deprecated) GON format.

This is included in the utils/pseudo converters/pwscf/casino2gon directory in the casino dis-
tribution.

Which utility to use?

Since UPFv2 is the current official format for pwscf, one would normally use the casino2upf con-
verter (though as of 3.2011 pwscf will still read .gon files).

The casino2gon alternative is useful when you need to do interpolation, i.e., use a non-standard grid
or wave functions on a different grid. In particular it can take pp gaussian or pp gamess as input as
well as pp.data (see the casino pseudopotential website).

8.15.1 Erroneous versions

Do not use unmodified versions 5.1 or 5.1.1 of pwscf (extant from April to December 2014) to generate
QMC trial wave functions as they contained a bug introduced by the developers that affected the
casino converter routine. SVN development versions from December 2014 contain a fix for this bug,
as will subsequent releases.

To fix the bug manually you need to replace line 366 of PW/src/pw2casino write.f90

CALL get_buffer (evc , nwordwfc , iunwfc , ikk)

with

IF(nks > 1) CALL get_buffer (evc , nwordwfc , iunwfc , ikk)

8.16 TURBOMOLE

turbomole is a quantum-chemical program package, initially developed in the group of Prof. Dr.
Reinhart Ahlrichs at the University of Karlsruhe and at the Forschungszentrum Karlsruhe, and now
run by a commercial company. It provides all standard and state of the art methods for ground state
calculations (Hartree–Fock, DFT, MP2, CCSD(T)), excited state calculations at different levels (full

148

RPA, TDDFT, CIS(D), CC2, ADC(2), . . .), geometry optimizations, transition state searches, and
molecular dynamics calculations.

Website: http://www.turbomole.com

The casino converter/interface was implemented a long time ago (2001) by Stefan Grimme
of the University of Muenster, and has almost certainly stopped working. A piece
of code which was to be incorporated into the TURBOMOLE source is provided in
CASINO/utils/wfn converters/turbomole old. (Martin Korth of the University of Ulm was the
last person known to possibly have his own private version which works).

In modern times however, support for this code is now also provided through the molden2qmc utility
by Mike Deible nd Vladimir Konjkov, which can convert files written in the quasi-standard MOLDEN
format into casino’s gwfn.data format.

To generate a gfwn.data file, sit in a directory containing suitable MOLDEN output, type
‘molden2qmc’, then follow the prompts.

See the file CASINO/examples/generic/gauss dfg/RESULTS for the current status of the MOLDEN
interface for turbomole.

8.17 2DHF

2dhf is a numerical orbital Hartree–Fock diatomic molecule code, available from this website: http:
//fizyka.umk.pl/~jkob/software/2dhf/

Output from this program may be converted to casino’s numerical diatomic orbital format dwfn.data
format using the converter uf2dwfn (written by John Trail). This is supplied as a casino utility, but
is not automatically compiled and setup by the casino build system and must be installed manually.
For further details, see the instructions in the file:

CASINO/utils/wfn converters/2dhf/Uf2dwfn/README.

8.18 Unsupported programs

If the program in question uses Gaussian, plane-wave, Slater or blip basis sets (or represents orbital
in a grid for atoms or dimers) then feel free to create your own converter to write the output of
the program in the appropriate [x]wfn.data format and send it to us (mdt26 at cantab.net) for
inclusion in future releases. If you are the author/owner of the electronic structure package in question,
then you may like to add internal support so that the code can write out casino wave functions
directly. We can provide advice about this (there is in fact some on the casino web site; see http:

//vallico.net/casinoqmc/interface_development).

If your program uses some other basis set which requires a new casino orbital evaluator to be written,
then this could be a major project. Please ask.

Note that support for any Gaussian basis set program that supports the quasi-standard MOLDEN
file format can in principle be added relatively easily via the standard MOLDEN interface of Mike
Deible and Vladimir Konjkov. Vladimir is known to have at least looked at adding nwchem and/or
q-chem.

8.19 Request for help

A final remark: support for plane-wave DFT programs is currently either ‘advanced’ (pwscf—in that
the program understands about blip functions and can do the necessary PW−→blip transformations
internally, and it can do DMC-MD calculations)—or ‘basic’ (castep, abinit, gp, mcexx). These
latter codes are only capable of writing out plane-wave pwfn.data files. If anyone would like to add
the blip stuff to e.g., castep or abinit then please volunteer: the routines can be essentially nicked
from pwscf, since we wrote them. Any volunteers coming forward to improve interfaces to other
codes would be very welcome.

149

http://www.turbomole.com
http://fizyka.umk.pl/~jkob/software/2dhf/
http://fizyka.umk.pl/~jkob/software/2dhf/
http://vallico.net/casinoqmc/interface_development
http://vallico.net/casinoqmc/interface_development

9 Using CASINO with blip functions

Blip functions were devised by Mike Gillan and implemented in casino by Dario Alfè [33] (the original
implementation has since been significantly improved by many contributors).

Plane-wave DFT codes such as castep can be used to produce casino pwfn.data files with the
orbitals expanded in plane waves, but it is inefficient to use these directly in casino (though you can
if you want). Re-expanding the orbitals in a basis set of localized ‘blip functions’ on a grid makes
the code run faster and scale better with system size than it does with plane waves, though blips can
require a lot of memory and disk space.

Performing a casino calculation with runtype set to ‘gen blip’ will transform the pwfn.data files
generated by a plane-wave DFT package into bwfn.data or bwfn.data.bin files. The pwscf software
is capable of generating blip bwfn.data files (and their binary equivalents) directly, and ‘gen blip’
calculations are unnecessary.

The quality of the blip expansion (i.e., the fineness of the blip grid) can be improved by increasing the
grid multiplicity parameter blip xmul input parameter (in pwscf the xmul parameter is given as
input in the pw2casino.dat file). A suitable default value is 2.0. Increasing the grid multiplicity
results in a greater number of blip coefficients and therefore larger memory requirements, but the CPU
time should be unchanged. For very accurate work, one may want to experiment with blip xmul
larger than 2.0. Note, however, that it might be more efficient to keep blip xmul at 2.0 and increase
the plane wave cutoff instead.

If you wish casino to perform a Monte Carlo evaluation of the overlap between the blip and plane-
wave orbitals, set the blip nrandpoints parameter to a positive value. Casino will then sample
the wave function, the Laplacian and the gradient at the specified number of random points in the
simulation cell and compute the overlap of the blip orbitals with the original plane-wave orbitals:

α =
〈BW |PW 〉√

〈BW |BW 〉 〈PW |PW 〉
(38)

The closer α is to 1, the better the blip representation. By increasing blip xmul, or by increasing
the plane-wave cutoff, one can make α as close to 1 as desired. The blip utility will as you for the
number of points to be used (1000 is a good bet); for pwscf the number of points is given in the
pw2casino.dat file (the keyword ‘n points for test’).

If you set the blip calc ke to T then casino will calculate the kinetic energies of your orbitals (in the
plane-wave and blip representations). Obviously, the kinetic energies should be in good agreement.
This test can take some time to run, however, and is often skipped.

Finally a blip-generation calculation allows you to translate the atoms in an appropriate manner for a
reduced-periodicity QMC calculation. For example, if you would like to study a molecule and you have
performed your plane-wave DFT calculation with the molecular coordinates centred on the origin, you
should set blip periodicity to 0; casino will then translate the atoms (and plane-wave coefficients)
in the blip-generation calculation so that the molecule is centred in the middle of the blip grid, which
spans the first simulation cell. Note that if you change the periodicity of your calculation for whatever
reason then you should redo the blip-generation calculation.

When casino is run, the formatted bwfn.data file is converted into the unformatted and much
smaller bwfn.data.bin file. If you update the formatted bwfn.data file then please be sure to
delete the bwfn.data.bin file(s); otherwise the bwfn.data.bin file(s) will be read and the (updated)
bwfn.data file will be ignored.

An older format binary blip file—bwfn.data.b1—is still supported. Note that pwscf can bypass the
conversion to binary step in casino, as it is capable of producing single bwfn.data.b1 files directly
(in fact, it does this by default). It is intended that pwscf will presently be converted to produce
.bin files instead of .b1, and by the time you read this, that may have already been done.

If your machine has CPUs with multiple cores, the set of blip (or Gaussian) coefficients can be shared
among the cores in each CPU, thus saving a significant amount of memory. This feature, which
is implemented for both unix System V Inter-Process Communication and POSIX shared memory,
must be enabled at compile-time by setting in the relevant Makefile include files the flags NEED SHM to
yes and CPP FLAGS SHM to -DSHM SYSV or -DSHM POSIX for System V or POSIX version, respectively.
(Once set up correctly. Just type ‘make shm’ or ‘make openmpshm’.)

The gain in speed with respect to plane waves should be of the order of NPW/64, where NPW is the

150

number of plane waves in the plane-wave basis.

Localized plane-wave orbitals can also be represented in terms of blips. This is discussed in Sec. 27.

10 Utilities provided with the CASINO distribution

A large variety of little programs which do useful things are provided in the ~/CASINO/utils/ di-
rectory. Although you should probably refer to the README files in each of the subdirectories for
up-to-date and more comprehensive information, here we provide a reasonably current list of them:

• abinit to casino pp, casino to abinit pp: Converts pseudopotentials for the abinit pro-
gram into casino format, and vice versa.

• ae pp maker: generate an all-electron pseudopotential in the castep .recpot format.

• billy: Shell script for optimizing basis sets and geometrical parameters with crys-
tal95/98/03/06/09/14/17. Reasonably vital for developing decent trial wave functions for
casino with these programs. See the documentation in ~/CASINO/utils/billy/ (this was
the first proper computer program that baby MDT ever wrote). The opt crystal utility is
a more modern version of this and is normally to be preferred since it tends to give a better
answer—though beware it tends to be much slower than billy.

• casinohelp: Simple script to invoke the casino help system. Usage:

casinohelp <casino_keyword> : tells you the definition and type of keyword

casinohelp search <text> : finds <text> in descriptions of all keywords

casinohelp all : lists all possible keywords

casinohelp basic : lists all basic level keywords

casinohelp inter : lists all intermediate level keywords

casinohelp expert : lists all expert level keywords

• casinostyle checker: Checks that the .f90 files supplied as command-line arguments adhere
to the casino style guidelines (see Sec. A.3); obviously this is only relevant for developers of
casino.

• champ to casino pp: Converts pseudopotentials for the champ QMC program into casino
format.

• change inputs: Script to allow users to change, add or remove keywords in large numbers
of input files. Similar to modify inputs, but aimed at users rather than maintainers. Type
change inputs -h for more information.

• clearup: Script for cleaning up after casino by removing output and indicator files, etc. It
attempts to ‘reset’ directories to a suitable starting point.

• clearup twistav: Script for cleaning up after a twist-averaging calculation using
twistav pwscf or twistav castep.

• crysgen06/09/14/17, crystaltoqmc: The crysgen06/09/14/17 scripts drive the program
crystaltoqmc, which takes the output of the corresponding versions of the crystal program
and produces a casino gwfn.data file. See Sec. 8.6.2.

• det compress: Given an mdet.casl file describing a multi-determinant expansion, pro-
duce a compressed multi-determinant expansion and write it to cmdet.casl. See
Secs. 7.9 and 21. DET COMPRESS is an imported, cross-licensed utility; refer to
https://github.com/plopezrios/det compress for the upstream.

• dfit: Draw a polynomial through a set of energy points and find the minimum (used by the
billy utility, but is independent of it).

• egaussian: Utility for extracting energies etc. from the output of the gaussian code. See Sec.
8.9.

151

https://github.com/plopezrios/det_compress

• envmc: Utility to extract VMC energies, energy components, standard errors and time taken
from the standard output file. Examples of the use of envmc are given in Sec. 6.2 and Sec.
6.3.1. See ~/CASINO/utils/envmc/ for further information. Note that envmc is short for ‘VMC
energy’ so it doesn’t work for DMC, OK?

• extrapolate tau: Program to extrapolate DMC energies to zero time step by fitting a polyno-
mial form to the DMC energy as a function of time step. For sufficiently small time steps, the
bias in the DMC energy should be linear in the time step. To use, create a text file containing
DMC time steps, energies and error bars, arranged in three columns (make E v dt may help
with this); then type extrapolate tau and answer the questions. The name of the file holding the
energy against time step can be supplied as a command-line argument to extrapolate tau.

• extr casino/extr pwscf: Simple utilities for extracting energies, etc., from the output of DMC-
MD simulations carried out using runqmcmd.

• finsize: Calculates post-run table of kinetic-energy and XC-energy finite-size corrections
and reports the finite-size-corrected Ewald and/or MPC energies. The utility requires an
expval.data file containing a structure factor, as well as the casino input and out files.

• format configs: Format an unformatted config.in file to give a formatted
config.in formatted, or vice versa (it similarly treats config.out and config.backup

files). This enables one to read its contents, e.g., for development purposes. Furthermore,
it allows one to transfer the architecture-specific config.in file between different computer
systems, since the formatted file can be read by any machine.

• gaussiantoqmc: This program takes the output of gaussian and produces a casino gwfn.data

file. See Sec. 8.9 for information.

• get exciton binding: Calculate an excitonic energy gap and (optionally) an exciton binding
energy using QMC results held in directories supplied as command-line arguments. The first
directory specified should hold a ground-state calculation, followed by a directory containing a
promotion calculation, optionally followed by directories holding the addition and subtraction
calculations required to give the corresponding quasiparticle gap. Energies are read from the
results of the reblock utility stored in reblock.results, unless the option ‘-out’ is given, in
which case energies will be read from the out file or the dmc.status file.

• get qp gap: Calculate a quasiparticle energy gap using QMC results held in directories supplied
as command-line arguments. The first directory specified should hold a ground-state calcula-
tion, followed by directories holding the addition and subtraction calculations required to give
the quasiparticle gap. Energies are read from the results of the reblock utility stored in
reblock.results, unless the option ‘-out’ is given, in which case energies will be read from the
out file or the dmc.status file.

• graphdmc: Plot energy versus move data from a DMC run (i.e., the numbers in dmc.hist) in
an xmgrace plot. If for any reason some lines have been removed from the dmc.hist file then
type graphdmc -x to generate a new set of line numbers when the plot is made. An example of
the use of graphdmc is given in Sec. 6.4.

• haltqmc: stop a CASINO job, tidy up and analyse the output (check for warnings, move
config.out to config.in, remove indicator files, run reblock) and update the input file
for the next stage of the calculation.

• input kw conv Program for converting between the ‘old’ (e.g., nmove, nconfig) and ‘new’
(e.g., vmc nstep, dmc target weight) keyword sets. Note that support for the old sets will
be removed in early Jan 15, at which point this utility might be more heavily used.

• update src Script to extract a casino tar archive and set it up in a directory CASINO vxx.xx.xx

with a CASINO symbolic link pointing at it.

• heg hfta Program for evaluating twist-averaged and non-twist-averaged Hartree–Fock energies
for 1D, 2D and 3D HEGs at finite N↑ and N↓. For 3D HEGs, (twist-averaged) perturba-
tive relativistic corrections are evaluated. The program is parallelised using OpenMP. See
CASINO/utils/heg hfta/README for more information.

152

• ion dist Program for automatic generation of the edist by ion block in the input file for
casino. Currently works only for antiferromagnetic Wigner crystals that have been generated
by the crystal program (since the numbers are generated from an analysis of gwfn.data). See
documentation in ~/CASINO/utils/ion dist/. Current holder of ‘Most Useless Utility’ award.

• jeep pp: Convert a pseudopotential from the format used by gp into the format used by casino.

• jeep to pwfn: This program takes the output of GP version 1.8.0 and produces a casino
pwfn.data file.

• localizer: Utility to read in a pwfn.data file containing extended orbitals expanded in plane
waves and generate localized orbitals, also represented in a plane-wave basis. See Sec. 27.

• louis: MDT’s pilot wave quantum trajectory code, included with casino to help with the
development of pilot-wave QMC. Also includes the utilities runlouis, plot louis, louishelp,
louisplot2d, louisplot3d and modify louis inputs, which do the obvious things. See util-
s/louis/README for more details.

• make E v dt: Create a file holding DMC energy and error bar against time step, for plotting or
for use with extrapolate tau. Supply the names of directories holding completed DMC jobs
as command-line arguments.

• kvec maker: Utility for generating the k-vector grid for the orbitals in a QMC calculation; the
results can be supplied to castep or pwscf to generate the orbitals for a particular supercell.
Simply run the program and answer the questions!

• make new mpc: Convert casino 1.x density.data and eepot.data files into casino 2.x
mpc.data. Located in the converters 2.0 directory.

• make p stars: Utility for helping users construct p terms in the Jastrow factor and π terms in
the backflow function. Type make p stars and answer the questions. Note that p should have
the symmetry of the simulation cell rather than the primitive cell. See Secs. 22 and 23.1.4.

• mcta hf: Utility to compute the Monte Carlo twist averaged Hartree–Fock energy components
for HEGs. Refer to the utils/heg mcta/README file for usage information.

• mcta post process: Utility to perform post-processing analysis on Monte Carlo twist averaged
data for HEGs. This utility uses a control variate technique to reduce the statistical error
bar of the QMC energy; see Sec. 28.3.2. Refer to the utils/heg mcta/README file for usage
information. The results of mcta post process should approximately agree with the results of
twistanalysis castep.

• menugrep: Script to facilitate the process of editing lines containing items found by grep: useful
for editing the casino source code. See documentation in ~/CASINO/utils/menugrep/.

• combine plot data: Program to scale or to take a linear combination of the data in one or more
lineplot.dat or 2Dplot.dat files. The files to be combined should be given as command-line
arguments, with each filename followed by the scalar that multiplies the data. For example, to
combine two lineplot.dat files holding VMC and DMC charge densities to form the extrap-
olated estimate, one could use ‘combine plot data lineplot dmc.dat 2 lineplot vmc.dat

-1 > lineplot extrap.dat’. If the data have error bars then please use the flag ‘-e’ to let
combine plot data know this.

• modify inputs: Simultaneously modify all input files in subdirectories of the current directory
(e.g., ~/CASINO/examples/) by adding or deleting keywords or by changing the value of a
keyword. I (MDT) can remember a time when I did this by hand (with 100+ examples); that
was entertaining.

• molden2qmc: A wave function converter which can produce casino gwfn.data files from files in
the MOLDEN format produced by quantum chemistry codes such as MOLPRO, PSI-4, Turbo-
mole, ORCA, . . .

• movie2avi: Utility to generate animations from movie.out files using povray to render the
frames and ffmpeg/avconv to produce the video file. Refer to utils/movie2avi/README for
instructions, or equivalently run the script with --help.

153

• mpr: Pretty printing script for source-code listings, which saves trees (assuming a2ps has been
set up correctly for your system).

• multirun: Script for running several casino runs sequentially changing any set of parameters
in the input file for each of them.

• nstring: Generate integer number sequences. Useful for strings required in correlation.data

files if you’re using Type 1 labelling of the sets of atoms in the χ and f functions.

• plot 2D: This script generates 2D plots of trial wave functions and particle positions us-
ing data produced by qmc plot. The script uses gnuplot. See the documentation in
~/CASINO/utils/plot 2D/ for further information.

• plot bffield, plot bfphi: These scripts generate 2D plots of the backflow transformation and
the inhomogeneous φ term (electron–electron–nucleus) of the backflow transformation. They
make use of gnuplot. See documentation in ~/CASINO/utils/plot backflow/.

• plot expval: General program to read a casino-produced expval.data file and visualize the
results. Converts the data to standard 1D lineplot.dat files which can be visualized with xm-
grace, or 2Dplot.dat/3Dplot.dat files for higher dimensional data which can be visualized
by gnuplot (via the casino plot 2D utility).

• plot hist: General program to read vmc.hist and dmc.hist files and plot selected quantities
as a function of move number.

• plot reblock: This script uses xmgrace to plot the reblocked standard error in the mean
energy against reblocking transformation number, which is contained in the reblock.plot file
produced by the reblock utility. An example of the use of this script is given in Sec. 6.2.

• plot mpc: Reads a casino mpc.data file (containing a Fourier representation of the density of
the Slater wave function and a Fourier representation of 1/r treated with the minimum image
convention). It can convert the data to standard 1D lineplot.dat files which can be visualized
with xmgrace, or 2Dplot.dat/3Dplot.dat files for higher dimensional data which can be
visualized by gnuplot (via the casino plot 2D utility).

• ptm: Manipulate pseudopotentials on radial grids or as Gaussian expansions. See documentation
in ~/CASINO/utils/ptm/.

• quad fit: Program for carrying out a quadratic fit to a set of data, in order to find a local
extremum. Simply type quad fit followed by the name of a file containing columns of data in
the form x, y or x, y, δy.

• quickblock: Simple reblocking utility intended for analysing very large dmc.hist files (since
it only looks at one column at a time). Alternative to reblock. quickblock allows reblocking
of data other than the energy in the dmc.hist files. If a file called dmc.hist is present in the
directory then quickblock will assume that you want to analyse the total energy in that file.
Otherwise it will ask you for the name of the file (and the column of data) to analyse.

• reblock: Perform full statistical analysis and reblocking of QMC data in vmc.hist and
dmc.hist (note the reblocked error bars are computed by casino on the fly and are reported at
the end of the out file and in the temporary dmc.status file). Information about the reblock-
ing algorithm is given in Sec. 24. Further information can be found in the documentation in
CASINO/utils/reblock/.

• remaining time: Simple script for estimating the amount of wallclock time until a casino
calculation completes its current phase (e.g., completes equilibration or completes statistics
accumulation). Supply one or more casino out files as command-line arguments. This is
intended to help users manage large numbers of jobs.

• runcrystal: Run script for carrying out crystal9x and crystal03/06/09/14/17 calcula-
tions. Its use is discussed in Sec. 8.6.2.

• runqmc: General run script for carrying out casino calculations on any kind of computer. See
Sec. 6.6.

154

• runqmcmd: Script for carrying out QMC molecular dynamics calculations with casino and the
pwscf program. Works by calling the runqmc and runpwscf scripts, ensuring that it can run
on any kind of machine. See Sec. 6.7.

• runpwscf: General run script for carrying out pwscf calculations on any kind of computer.

• runvp: Utility to run a calculation using several workstations as if they formed a cluster.

• set random seed: script to assign a different random seed to each of the casino input files
listed as command-line arguments.

• supercell: constructs simulation supercells that maximize the radius of the sphere that can
be inscribed in the Wigner-Seitz cell of the supercell. Further information can be found in the
documentation in CASINO/utils/supercell/README.

• tcm comps: Script for listing the jobs running on each of the computers in TCM (Cambridge
interest only).

• tidy bib: Tidy up a bibtex file downloaded from a journal website. Supply the bibtex file as a
command-line argument.

• treat: TREAT is the tail-regression estimator analysis toolbox. The tail-regression estimator is
a statistical analysis tool designed to deal with heavy-tailed distributions, such as the local energy
and local force distributions from VMC and DMC. Refer to CASINO/utils/treat/README.md

for usage. See https://arxiv.org/abs/1903.07684 for information on the tail-regression estimator.
TREAT is an imported, cross-licensed utility; refer to https://github.com/plopezrios/treat for
the upstream.

• twistanalysis: Script for analysing the results generated by twistav castep or
twistav pwscf. See Sec. 28.3.4.

• twistanalysis heg external: program for analysing the results of a Monte Carlo external
twist-averaging calculation for the HEG.

• twistanalysis heg internal: program for analysing the results of a Monte Carlo internal
twist-averaging calculation for the HEG. Supply one or more vmc.hist or dmc.hist files as
command-line arguments. Uses a slightly different approach to mcta post process, but the
results should be in statistical agreement. See Sec. 28.3.2.

• twist average dipole: program for twist averaging out-of-plane dipole moments in 2D-
periodic systems, e.g. to calculate the polarizability of graphene and other 2D materials. Use
twistav castep or twistav pwscf to set up a twist-averaged calculation for a 2D-periodic sys-
tem with an external electric field in the z direction, then perform VMC and DMC at each twist
and tidy up and analyse these calculations using haltqmc -r; finally obtain the twist-averaged
dipole moment and polarizability by typing ‘twist average dipole twist????/?MC*/’.

• twistav castep: Script for carrying out twist averaging for real systems, using the castep
plane-wave DFT code in conjunction with casino. See Sec. 28.3.4.

• twistav pwscf: Script for carrying out twist averaging for real systems, using the pwscf plane-
wave DFT code in conjunction with casino. See Sec. 28.3.5.

• update hist: A utility for converting casino version 1 .hist files to casino version 2 .hist

files (as if there might be anyone left who might want to do this).

11 Making movies with CASINO

I think somebody did this once way back in the 20th century. And it was rubbish, but this is supposed
to be a comprehensive manual.

155

https://arxiv.org/abs/1903.07684
https://github.com/plopezrios/treat

11.1 How to make movies

In the input file the following keywords control the movie-making process:

MOVIES

makemovie : T #*! Make movie (Boolean)

movieplot : 1 #*! Plot every * moves (Inte

movieproc : 0 #*! Process to plot (Integer)

moviecells : F #*! Plot nn cells (Boolean)

Set the keyword makemovie to T to enable the movie-making facility. You could set movieplot to
an integer greater than 1 so that the particle positions are only written out every movieplot moves.
The MPI process which plots the particle positions are chosen by the keyword movieproc, which has
to be zero or a positive integer less than the total number of MPI processes. If moviecells is set to F
then the unit cell will be plotted, if set to T then nearest-neighbour cells in the (x, y)-plane will also
be written. Type runqmc and an output file called movie.out will be produced. The format of the
movie.out file is as follows:

4

Input geometry

C 0.000000 0.000000 0.000000 5.000000

H -1.407651 -1.138185 0.054434 -1.000000

H 0.894354 0.554315 1.263301 -1.000000

H 0.528074 1.081535 -0.755823 -1.000000

4

Input geometry

C 0.000000 0.000000 0.000000 5.000000

H -1.407651 -1.138185 0.054434 -1.000000

H 0.894354 0.554315 1.263301 -1.000000

H 0.528074 1.081535 -0.755823 -1.000000

(etc.)

Notes:

1. The movie.out file follows the standard (x, y, z) molecular format.

2. Line 1 indicates the total number n of ions and particles.

3. Line 2 is a comment.

4. The following n lines consist of five columns. Column 1 specifies the type of particle (H=electron,
O=hole and C=other atoms). Columns 2, 3 and 4 are the x, y and z coordinates of the particle.
Column 5 specifies the charge of the particle.

5. This information is then repeated. The total number of sets of geometry contained in movie.out

is controlled by the keywords vmc equil nstep, vmc nstep and movieplot in the input file.

6. For column 1, the ‘H=electron, O=hole and C=other atoms’ convention is somewhat confusing,
but is necessary because particles have to take on element symbols in order for the standard
visualization programs to read the movie.out file.

7. Column 5 is not read by the visualization programs. It is only there so that different types of
particle can be distinguished.

11.2 Visualization

Having generated the movie.out file we are able to visualize the results using vmd or jmol. (This
information probably needs updating!)

11.2.1 VMD

vmd (Visual Molecular Dynamics) is a molecular visualization program. It supports computers run-
ning MacOS-X, Unix, or Windows, is distributed free of charge, and includes source code. VMC can
be downloaded from http://www.ks.uiuc.edu/Research/vmd/.

156

http://www.ks.uiuc.edu/Research/vmd/

• Type vmd. A ‘VMD console’ and a ‘VMD Display’ window will appear.

• In the ‘VMD console’ window type menu main on. An extra ‘VMD Main’ menu bar will appear.

• On the ‘VMD Main’ menu bar, click on File → New Molecule. A ‘Molecule File Browser’
will appear.

• In the ‘Molecule File Browser’, browse for the file movie.out and choose the file type to be xyz.
Click Load to open the file.

• On ‘VMD Main’, click on Graphics→ Representations. A ‘Graphical Representations’ menu
bar will pop up. Choose CPK as the drawing method, the bond resolution to be 1 and the
sphere resolution to be 15. Click Apply.

• On ‘VMD Main’, click on Extensions → vmdmovie. (For version 1.8.3, click on Extensions
→ Visualization → Movie Maker.) A ‘VMD Movie Generator’ will pop up.

• In Movie Settings choose Trajectory. The movie can be saved in the AVI or MPEG format.
Choose by clicking on Format and tick the preferred format. Then check whether the name of
the temporary directory suggested is right (this is where the RGB files are created). Note that
this directory should be free of RGB files belonging to other users. If this has to be changed
then click on the Set working directory button and browse for the directory.

• Type in the name of the movie in the box provided. Click on the Make Movie button.

• The movie will be displayed in the Open GL Display screen. The .mpg or .avi movie file
will be produced in the working directory being specified. They have to be viewed with other
viewers, for example mpeg play for .mpg files.

For an example movie made with vmd (a casino VMC simulation of cyclohexane) see https://

casinoqmc.net/downloads/cyclohexane2.mpg.

11.2.2 JMOL

jmol is a free, open source molecule viewer. It supports computers running Windows, Mac OS X and
Linux/Unix systems. Jmol can be downloaded from jmol.sourceforge.net/

• Type jmol. Click on File→ Open. Browse for the file movie.out and click Open.

• Click on Display and untick the box for Bonds.

• Click on Extras → Animate. An animation tool bar will appear. To start the movie click on
the ‘play’ symbol.

12 Detailed information: the VMC method

12.1 Evaluating expectation values

The expectation value of the Hamiltonian Ĥ with respect to the trial wave function Ψ can be written
as

〈Ĥ〉 =

∫
EL(R)|Ψ(R)|2 dR∫
|Ψ(R)|2 dR

, (39)

where EL(R) = Ψ−1(R)Ĥ(R)Ψ(R) is the local energy. We can evaluate this expectation value by
using the Metropolis algorithm [34] to generate a sequence of configurations R distributed according
to |Ψ(R)|2 and averaging the corresponding local energies.

157

https://casinoqmc.net/downloads/cyclohexane2.mpg
https://casinoqmc.net/downloads/cyclohexane2.mpg

12.2 The sampling algorithm

The implementation of VMC in casino involves making trial moves, whether of a single electron or
of the entire configuration, and accepting or rejecting the moves in accordance with the Metropolis
algorithm. The Metropolis transition probability density is Gaussian of variance τ , where τ is the
VMC time step (dtvmc).

In the electron-by-electron algorithm, each step consists in proposing individual moves for each of the
electrons and subject each move to a separate accept/reject step. In the configuration-by-configuration
algorithm one configuration move is proposed per step, and is accepted or rejected as a whole.

Another difference in the casino implementation of these two methods is that in the configuration-by-
configuration the local energy (and all other expectation values) are evaluated both before and after
the move, and it is the average of the two, weighted by the acceptance probability, that enters the
accumulation arrays. In the electron-by-electron algorithm we only evaluate the energy after having
moved the configuration.

The configuration-by-configuration algorithm has the disadvantage of suffering from long correlation
times, which makes it in practice more expensive than the electron-by-electron algorithm in virtually
all cases. Thus we will restrict our discussion below to the electron-by-electron algorithm.

The vmc method input parameter selects which is to be used: a value of 1 means electron-by-
electron, whereas a value of 3 means configuration-by-configuration.15

The local energy does not have to be calculated every configuration move. In particular, energies are
not calculated during the first vmc equil nstep moves of a VMC simulation when the Metropolis
algorithm has yet to reach its equilibrium. Furthermore, because the configurations are serially cor-
related, the expense of calculating the energy at every configuration move is unjustified: it is more
efficient to calculate the energy once every vmc decorr period moves, where typically the input
parameter vmc decorr period might be in the range 4–20.

Note that it is not necessary to write out every local energy calculated. vmc ave period successive
energies can be averaged over before being written out to vmc.hist: this helps ensure that the
vmc.hist file is not excessively large when long production calculations are carried out. Furthermore,
on parallel machines the local energies computed on each MPI process are averaged over before being
written out.

The input parameter vmc nstep gives the number of energy-calculating steps in the VMC simulation.
In parallel machines, each MPI process goes over vmc nstep/nproc energy-calculating steps.

12.3 Two-level sampling

The Metropolis acceptance probability for a move from R′ to R in the standard algorithm16 is

p(R← R′) = min

{
1,
|Ψ(R)|2

|Ψ(R′)|2

}
= min

{
1,
|D2
↑(R)D2

↓(R)| exp[2J(R)]

|D2
↑(R

′)D2
↓(R

′)| exp[2J(R′)]

}
. (40)

It is straightforward to show that if detailed balance [11] in configuration space is satisfied then the
resulting ensemble of configurations will be distributed according to the square of the trial wave
function.

However, casino employs a two-level sampling algorithm, which has been shown to be considerably
more efficient [35].

Let us define the first-level acceptance probability

p1(R← R′) = min

{
1,
|D2
↑(R)D2

↓(R)|
|D2
↑(R

′)D2
↓(R

′)|

}
(41)

and the second-level acceptance probability

p2(R← R′) = min

{
1,

exp[2J(R)]

exp[2J(R′)]

}
. (42)

15There used to be a vmc method=2, but after extensive testing we concluded that it did not offer any advantage
over the other methods and was hard to support.

16In the electron-by-electron algorithm, R and R′ differ only in the coordinates of a single electron.

158

In the two-level algorithm we accept trial moves from R′ to R with probability p1(R← R′)p2(R←
R′). It can be shown that, provided detailed balance in configuration space is satisfied, this procedure
also results in an ensemble of configurations distributed according to the square of the trial wave
function.

The two-level approach is computationally advantageous because the Metropolis accept/reject step
can be carried out in two stages: if the ‘first level’ is accepted (with probability p1) then we compute
the Jastrow factors of the new and old configurations and determine whether the ‘second level’ is
accepted (with probability p2). Thus, if a move is rejected at the first level then we do not have to
compute the Jastrow factors for the new and old configuration17.

12.4 Optimal value of the VMC time step

Ideally, the VMC time step dtvmc should be chosen such that the correlation period (as determined
by reblocking analysis) of the resulting configuration local energies is minimized. For large time steps
the move rejection probability is high, which obviously leads to serial correlation. On the other hand,
for low time steps the configuration does not move very far at a given step, and so serial correlation
is again large.

A rule of thumb for choosing an appropriate dtvmc is that the average acceptance probability should
be about 50%. If you use at least 500 steps18 in the VMC equilibration phase, then casino will auto-
matically optimize the VMC time step to achieve an acceptance ratio of 50% (provided opt dtvmc
is set to 1, which is the default).

Notice that one could determine the optimal time step by analysing the correlation length of the
local-energy sequence, but this is just too expensive and complicated and would provide little (if any)
benefit over the simple, inexpensive ‘50% rule’.

13 Detailed information: the DMC method

See, e.g., Refs. [11], [12], [13] and [14] for general information about DMC. Here we present some more
detailed information about the implementation of DMC within casino. Our algorithm follows that of
Umrigar, Nightingale and Runge [21] (referred to simply as UNR), with some additional developments
due to Umrigar and Filippi [36]. Throughout this section we assume for simplicity that the trial wave
function is real, though casino is perfectly capable of dealing with complex wave functions.

13.1 Imaginary-time propagation

Let R be a point in the configuration space of an N -electron system. The importance-sampled DMC
method propagates the distribution f(R, t) = Ψ(R)Φ(R, t) in imaginary time t, where Ψ is the trial
wave function and Φ is the DMC wave function. The importance-sampled imaginary-time Schrödinger
equation may be written in integral form,

f(R, t) =

∫
G(R← R′, t− t′)f(R′, t′) dR′ , (43)

where the Green’s function G(R← R′, t− t′) satisfies the initial condition

G(R← R′, 0) = δ(R−R′) . (44)

The Green’s function used in DMC is an approximation to the exact form which is accurate for short
time steps, τ = t− t′ (dtdmc),

GDMC(R← R′, τ) = GD(R← R′, τ)GB(R← R′, τ) , (45)

where

GD(R← R′, τ) =
1

(2πτ)
3N/2

exp

(
− (R−R′ − τV(R′))

2

2τ

)
(46)

17It is better to use the Slater wave function to compute the first-level acceptance probability because p1 is much
lower (in general) than the corresponding acceptance probability for the Jastrow part (p2); hence we are less likely to
need to compute the second level acceptance probability than if the situation were reversed.

182000 steps are required for configuration-by-configuration VMC.

159

is the drift-diffusion Green’s function and

GB(R← R′, τ) = exp
(
−τ

2
[EL(R) + EL(R′)− 2ET]

)
(47)

is the branching Green’s function. ET is the reference energy, which acts as a renormalization factor
(see Sec. 13.4). EL is the local energy,

EL(R) = Ψ−1ĤΨ, (48)

where Ĥ is the Hamiltonian and V is the drift vector,

V(R) = Ψ−1∇Ψ. (49)

Note that V = (v1, . . . ,vN), where vi is the drift vector of electron i.

13.2 The ensemble of configurations

The f distribution is represented by an ensemble of electron configurations, which are propagated
according to rules derived from the Green’s function of Eq. (45). GD represents a drift-diffusion
process while GB represents a branching process. The branching process leads to fluctuations in the
population of configurations and/or fluctuations in their weights.

We will introduce labels for the different configurations α present at each time step m. From now
on R represents the electron coordinates of a particular configuration in the ensemble and i labels a
particular electron.

In the casino implementation of DMC, electrons can moved one at a time (electron-by-electron,
dmc method= 1, default) or all at once (configuration-by-configuration, dmc method= 2). The
former is much more efficient and is the standard procedure for large systems, but most of the algo-
rithms described in the literature are for moving all electrons at once.

13.3 Drift and diffusion

We now discuss the practical implementation of the drift-diffusion process using the electron-by-
electron algorithm in which electrons are moved one at a time, as used in casino.

To implement the drift-diffusion step, each electron i in each configuration α is moved from r′i(α) to
ri(α) in turn according to

ri = r′i + χ+ τvi(r1, . . . , ri−1, r
′
i, . . . , r

′
N), (50)

where χ is a three-dimensional vector of normally distributed numbers with variance τ and zero mean.
vi(R) denotes those components of the total drift vector V(R) due to electron i.

Hence each electron i is moved from r′i to ri with a transition probability density of

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N) =

1

(2πτ)
3/2

exp

(
(ri − r′i − τvi(r1, . . . , ri−1, r

′
i, . . . , r

′
N))

2

2τ

)
.

(51)

For a complete sweep through the set of electrons, the transition probability density for a move from
R′ = (r′1, . . . , r

′
N) to R = (r1, . . . , rN) is simply the probability that each electron i moves from r′i to

ri. So the transition probability density for the configuration move is

T (R← R′) =

N∏
i=1

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N). (52)

In the limit of small time steps, the drift velocity V is constant over the (small) configuration move.
Evaluating the product in this case, we find that the transition probability density is

T (R← R′) = GD(R← R′, τ), (53)

so that the drift-diffusion process is described by the drift-diffusion Green’s function GD.

160

At finite time steps, however, the approximation that the drift velocity is constant leads to the violation
of the detailed balance condition.

We may enforce the detailed balance condition on the DMC Green’s function by means of a Metropolis-
style accept/reject step introduced by Ceperley et al. [37]. This has been shown to greatly reduce
time-step errors [38]. The move of the ith electron of a configuration is accepted with probability

min

{
1,
ti(r1, . . . , ri−1, r

′
i ← ri, r

′
i+1, . . . , r

′
N)Ψ2(r1, . . . , ri, r

′
i+1, . . . , r

′
N)

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N)Ψ2(r1, . . . , ri−1, r′i, . . . , r

′
N)

}
= min

{
1, exp

[(
r′i − ri +

τ

2
[vi(r1, . . . , ri−1, r

′
i, . . . , r

′
N)− vi(r1, . . . , ri, r

′
i+1, . . . , r

′
N)]
)

·
(
vi(r1, . . . , ri−1, r

′
i, . . . , r

′
N) + vi(r1, . . . , ri, r

′
i+1, . . . , r

′
N)
)]

×
Ψ2(r1, . . . , ri, r

′
i+1, . . . , r

′
N)

Ψ2(r1, . . . , ri−1, r′i, . . . , r
′
N)

}
≡ ai(r1, . . . , ri−1, ri ← r′i, r

′
i+1, . . . , r

′
N). (54)

This leads to the single-electron detailed balance condition

si(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N)Ψ2(r1, . . . , ri−1, r

′
i, . . . , r

′
N)

= si(r1, . . . , ri−1, r
′
i ← ri, r

′
i+1, . . . , r

′
N)Ψ2(r1, . . . , ri, r

′
i+1, . . . , r

′
N),

(55)

where

si(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N) = ai(r1, . . . , ri−1, ri ← r′i, r

′
i+1, . . . , r

′
N)

×ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N), (56)

is the effective single-electron transition probability density, once the accept/reject step has been
introduced.

Hence we find that the effective transition probability density for the entire configuration move satisfies

S(R← R′) =

N∏
i=1

si(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N)

=

N∏
i=1

si(r1, . . . , ri−1, r
′
i ← ri, r

′
i+1, . . . , r

′
N)

Ψ2(r1, . . . , ri, r
′
i+1, . . . , r

′
N)

Ψ2(r1, . . . , ri−1, r′i, . . . , r
′
N)

= S(R′ ← R)
Ψ2(R)

Ψ2(R′)
. (57)

And so detailed balance in configuration space is satisfied.

It is more efficient to use an electron-by-electron algorithm than the (perhaps more straightforward)
configuration-by-configuration algorithm in which moves of entire configurations are proposed and
then accepted or rejected. This is because, for a given time step, a configuration will travel further
on average if the accept/reject step is carried out for each electron in turn. For example, it is clear
that it is very unlikely for a configuration not to be moved at all in an electron-by-electron algorithm.
Hence the sampling of configuration space in an electron-by-electron algorithm is more efficient.

After each move of each electron we check whether the configuration has crossed the nodal surface
(by checking the sign of the Slater part of the trial wave function). If it has then the move is rejected.
This has been found to be the least-biased method of imposing the fixed-node approximation [11].

13.4 Branching and population control

The branching Green’s function can be implemented by altering the population of configurations
and/or their weights. At the start of the calculation one chooses a target population, M0, and the
actual population Mtot(m) [see Eq. (61)] is controlled so that it does not deviate too much from M0.
The population control is principally exerted by altering the reference energy, ET(m). Large changes
in ET can lead to a bias and therefore it is varied smoothly over the simulation.

161

For each move of all the electrons in configuration α the branching factor is calculated as:

Mb(α,m) = exp

[(
−1

2

{
S(Rα,m) + S(R′α,m)

}
+ ET(m)

)
τeff(α,m)

]
(58)

where τeff is the effective time step for configuration α at time step m (see Sec. 13.5), S is the local
energy (we denote it by S because it is usually a modified version of EL; see Sec. 13.5). Unless weighted
DMC is used (i.e., unless lwdmc=T), the number of copies of this configuration that continue to the
next time step is given by:

M(α,m) = INT{η +Mb(α,m)}, (59)

where η is a random number drawn from a uniform distribution on the interval [0,1].

In weighted DMC, each configuration carries a weight that is simply multiplied by Mb(α,m) after
each move; only if the weight of a configuration goes outside certain bounds (above wdmcmax or
below wdmcmin) is it allowed to branch or be combined with another configuration.

Throughout this section we denote the best estimate of the ground-state energy at time step α by
Ebest(m). At the start of a DMC run we set Ebest(0) = ET(0) = EV, where EV is the average
local energy of the initial configurations. During equilibration Ebest is updated after each iteration
as the average local energy over the previous ebest av window moves. During accumulation Ebest

is set equal to the current value of the mixed estimator of the energy, given by Eq. (79), with Â =
EL(α,m). The algorithms differ because we wish to discard data from the start of the simulation
during equilibration. ET is updated after every iteration as

ET(m+ 1) = Ebest(m)− g−1

τEFF(m)
log

(
Mtot(m)

M0

)
, (60)

where g−1 = min{1, τcET
}, cET

is a constant that can be set in the input file (cerefdmc), although
the default value of 1 a.u. rarely needs to be altered, M0 =dmc target weight is the target number
of configurations (in our implementation it is allowed to take non-integer values) and

Mtot(m) =

Nconfig(m)∑
α=1

wα(m), (61)

where Nconfig(m) is the number of configurations and wα is the weight of configuration α. Note that
Ebest(m) is the best energy at time step m while ET(m + 1) is the trial energy to be used in the
next time step. τEFF is the current best estimate over all configurations and time steps of the mean
effective time step, calculated using Eq. (79) with Â = τeff(α,m). Note that g is the imaginary time
scale (in units of time steps) over which the population attempts to return to M0, while cET is the
inverse of the amount of imaginary time in a.u. over which the population attempts to return to M0.

13.5 Modifications to the Green’s Function

13.5.1 The effective time step

Time-step errors can be reduced and the stability of the DMC algorithm improved by modifying the
Green’s function. An important modification is to introduce an effective time step, τeff , into the
branching factor [38]. When the accept/reject step is included, the mean distance diffused by each
electron each move (which should go as the square root of the time step) is reduced because some
moves are rejected. When calculating branching factors it is therefore more accurate to use a time
step appropriate for the actual distance diffused. Umrigar and Filippi [36] have suggested using an
effective time step for each configuration at each time step. The effective time step is given by

τeff(α,m) = τ

∑
i pi∆r

2
d,i∑

i ∆r2
d,i

, (62)

where the averages are over all attempted moves of the electrons i in configuration α at time step
m. The ∆rd,i are the diffusive displacements [i.e., the distances travelled by the electrons without the
drift-displacement: see Eq. (50)] and pi is the acceptance probability of the electron move [see Eq.
(54)]. The values averaged over the current run are written in the output file.

We calculate τEFF(m) using Eq. (79) with Â ≡ τeff(α,m).

162

13.5.2 Drift-vector and local-energy limiting

The drift vector diverges at the nodal surface and a configuration which approaches a node can exhibit
a very large drift, resulting in an excessively large move in the configuration space. One can improve
the Green’s function by cutting off the drift vector when its magnitude becomes large. The total drift
vector is defined in Eq. (49).

We use the smoothly cut-off drift vector suggested by UNR [21]. For each electron with drift vector
vi, we define the smoothly cut-off drift vector:

ṽi =
−1 +

√
1 + 2a|vi|2τ
a|vi|2τ

vi , (63)

where a is a constant that can be chosen to minimize the bias. The value of a = alimit can be entered
by the user if nucleus gf mods is set to F (the default is a = 1); otherwise a will be calculated as
described in Sec. 13.6.

In the UNR [21] scheme the modified local energy, S(α,m), is given by

S(α,m) = Ebest(m)− [Ebest(m)− EL(α,m)]
|Ṽ|
|V|

, (64)

where Ṽ(α,m) = (ṽ1, . . . , ṽN). Note that we define S slightly differently from Ref. [21]. S is used only
in the branching factor. When evaluating the average energy, we sum the unlimited local energies,
EL. In practice, even though the local energy is calculated at the end of the configuration move, the
limiting scheme of Eq. (64) is applied to the single-electron drift velocities. The ratio of drift velocities
is therefore calculated as

V̄ (R)

V (R)
=

(
v̄2

1(R) + · · ·+ v̄2
N (R)

)1/2
V (R)

. (65)

Finally, a very simple option is simply to cut off the local energy drift vector when their magnitudes
becomes large using the method of Depasquale et al. [20],

S(R) = EV + sign[2/
√
τ , EL(R)− EV] for |EL(R)− EV| > 2/

√
τ

ṽi(R) = sign[1/τ,vi] for |vi| > 1/τ . (66)

In the paper of Depasquale et al. [20] they recommend using the variational energy for EV, but we
use the best estimate of the energy. We prefer the UNR scheme.

The limited single-electron drift velocities are calculated at the same time as the local energy of the
configuration, after all of the electron positions in the configuration have been updated.

13.6 Modifications to the DMC Green’s function at bare nuclei

13.6.1 Modifications to the limiting of the drift velocity

The limiting of the drift velocity is intended to remove the divergence at the nodal surface; interference
with the cusps at bare nuclei is an undesirable side-effect, which may introduce bias. In order to
distinguish between nodes and nuclei, UNR make the a-parameter in their limiting scheme dependent
on electron position. Immediately before the limited drift velocity of an electron at r′ is calculated, a
is evaluated as

a(r′) =
1

2
(1 + v̂ · ez) +

Z2z2

10(4 + Z2z2)
, (67)

where v̂ is the unit vector in the direction of the unlimited drift velocity, ez is the unit vector from
the closest bare nucleus to the electron, z is the distance of the electron from the nucleus and Z is
the atomic number. This formula makes a small (and hence the limiting weak) if the electron is both
close to the nearest nucleus and drifting towards it.

13.6.2 Preventing electrons from overshooting nuclei

In its immediate vicinity, the single-electron drift velocity is always directed towards a bare nucleus.
Therefore, drifting particles should never cross the nucleus; rather, they should end up on top of it.

163

In order to impose this condition at finite time steps, we work in cylindrical polar coordinates with
the z-axis lying along the line from the nucleus to the electron. Let the position of the closest nucleus
be RZ .

The position of the electron relative to the nucleus is

r′ −RZ = z′ez, (68)

while the limited drift velocity can be resolved as

v̄ = v̄zez + v̄ρeρ, (69)

where eρ is a unit vector orthogonal to ez.

The new z-coordinate after drifting for one time step is

z′′ = max{z′ + v̄zτ, 0}, (70)

which cannot lie beyond the nucleus.

The drift in the radial direction over one time step is

ρ′′ =
2v̄ρτz

′′

z′ + z′′
. (71)

The new radial coordinate is approximately v̄ρτ when far from the nucleus, but it is forced to go to
zero as the nucleus is approached. Hence, if the electron attempts to overshoot the nucleus, it will
end up on top of it. So time-step errors caused by drifting across nuclei are eliminated.

Let the electron position at the end of the drift process be r′′ = z′′ez + ρ′′eρ.

13.6.3 Diffusion close to a bare nucleus

Close to a nucleus, f is proportional to the square of the hydrogenic 1s orbital (assuming the trial
wave function has the correct behaviour). This cusp cannot be reproduced by Gaussian diffusion at
finite time steps. In fact, starting from the nucleus, we would like our electron to take a random step
w distributed according to exp(−2Z|w|).
However, we only want to diffuse in this fashion when the electron is likely to cross the nucleus. Let Π
be the plane with normal ez that contains the nucleus. For the usual Gaussian diffusion process, the
probability that an electron drifts (assuming that nuclear overshoot is permitted) and diffuses across
Π, is

q̃ = 1− p̃ =
1

2
erfc

(
z + v̄zτ√

2τ

)
. (72)

So, with probability p̃, we sample w from

g1(w) = (2πτ)
−3/2

exp

(
−|w|

2

2τ

)
, (73)

and set the new electron position to be r = r′′ + w; otherwise, we sample19 w from

g2(w) =
ζ3

π
exp(−2ζ|w|), (74)

and set r = RZ + w. We have defined ζ by

ζ =

√
Z2 +

1

τ
, (75)

which reduces to Z for large time steps, giving the desired cusp; however, this choice of ζ causes the
second moments of g1 and g2 to be equal to O(τ). Hence the Green’s function remains correct to
O(τ).

The single-electron Green’s function for the move from r′ to r is given by

g(r← r′) = p̃g1(r− r′′) + q̃g2(r−RZ). (76)

In order to calculate the Green’s function for the reverse move, need to perform all of the steps above
(apart from the random diffusion), starting at point r and ending up at r′.

19In order to sample w from g2(w), we sample the cosine of the polar angle uniformly on [−1, 1], the azimuthal angle
uniformly on [0, 2π] and the magnitude w from 4ζ3w2 exp(−2ζw). This is achieved by sampling r1, r2 and r3 uniformly
on [0, 1] and setting w = − log(r1r2r3)/2ζ; see reference [39] for further information.

164

13.6.4 Using the modifications in CASINO

These three modifications to the DMC Green’s function are applied if the nucleus gf mods keyword
is set to T. Note that they can only be used if bare nuclei are actually present!

13.7 Evaluating expectation values of observables

The reference energy ET is varied to maintain a reasonably steady population. However, this procedure
can result in a bias in the estimate of expectation values, especially for small populations. To remove
this one can evaluate expectation values using the method of UNR [21].

Using the label m for time step, Eq. (45) becomes

f(R,m) =

∫
GDMC(R← R′, τ)f(R′,m− 1) dR′ . (77)

Clearly, in the absence of the accept/reject step, the effect of including the (time-step-dependent)
reference energy ET(m) in GDMC can be ‘undone’ by multiplying the right-hand-side of Eq. (77) by
exp[−τET(m)]. In a similar fashion the effect of including the reference energy from the previous
time step can be eliminated by multiplying by exp[−τET(m − 1)]. When the accept/reject step is
present, we can approximately undo the effect of the reference energy by using our best estimate of
the effective time step τEFF (See Sec. 13.5) in the ‘undoing’ factors.

Continuing this process, we may eliminate the effect of changing the reference energy from f(m) by
multiplying it by

Π(m) =
∏
m′=0

exp [−τEFFET(m−m′)] , (78)

where in principle the product runs over all previous time steps. In practice it is sufficient to include
Tp (=tpdmc) terms in the product, provided that Tp is greater than the number of iterations over
which the DMC data are correlated by fluctuations in the reference energy: Tp = NINT(10/τ) is
generally sufficient (the estimation of correlation periods is discussed in Sec. 24.3). Let Π(m,Tp) =∏Tp

m′=0 exp[−τEFF(m)ET(m − m′)]. Then the mixed estimator of the expectation value of a (local)

operator Â may be written as:

〈Ψ|Â|Φ〉
〈Ψ|Φ〉

=

∫
Ψ(R)Â(R)Φ(R) dR∫

Ψ(R)Φ(R) dR

≈
∑m
m′=1 Π(m′, Tp)

∑Nconfig(m′)
α=1 wα(m′)Â(α,m′)∑m

m′=1 Π(m′, Tp)
∑Nconfig(m′)
α=1 wα(m′)

, (79)

where wα(m′) is the weight of configuration α at the end of time step m′. (For unweighted DMC, wα
is simply the branching factor.) Note that if we choose Â(α,m) = Ψ−1(Rα,m)ĤΨ(Rα,m) then Eq.
(79) gives us our mixed estimator of the ground state energy at time step m. This is used as our ‘best
estimate’ of the ground state energy, Ebest (see Sec. 13.4).

The terms in the Π weights are exponential functions of the reference energy; hence the Π weights
are potentially very large (or small). However, it can be seen that any constant contribution to the
reference energy will cancel in Eq. (79). Therefore, in practice, we evaluate the Π-weights as:

Π(m,Tp) =

Tp−1∏
m′=0

exp [τEFF(1)EV − τEFF(m)ET(m−m′)] , (80)

where EV is the variational energy. This is necessary in order to avoid floating point errors.

Note that in practice population-control bias is usually negligible if more than a few hundred con-
figurations are used, and that the Π weights are an additional source of statistical noise. For this
reason we do not usually use the UNR Π-weighting scheme [i.e., Π(m,Tp) = 1 for all m in all formulae
involving the Π weights]. The scheme is not used when tpdmc is set to 0, which is the default.

165

13.8 Growth estimator of the energy

The total weight of a DMC simulation at time t = mτ is given by:

W (t) ≡
∫
f(R, t) dR ≈

Nconfig(m)∑
α=1

wα(m) ≡Mtot(m). (81)

Suppose the DMC simulation is equilibrated, so that f(R, t) = Ψ(R)φ0(R). Then

W (t+ τ) =

∫ ∫
G(R← R′, τ)f(R′, τ) dR′ dR

=

∫ ∫
Ψ(R)〈R| exp[−τ(Ĥ − ET)]|R′〉Ψ−1(R′)Ψ(R′)φ0(R′) dR dR′

= 〈Ψ| exp[−τ(Ĥ − ET)]|φ0〉 = W (t) exp[−τ(E0 − ET)].

So

E0 = −1

τ
log

(
W (t+ τ) exp(−τET)

W (t)

)
≈ −1

τ
log

(
exp[−ET(m+ 1)τ]Mtot(m+ 1)

Mtot(m)

)
. (82)

This is the single-iteration growth estimator.

By taking the expectation value of the argument of the logarithm and using our estimate of the
effective time step, we obtain a much less noisy estimate of the ground state20:

Egrowth(m) = − 1

τEFF(m)
log

∑m
m′=1 Π(m′, Tp)Mtot(m

′)
(

exp[−ET(m′+1)τEFF(m′)]Mtot(m
′+1)

Mtot(m′)

)
∑m
m′=1 Π(m′, Tp)Mtot(m′)

= − 1

τEFF(m)
log

(∑m
m′=1 Π(m′, Tp) exp[−ET(m′ + 1)τEFF(m′)]Mtot(m

′ + 1)∑m
m′=1 Π(m′, Tp)Mtot(m′)

)
. (83)

Equation (83) is used to evaluate the growth estimator of the energy in casino if the
growth estimator flag is set to T in the input file. The error bar on the growth estimator is always
much larger than the error on the mixed estimator in practice, so we do not normally use the growth
estimator.

13.9 Automatic block-resetting

Numerous schemes for preventing population control catastrophes due to the occurrence of ‘persistent
electrons’ have been investigated. Of these, the one that seems to perform best in practice involves
returning to an earlier point in the simulation and changing the random number sequence.

If the dmc trip weight input variable is set to a nonzero value, then a config.backup file will be
created. This contains a copy of the config.out file from the beginning of the previous block. If the
total weight at any given iteration exceeds dmc trip weight, then the data from config.backup

will be read in, the last block of lines will be erased from the dmc.hist file and the random number
generator will be called a few times so that the configurations go off on new random walks, hopefully
avoiding the catastrophe that led to the population explosion in the first place. (If dmc trip weight
is exceeded in the first or second blocks, then the initial config.in file will be read in instead of
config.backup.)

Note that if the accumulation of expectation values other than the energy is flagged in input, and
the calculation is in a DMC statistics accumulation phase, then the resulting expval.data file will be
subject to the same treatment (through a saved ‘expal.backup’ file).

If a block has to be reset more than max rec attempts times then the program will abort with an
error.

Great care should be taken when choosing a value for dmc trip weight. It should be sufficiently large
that it cannot interfere with normal population fluctuations: this would lead to population control

20Note that by bringing the average inside the logarithm we introduce a small bias into Egrowth.

166

biasing. (Note that the population often grows rapidly at the start of equilibration: again, it must
be ensured that automatic block resetting does not interfere with this natural process.) On the other
hand, dmc trip weight should be sufficiently small that persistence is dealt with quickly and that
there is insufficient time for a population of configurations containing a persistent electron to stabilize.
Choosing larger block lengths (by decreasing the value of dmc equil nblock and dmc stats nblock)
allows the program to return to an earlier point in the simulation, increasing the likelihood that the
catastrophe will be avoided.

Population-control catastrophes should not occur under normal circumstances. The following have
been found to lead to catastrophic behaviour: (i) the use of a trial wave function that does not satisfy
the electron–nucleus cusp conditions, e.g., when a non-cusp-corrected Gaussian basis is used; (ii) the
use of certain nonlocal pseudopotentials in the absence of the T -move scheme [24, 25] (do not set
use tmove to F in order to use the T -move scheme); (iii) the severe truncation of localized orbitals,
especially when a smooth truncation scheme is used; (iv) the use of an inadequate basis set to represent
the orbitals; (v) pathological trial wave functions, resulting from optimizations that have gone awry
(use jastrow plot to examine the behaviour of u(rij): it should increase monotonically to 0). All of
these circumstances should be avoided if possible.

Note finally that, in large systems, the likelihood of population explosions may be reduced if you
use (unreweighted) variance minimization rather than energy minimization to optimize the wave
function. The reason for this is related to the fact that energy minimisation doesn’t care much about
what happens near nodes, since those regions do not contribute much to the energy expectation
value. However, the divergent local energies there make a big difference to the stability of the DMC
algorithm. If you’re using backflow then you have to use energy minimisation, but then you’re unlikely
to be looking at a big system.

13.10 Determinant locality approximation and T moves

13.10.1 Nonlocal pseudopotentials in DMC

Nonlocal pseudopotentials are problematic in DMC calculations, because the DMC wave function
is not directly accessible. The standard approach for dealing with nonlocal pseudopotentials is the
so-called locality approximation [43], in which the pseudopotential is localised by applying it to the
trial wave function and then dividing by the trial wave function. However this replacement of a term
in the Hamiltonian is problematic because it is a nonvariational approximation. Furthermore, the
localised pseudopotential diverges at the nodes of the trial wave function, leading to instabilities in
the branching DMC algorithm. These problems have been successfully addressed by Casula and co-
workers [24, 25], who introduced the so-called T-move scheme to restore the variational principle and
eliminate the instabilities.

A remaining issue is that the localised pseudopotential depends on the trial wave function, so that
different DMC programs may obtain different results, and there is a systematic tendency to find lower
DMC energies for systems for which a variationally better trial wave function can be found. This
issue was addressed by Zen and co-workers [26], who introduced the so called determinant locality
approximation (DLA), in which the nonlocal pseudopotential is localised by a well-defined Slater-
determinant wave function, which is independent of QMC wave-function optimisation.

We may combine the T-move scheme and the DLA, retaining the advantages of both methods.

13.10.2 Partial localisation by a Slater determinant

Definitions Let V̂ be the nonlocal pseudopotential operator.

Let the importance-sampled matrix elements of the pseudopotential operator be VR,R′ =

Ψ(R)〈R|V̂ |R′〉Ψ−1(R′), where {|R〉} is the position basis and Ψ(R) = 〈R|Ψ〉 is the trial wave func-
tion.

Let V +
R,R′ = max{VR,R′ , 0} and V −R,R′ = min{VR,R′ , 0}, so that VR,R′ = V +

R,R′ + V −R,R′ .

The factor in the importance-sampled DMC Green’s function due to the nonlocal pseudopotential is

GNL(R← R′, τ) = Ψ(R)〈R| exp(−τ V̂)|R′〉Ψ−1(R′) (84)

= δR,R′ − τVR,R′ +O(τ2) (85)

167

=
δR,R′ − τV −R,R′ − τV

+
R,R′

1− τ
∑

R′′ V
−
R′′,R′

exp

(
−τ
∑
R′′

V −R′′,R′

)
+O(τ2), (86)

where we have assumed that space is discretised so that we sum over positions and the overlap of
spatial basis vectors is a Kronecker delta rather than a Dirac delta function.

Let S(R) = 〈R|S〉 be a Slater determinant wave function. In the DLA, S is used to localise V̂ . Here,
we instead make the T-move determinant locality approximation (TMDLA) for the positive part of
the importance-sampled pseudopotential matrix elements:

V +
R,R′ ≈ δR,R′

∑
R′′

max
{

0, S(R′′)〈R′′|V̂ |R′〉S−1(R′)
}
≡ δR,R′V +

TMDLA(R′). (87)

Note that the max{0, . . .} in Eq. (87) is necessary in order that the TMDLA is exact for a local
pseudopotential; see below. The nonlocal pseudopotential factor in the DMC Green’s function becomes

GNL(R← R′, τ) ≈
δR,R′ − τV −R,R′

1− τ
∑

R′′ V
−
R′′,R′

exp
(
−τV +

TMDLA(R′)
)

exp

(
−τ
∑
R′′

V −R′′,R′

)
+O(τ2)(88)

≈
δR,R′ − τV −R,R′

1− τ
∑

R′′ V
−
R′′,R′

exp

(
−τ

(
V +

TMDLA(R′) +
∑
R′′

V −R′′,R′

))
+O(τ2). (89)

Equation (89) shows how the TMDLA should be implemented in DMC. The T-move step is gov-
erned by the first factor and is exactly the same as the usual T-move scheme; however, the energy
in the branching factor is modified. We have to check the sign of the importance-sampled matrix
elements VR,R′ and evaluate Eq. (87) for positive elements, while for negative elements we evaluate
the contribution to the local energy using the usual locality approximation.

By making either the DLA or the TMDLA we lose the important property that the DMC energy is
exact when the trial wave function is exact.

Reduction to the usual T-move scheme Suppose that |Ψ〉 = |S〉, i.e., the trial wave function is
just a Slater determinant. Then

V +
TMDLA(R′) =

∑
R′′

max
{

0,Ψ(R′′)〈R′′|V̂ |R′〉Ψ−1(R′)
}

=
∑
R′′

V +
R′′,R′ . (90)

Hence, in this case,

V +
TMDLA(R′) +

∑
R′′

V −R′′,R′ =
∑
R′′

(
V +
R′′,R′ + V −R′′,R′

)
(91)

=
∑
R′′

VR′′,R′ (92)

=
∑
R′′

〈R′′|V̂ |R′〉Ψ(R′′)

Ψ(R′)
(93)

=
∑
R′′

〈R′|V̂ |R′′〉〈R′′|Ψ〉
Ψ(R′)

=
〈R′|V̂ |Ψ〉

Ψ(R′)
, (94)

where we have assumed the nonlocal potential V̂ to have time-reversal symmetry. Hence, in the
case that |Ψ〉 = |S〉, the nonlocal potential energy in the branching factors is just the usual locality
approximation (i.e., the nonlocal potential is effectively localised by application to the trial wave
function). Thus the TMDLA reduces to the usual T-move scheme.

Simplification for local pseudopotentials Now suppose that |Ψ〉 and |S〉 are different, but the
pseudopotential is in fact local, so that 〈R|V̂ |R′〉 = V (R′)δR,R′ for some V (R). Then VR,R′ =
V (R′)δR,R′ and so V +

R,R′ = δR,R′ max{V (R′), 0} and V −R,R′ = δR,R′ min{V (R′), 0}. Hence, in this
case, the T-move part of the Green’s function is

δR,R′ − τV −R,R′
1− τ

∑
R′′ V

−
R′′,R′

= δR,R′ , (95)

168

i.e., there are no T moves. Also,

V +
TMDLA(R′) =

∑
R′′

max
{

0, S(R′′)V (R′)δR′′,R′S
−1(R′)

}
= max{0, V (R′)}. (96)

Likewise, ∑
R′′

V −R′′,R′ = min{0, V (R′)}. (97)

Hence the energy in the branching factor is simply V (R′), as expected. Hence the TMDLA shows the
correct behaviour in the case that the pseudopotential is local.

13.10.3 Jastrow-factor independence

Partitioning of importance-sampled matrix elements Suppose the trial wave function is of
Slater-Jastrow form, i.e., Ψ(R) = exp(J(R))S(R), where exp(J) is a Jastrow correlation factor. Then

VR,R′ = S(R)〈R|V̂ |R′〉S−1(R′) exp(J(R)− J(R′)). (98)

Hence VR,R′ ≥ 0 if and only if S(R)〈R|V̂ |R′〉S−1(R′) ≥ 0, i.e., partitioning of importance-sampled
matrix elements into V +

R,R′ and V −R,R′ is independent of the Jastrow factor J .

On the other hand, if Ψ(R) is a Slater-Jastrow-backflow or multideterminant wave function then the
nodal surface of Ψ(R) differs from that of S(R) and hence the partitioning of importance-sampled
matrix elements of the potential is different from the partitioning that would arise from the Slater
wave function. More generally, the sign of the matrix elements and hence the partitioning depends
on the nodal surface of the trial wave function.

Ordinary DLA The ordinary DLA [26] is

VR,R′ ≈ δR,R′
∑
R′′

S(R′′)〈R′′|V̂ |R′〉S−1(R′) = δR,R′
〈R′|V̂ |S〉
S(R′)

. (99)

Within this approximation, the Green’s function factor GNL(R ← R′, τ) =
δR,R′ exp(−τ〈R′|V̂ |S〉S−1(R′)) is independent of the trial wave function. Effectively we have
replaced the nonlocal pseudopotential with an approximate local potential that depends on the Slater
determinant but not the Jastrow factor.

The property of wave-function-independence is lost in the TMDLA [Eq. (87)], because the partitioning
of VR,R′ into V +

R,R′ and V −R,R′ depends on |Ψ〉. However, so long as Ψ(R) is of Slater-Jastrow form,
the partitioning (and hence the DMC energy) is independent of Jastrow factor.

Where Ψ(R) is not of Slater-Jastrow form, the fixed-node DMC energy already depends on the nodal
surface of Ψ(R), and so the additional dependence of the DMC energy on the nodal surface of Ψ
through the TMDLA probably does not matter.

Restoring trial-wave-function-independence to the TMDLA Dependence on the nodal sur-
face of Ψ(R) is all-but-inevitable for the importance-sampled Green’s function of Eq. (84), except in
the special case in which V̂ is (approximated to be) local.

One could introduce a different approximation by using the Green’s function factor

GNL(R← R′, τ) ≈ S(R)〈R| exp(−τ V̂)|R′〉S−1(R′) (100)

for the nonlocal pseudopotential. This eliminates dependence on |Ψ〉 (and the T-move scheme could
be applied just as if the trial wave function were |S〉). However, this approximation would immediately
break the detailed-balance condition.

The importance-sampled DMC Green’s function is

GDMC(R← R′) = Ψ(R)〈R| exp(−τĤ)|R′〉Ψ−1(R′) (101)

≈
∫

Ψ(R)〈R| exp(−τ T̂)|R′′〉Ψ−1(R′′)Ψ(R′′)〈R′′| exp(−τ V̂)|R′〉Ψ−1(R′) dR′′

+O(τ2), (102)

169

where T̂ is the kinetic-energy operator. If in this expression one replaces the
Ψ(R′′)〈R′′| exp(−τ V̂)|R′〉Ψ−1(R′) factor with S(R′′)〈R′′| exp(−τ V̂)|R′〉S−1(R′) then (i) one
makes an uncontrolled O(τ) error in the Green’s function and (ii) the detailed-balance condition

|Ψ(R)|2GDMC(R′ ← R) = |Ψ(R′)|2GDMC(R← R′) (103)

is no longer satisfied.

If the potential V̂ is (approximated to be) local, i.e., V̂ ≈
∑

R |R〉V (R)〈R|, then

〈R′′| exp(−τ V̂)|R′〉 = δR′′,R′ exp(−τV (R′)), (104)

so that the S(R′′)S−1(R′) cancels out and hence there is no issue. This is the case in the ordinary
DLA and also in the ordinary locality approximation.

One can certainly make the approximation of using S(R′′)〈R′′| exp(−τ V̂)|R′〉S−1(R′) with the T-
move scheme and see what happens empirically. This should just correspond to what one gets if one
sets use tmove=T and use detla=T together in casino before March 2023, in which case only the
Slater wave function is used in the wave-function ratios for the nonlocal pseudopotential.

This approximation cannot in general be cast as a change in the Hamiltonian, because if one writes
the missing factors in terms of Jastrow operators exp(J(R̂)), they do not contain the time step and
one cannot look at small-τ behaviour, i.e., one cannot easily simplify

Ψ(R′′)〈R′′| exp(−τ V̂)|R′〉Ψ−1(R′) = S(R′′)〈R′′| exp(J(R̂)) exp(−τ V̂) exp(J(R̂))|R′〉S−1(R′)
(105)

into something of the form S(R′′)〈R′′| exp(−τŴ)|R′〉S−1(R′). It is not truly analogous to the ordi-
nary T-move scheme in which part of the nonlocal pseudopotential (with negative matrix elements)
is treated exactly.

This approximation with a Slater-Jastrow wave function will not give the same result as the T-move
scheme with just a Slater wave function (|Ψ〉 = |S〉), because the latter corresponds to a well-defined
modification to the Hamiltonian whereas Eq. (100) does not.

13.10.4 Mixed estimate of the energy

Equation (89) gives the expression for the DMC Green’s function due to a nonlocal pseudopotential
in the TMDLA. It involves a local energy contribution

ETMDLA
L (R′) = V +

TMDLA(R′) +
∑
R′′

V −R′′,R′ (106)

and corresponds to a Hamiltonian ĤTMDLA with potential-energy matrix elements

〈R|V̂TMDLA|R′〉 =

{
〈R|V̂ |R′〉 if VR,R′ ≤ 0
δR,R′V

+
TMDLA(R′) otherwise

. (107)

The result of propagation to large imaginary time using the DMC algorithm with ĤTMDLA is an
eigenfunction |φTMDLA

0 〉, with corresponding eigenvalue ETMDLA
0 , which may be obtained by averaging

ETMDLA
L (R) over the mixed distribution generated by the DMC algorithm.

It is a truth universally acknowledged that the T-move scheme restores the variational principle to
the DMC energy. This is clearly the case for non-importance-sampled DMC, where the T-move
scheme scoops up the positive elements from each row of the Hamiltonian matrix and adds them to
the diagonal element. It is easy to show that this procedure always raises the ground-state energy
eigenvalue of the Hamiltonian matrix with respect to any wavevector.

In the T-move scheme for importance-sampled DMC, positive importance-sampled matrix elements of
the potential are moved to the diagonal. However, the signs of importance-sampled matrix elements
Ψ(R)〈R|V̂ |R′〉Ψ−1(R′) depend on both the signs of the actual matrix elements 〈R|V̂ |R′〉 and the
relative signs of the trial wave function at R and R′. Hence the T-move scheme does not correspond
to moving the positive actual matrix elements 〈R|V̂ |R′〉 to the diagonal.

Given that T-moves restore the variational principle to non-importance-sampled DMC, that fixed-
node errors are positive and that locality errors in the T-move DMC energy vanish when the trial
wave function is exact, it is likely that in practice T-move DMC provides an upper bound on the exact
ground-state energy, even if this is not a mathematically rigorous result.

170

14 Evaluation of Gaussian orbitals in the Slater wave function

casino can handle Gaussian basis sets up to and including angular momentum l = 4 (s, p, sp, d, f
and g functions). Suppose we have N Gaussians gw=1,...,N located at positions rw in the primitive
cell. Let R label the other primitive cells. There are therefore copies of the basic set of Gaussian
functions located at positions rw + R. We want to evaluate the Bloch orbitals at some point r. The
orbital is labelled by band ν and k point,

φν,k(r) =
∑
w

Cν,k
∑
R

gw(r− rw + R) exp[ik ·R] . (108)

casino implicitly assumes the following about the k points when in Gaussian mode:

• The k points form a grid,

klmn =
l

q1
b1 +

m

q2
b2 +

n

q3
b3 + ks , (109)

where the qi are integers, the bi are the primitive reciprocal lattice vectors, 0 ≤ l ≤ q1 − 1,
0 ≤ m ≤ q2 − 1 and 0 ≤ n ≤ q3 − 1. In crystal the offset ks is always zero, but casino does
not assume this.

• casino deals only with real orbitals, which can be formed by making linear combinations of
the states at k and −k. The list of k points in the file gwfn.data must contain only one of
each (k,−k) pair; the presence of the other is assumed. To make a many-body Bloch wave
function satisfying the condition that it is multiplied by a phase factor under the replacement
ri → ri + Rs, where Rs is a translation vector of the simulation cell, the offset must satisfy
ks = Gs/2, where Gs is a reciprocal lattice vector of the simulation cell [40]: see Sec. 15.

• Finite systems are treated as if they had a single k point.

15 Constructing real orbitals

The Bloch orbitals at an arbitrary point in k-space are complex. If the set of wave vectors consists of
±k pairs then one can always construct a set of real orbitals spanning the same space as the original
complex set. A necessary and sufficient condition for the mesh of Eq. (109) to consist of ±k pairs is
that ks = Gs/2, where Gs is a reciprocal lattice vector of the simulation cell lattice. It is four times
more efficient to use real orbitals than complex ones because it takes four multiplications to evaluate
the product of two complex numbers but only one multiplication for the product of two real numbers.
An orbital satisfying Bloch’s theorem can be written as

φk(r) = uk(r)eik·r , (110)

where uk has the periodicity of the primitive lattice. The function φ∗k is a Bloch function with wave
vector −k. Therefore we can make two real orbitals from φk and φ∗k as follows:

φ+(r) =
1√
2

[φk(r) + φ∗k(r)] ,

φ−(r) =
1√
2i

[φk(r)− φ∗k(r)] . (111)

The orbitals φ+ and φ− are orthogonal if φk and φ∗k = φ−k are orthogonal, which is true unless
k− (−k) = Gp, i.e., their wave vectors differ by a reciprocal lattice vector of the primitive lattice. In
this case φ+ and φ− are linearly dependent and we must use only one of them. Therefore the scheme
is:

Case 1. If k 6= Gp

2
use φ+ and φ− .

Case 2. If k =
Gp

2
use φ+ or φ− . (112)

171

In the second case, if one of φ+ or φ− is zero then obviously one must use the other one.

It may happen that we have in our k-point grid the vectors k and −k which are not related by a
reciprocal lattice vector of the primitive lattice. We may wish to occupy only one of the orbitals from
these k points. We can then form a real orbital as cos(θ)φ+ + sin(θ)φ−, where θ is a phase angle
between zero and 2π. If both k and −k orbitals are supplied, casino chooses one, which in general
is sufficient to generate all linearly independent orbitals.

Note that, if complex wf is set to T, then the Slater wave function is complex, and casino makes
no attempt to construct real orbitals. See Sec. 28 for information about the use of complex wave
functions under twisted boundary conditions.

16 Cusp corrections for Gaussian orbitals

Gaussian basis sets are unable to describe the cusps in the single-particle orbitals at the nuclei that
would be present in the exact single-particle orbitals, because the Gaussian basis functions have zero
gradient at the nuclei on which they are centred. This leads to divergences in the local energy at the
nuclei, which should be removed. This can either be done using the Jastrow factor (which is generally
a poor method) or by using the cusp correction scheme described here [41].

In this scheme the molecular orbitals are modified so that each of them obeys the cusp condition at
each nucleus. This ensures that the local energy remains finite whenever an electron is in the vicinity
of a nucleus, although it generally has a discontinuity at the nucleus.

16.1 Electron–nucleus cusp corrections

The Kato cusp condition [42] applied to an electron at ri and a nucleus of charge Z at the origin is(
∂〈Ψ〉
∂ri

)
ri=0

= −Z〈Ψ〉ri=0 , (113)

where 〈Ψ〉 is the spherical average of the many-body wave function about ri = 0. For a determinant
of orbitals to obey the Kato cusp condition at the nuclei it is sufficient for every orbital to obey Eq.
(113) at every nucleus. We need only correct the orbitals which are nonzero at a particular nucleus
because the others already obey Eq. (113). This is sufficient to guarantee that the local energy is
finite at the nucleus provided at least one orbital is nonzero there. In the unlikely case that all of the
orbitals are zero at the nucleus then the probability of an electron being at the nucleus is zero and it
is not important whether Ψ obeys the cusp condition.

An orbital, ψ, expanded in a Gaussian basis set can be written as

ψ = φ+ η , (114)

where φ is the part of the orbital arising from the s-type Gaussian functions centred on the nucleus
in question (which, for convenience is at r = 0), and η is the rest of the orbital. The spherical average
of ψ about r = 0 is given by

〈ψ〉 = φ+ 〈η〉 . (115)

In our scheme we seek a corrected orbital, ψ̃, which differs from ψ only in the part arising from the
s-type Gaussian functions centred on the nucleus, i.e.,

ψ̃ = φ̃+ η . (116)

The correction, ψ̃ − ψ, is therefore spherically symmetric about the nucleus. We now demand that ψ̃
obeys the cusp condition at r = 0, (

d〈ψ̃〉
dr

)
0

= −Z〈ψ̃〉0 . (117)

Note that 〈η〉 is cuspless because it arises from the Gaussian basis functions centred on the origin
with nonzero angular momentum, whose spherical averages are zero, and the tails of the Gaussian
basis functions centred on other sites, which must be cuspless at the nucleus in question. We therefore
obtain (

dφ̃

dr

)
0

= −Z
(
φ̃(0) + η(0)

)
. (118)

We use Eq. (118) as the basis of our scheme for constructing cusp-corrected orbitals.

172

16.2 Cusp correction algorithm

We apply a cusp correction to each orbital at each nucleus at which it is nonzero. Inside some cusp
correction radius rc we replace φ, the part of the orbital arising from s-type Gaussian functions centred
on the nucleus in question, by

φ̃ = C + sgn[φ̃(0)] exp[p(r)] = C +R(r). (119)

In this expression sgn[φ̃(0)] is ±1, reflecting the sign of φ̃ at the nucleus, and C is a shift chosen so
that φ̃− C is of one sign within rc. This shift is necessary since the uncorrected s-part of the orbital
φ may have a node where it changes sign inside the cusp correction radius, and we wish to replace φ
by an exponential function, which is necessarily of one sign everywhere. The polynomial p is given by

p = α0 + α1r + α2r
2 + α3r

3 + α4r
4 , (120)

and we determine α0, α1, α2, α3, and α4 by imposing five constraints on φ̃. We demand that the value
and the first and second derivatives of φ̃ match those of the s-part of the Gaussian orbital at r = rc.
We also require that the cusp condition is satisfied at r = 0. We use the final degree of freedom
to optimize the behaviour of the local energy in a manner to be described below. However, if we
impose such a constraint directly the equations satisfied by the αi cannot be solved analytically. This
is inconvenient and we found that a superior algorithm was obtained by imposing a fifth constraint
which allows the equations to be solved analytically, and then searching over the value of the fifth
constraint for a ‘good solution’. To this end we chose to constrain the value of φ̃(0). With these
constraints we have:

1.
ln |φ̃(rc)− C| = p(rc) = X1; (121)

2.
1

R(rc)

dφ̃

dr

∣∣∣∣∣
rc

= p′(rc) = X2; (122)

3.
1

R(rc)

d2φ̃

dr2

∣∣∣∣∣
rc

= p′′(rc) + p′2(rc) = X3; (123)

4.
1

R(0)

dφ̃

dr

∣∣∣∣∣
0

= p′(0) = −Z
(
C +R(0) + η(0)

R(0)

)
= X4; (124)

5.
ln |φ̃(0)− C| = p(0) = X5. (125)

Although the constraint equations are nonlinear, they can be solved analytically, giving

α0 = X5

α1 = X4

α2 = 6
X1

r2
c

− 3
X2

rc
+
X3

2
− 3

X4

rc
− 6

X5

r2
c

− X2
2

2

α3 = −8
X1

r3
c

+ 5
X2

r2
c

− X3

rc
+ 3

X4

r2
c

+ 8
X5

r3
c

+
X2

2

rc

α4 = 3
X1

r4
c

− 2
X2

r3
c

+
X3

2r2
c

− X4

r3
c

− 3
X5

r4
c

− X2
2

2r2
c

. (126)

Our procedure is to solve Eq. (126) using an initial value of φ̃(0) = φ(0). We then vary φ̃(0) so that
the ‘effective one-electron local energy’,

EsL(r) = φ̃−1

[
−1

2
∇2 − Zeff

r

]
φ̃ (127)

= −1

2

R(r)

C +R(r)

[
2p′(r)

r
+ p′′(r) + p′2(r)

]
− Zeff

r
,

173

is well-behaved. Here the effective nuclear charge Zeff is given by

Zeff = Z

(
1 +

η(0)

C +R(0)

)
, (128)

which ensures that EsL(0) is finite when the cusp condition of Eq. (124) is satisfied.

We use an ‘ideal’ effective one-electron local energy curve given by

Eideal
L (r)

Z2
= β0 + β1r

2 + β2r
3 + β3r

4 + β4r
5 + β5r

6 + β66r7 + β7r
8. (129)

The values chosen for the coefficients were β1 = 3.25819, β2 = −15.0126, β3 = 33.7308, β4 = −42.8705,
β5 = 31.2276, β6 = −12.1316, β7 = 1.94692, obtained by fitting to the data for the 1s orbital of the
carbon atom. The value of β0 depends on the particular atom and its environment. The ideal effective
one-electron local energy for a particular orbital is chosen to have the functional form of Eideal

L (r),
but with the constant value β0 chosen so that the effective one-electron local energy is continuous at
rc. Hydrogen is treated as a special case as the 1s orbital of the isolated atom is only half-filled, and
we use Eideal

L (r) = β0.

We wish to choose φ̃(0) so that EsL(r) is as close as possible to Eideal
L (r) for 0 < r < rc, i.e., the

effective one-electron local energy is required to follow the ‘ideal’ curve as closely as possible. In our
current implementation we find the best φ̃(0) by minimizing the maximum square deviation from the

ideal energy, [EsL(r)− Eideal
L (r)]

2
, within this range. Beginning with φ̃(0) = φ(0), we first bracket the

minimum then refine φ̃(0) using a simple golden section search.

We use an automatic procedure for choosing appropriate values of the cusp correction radii. The
maximum possible cusp correction radius is taken to be rc,max = 1/Z. The actual value of rc is then
determined by a universal parameter cc (cusp control in the input file) for which a default value of
50 was found to be reasonable. The cusp correction radius rc for each orbital and nucleus is set equal
to the largest radius less than rc,max at which the deviation of the effective one-electron local energy
calculated with φ from the ideal curve has a magnitude greater than Z2/cc. Appropriate polynomial
coefficients αi and the resulting maximum deviation of the effective one-electron local energy from
the ideal curve are then calculated for this rc. As a final refinement one might then allow the code to
vary rc over a relatively small range centred on the initial value, recomputing the optimal polynomial
cusp correction at each radius, in order to optimize further the behaviour of the effective one-electron
local energy. This is done by default in the implementation.

When a Gaussian orbital can be readily identified as, for example, a 1s orbital, it generally does
not have a node within rc,max. In many cases, however, some of the molecular orbitals have small s-
components which may have nodes close to the nucleus. The possible presence of nodes inside the cusp
correction radius complicates the procedure because the effective one-electron local energy diverges
there. One could simply force the cusp correction radius to be less than the radius of the node closest
to the nucleus, but in practice nodes can be very close to the nucleus and such a constraint severely
restricts the flexibility of the algorithm. In practice we define small regions around each node where
the effective one-electron local energies are not taken into account during the minimization, and from
which the cusp correction radius is excluded.

The Gaussian cusp correction is activated through the input keyword cusp correction—this has an
effect only if the system contains at least one all-electron atom. In periodic systems it has proved
difficult to implement this scheme efficiently, and while it works perfectly well the performance of
the code is significantly affected. Check the timings. More information about the cusp correction of
each orbital at each nucleus can be produced with the keyword cusp info which can be useful in fine
tuning. Clearly this can produce a lot of output, so beware.

17 General-purpose cusp corrections

A scheme for modifying real, Gaussian orbitals so that they satisfy the Kato cusp conditions is
described in Sec. 16 and Ref. [41]. An extension of this scheme can be used to enforce the Kato cusp
conditions on complex orbitals expanded in any smooth basis set. Both cusp-correction schemes are
present in casino. We refer to the former as the Gaussian cusp-correction scheme and the latter as
the general-purpose (GP) cusp-correction scheme.

For simplicity, we consider only the case of a single nucleus of charge Z at the origin in the following
discussion.

174

In the Gaussian cusp-correction scheme, the s-type basis functions are replaced by radial functions
in the vicinity of the bare nucleus. These functions satisfy the cusp conditions and make the single-
particle local energy resemble an ‘ideal’ curve [41]. In the GP scheme, instead of replacing part of the
orbital, we add a spherically symmetric function of constant phase to the orbital. The function added
to uncorrected orbital ψ(r) is

∆ψ(r) = exp(iθ0)∆φ(r) = exp(iθ0) [C + exp [p(r)]− φ(r)] Θ(rc − r), (130)

where Θ is the Heaviside function, C is a real constant, rc is a cutoff length, θ0 = arg[ψ(0)],

φ(r) = Re

(
exp(−iθ0)

4π

∫
ψ(r) dΩ

)
, (131)

and
p(r) = α0 + α1r + α2r

2 + α3r
3 + α4r

4, (132)

where the {α} are real constants to be determined. In practice φ(r) is calculated by cubic spline
interpolation: the spherical averaging of the uncorrected orbital is performed at the outset on a grid
of radial points. C is chosen so that φ(r) − C is positive everywhere within the Bohr radius of the
nucleus.

The uncorrected orbital may be written as

ψ(r) = exp(iθ0)φ(r) + η(r), (133)

where η(r) consists of the l > 0 spherical harmonic components of ψ(r), together with the phase-
dependence of the l = 0 component. Note that exp(iθ0)φ(0) = ψ(0), and hence η(0) = 0. Let

φ̃(r) = φ(r) + ∆φ(r). (134)

These are real, spherically symmetric functions.

We may now apply the scheme of Ma et al. to determine {α} and rc, with exp(iθ0)φ and exp(iθ0)φ̃
playing the roles of the uncorrected and corrected s-type Gaussian functions centred on the nucleus
in question [41]. The constant phase exp(iθ0) cancels out of the equations determining the {α} (Eqs.
(9)–(13) in Ref. [41]), so the determination of the {α} and rc is exactly as described in Ma et al.,
except that we do not need to modify Z at the nuclei when more than one atom is present, because
η(0) = 0.

Each orbital is corrected at each all-electron ion in the simulation cell. If twisted boundary conditions
are used then the phase of the uncorrected orbital at the nucleus in simulation cell Rs is exp[i(θ0 +
ks ·Rs)], where ks is the simulation-cell Bloch vector. [So we can evaluate the cusp correction using
minimum-image distances, then multiply by exp(iks ·Rs), where Rs is the difference of the actual and
minimum-image positions of the electron relative to the ion.]

To use the scheme, set use gpcc to T. Note that cusp correction (which activates the Gaussian
cusp correction) must be set to F.

18 Wave-function updating

Consider the Slater wave function

ΨS(R) = D↑(r1, . . . , rN↑)D
↓(rN↑+1, . . . , rN) , (135)

where D↑ and D↓ are Slater determinants for the spin-up and spin-down electrons respectively. We
will need to calculate the ratio of the new wave function to the old when, for example, the ith spin-up
electron is moved from rold

i to rnew
i . The wave-function ratio can be written as

q↑ =
D↑(r1, r2, . . . , r

new
i , . . . , rN)

D↑(r1, r2, . . . , rold
i , . . . , rN)

. (136)

A direct calculation of the determinants in q↑ at every move by LU decomposition is time-consuming,
and instead we use an updating method. We define the Slater matrix D↑ via

D↑jk = ψj(rk) , (137)

175

where ψj is the jth one-electron orbital of the spin-up Slater determinant and rk is the position of

the kth spin-up electron. The transpose of the inverse of D↑, which we call D↑, may be expressed in
terms of the cofactors and determinant of D↑,

D↑jk =
cof(D↑jk)

det(D↑)
. (138)

The move of electron i changes only the ith column of D↑ and so does not affect any of the cofactors
associated with this column. The new Slater determinant may be expanded in terms of these cofactors
and the result divided by the old Slater determinant to obtain

q↑ =
det(D↑,new)

det(D↑,old)
=
∑
j

ψj(r
new
i)D↑,old

ji . (139)

If the D↑ matrix is known, one can compute q↑ in a time proportional to N .

Evaluating D↑ using LU decomposition takes of order N3 operations; but once the initial D↑ matrix
has been calculated it can be updated at a cost proportional to N2 using the formulae

D↑,new

ji =
1

q↑
D↑,old

ji , (140)

in the case where k = i, and

D↑,new

jk = D↑,old

jk − 1

q↑
D↑,old

ji

∑
m

ψm(rnew
i)D↑,old

mk , (141)

when k 6= i.

19 Evaluating the local energy

The local energy is given by

EL(R) =

N∑
i=1

−1

2
Ψ−1(R)∇2

iΨ(R) +

N∑
i=1

V (R) +

N∑
i=1

Ψ−1(R)V̂ ps
nl,iΨ(R) + VCPP(R) +

N∑
i>j

ve−e(R) ,

(142)
where the terms are the kinetic energy, the local part of the external potential energy, the nonlocal part
of the potential energy, the core polarization potential energy (if present) and the electron–electron
interaction energy. The evaluation of the kinetic energy is discussed in Sec. 19.1. The evaluation of
the nonlocal energy is discussed in Sec. 19.2, while the core-polarization potential energy is discussed
in Sec. 19.3. The local part of the external potential energy is divided into a short range part around
each ion, which is evaluated directly, and a long range Coulomb part which is evaluated using the
Ewald potential in periodic systems (see Sec. 19.4) or simply as a sum of 1/r potentials in finite
systems. The electron–electron interaction energy is evaluated either using the Ewald interaction or
the MPC interaction (see Sec. 19.4.4) in periodic systems, or simply as a sum of 1/r potentials in
finite systems.

19.1 Evaluating the kinetic energy

The kinetic part of the local energy, K, can be expressed as a sum of contributions from each electron,

K =

N∑
i=1

Ki =

N∑
i=1

−1

2
Ψ(R)

−1∇2
iΨ(R) . (143)

Because of the exponential form of the Jastrow factor, it is convenient to re-express Ki in terms of
the logarithm of Ψ. We define

Ti = −1

4
∇2
i (ln |Ψ|) = −1

4

∇2
iΨ

Ψ
+

1

4

(
∇iΨ

Ψ

)2

, (144)

176

and the drift vector Fi,

Fi =
1√
2
∇i (ln |Ψ|) =

1√
2

∇iΨ
Ψ

. (145)

Therefore
Ki = 2Ti − |Fi|2 . (146)

In VMC an integration by parts shows that

〈K〉 = 〈|F|2〉 = 〈T 〉 , (147)

where the angle brackets denote averages over the variational distribution, |Ψ(R)|2. Equation (147)
provides a useful consistency check for VMC calculations but note that it does not hold exactly
within DMC, except in the limit of perfect importance sampling. In VMC the kinetic energy may
be evaluated using any of the three estimators in Eq. (147). casino automatically uses 〈K〉 for the
evaluation of the total energy, because this normally leads to the lowest variance. However, the lowest
variance of the kinetic energy itself is often obtained from 〈T 〉. In DMC the three estimators are not
exactly equivalent and 〈K〉 should always be used as the kinetic-energy estimate.

For the Slater-Jastrow wave function of Eq. (135) we have

∇i (ln |Ψ|) =
∇iDσi

Dσi
+∇iJ , (148)

∇2
i (ln |Ψ|) =

∇2
iD

σi

Dσi
−
(
∇iDσi

Dσi

)2

+∇2
iJ . (149)

The terms involving Slater determinants may be evaluated by expanding Dσi in terms of the cofactors
of the ith column of the Slater matrix Dσi . If electron i has spin up, for example, the required
expansion is

D↑ = det(D↑) =
∑
j

ψj(ri) cof(D↑ji) . (150)

Since all the cofactors appearing in this equation are independent of ri, we obtain

∇iD↑

D↑
=

∑
j

(∇iψj(ri))D
↑
ji , (151)

∇2
iD
↑

D↑
=

∑
j

(
∇2
iψj(ri)

)
D↑ji . (152)

When moving electron i from rold
i to rnew

i , it is useful to be able to evaluate the kinetic energy at the
new position before updating the D matrix. Since the cofactors in Eq. (150) are independent of ri,
Eqs. (151) and (152) become

∇iD↑,new

D↑,new
=

1

q↑

∑
j

(∇iψj(rnew
i))D↑,old

ji , (153)

∇2
iD
↑,new

D↑,new
=

1

q↑

∑
j

(
∇2
iψj(r

new
i)

)
D↑,old

ji , (154)

where q↑ = D↑,new/D↑,old.

19.2 Evaluating the nonlocal pseudopotential energy

The action of the nonlocal pseudopotential on the wave function can be written as a sum of contribu-
tions from each electron and each angular momentum channel. The contribution to the local energy
made by the nonlocal pseudopotential is

Vnl = Ψ−1V̂nlΨ

=
∑
i

Ψ−1V̂ ps
nl,iΨ =

∑
i

Vnl,i , (155)

177

where for simplicity we consider the case of a single atom placed at the origin. Vnl,i may be written
as [16]

Vnl,i =
∑
l

V ps
nl,l(ri)

2l + 1

4π

∫
Pl [cos(θ′i)]

Ψ(r1, . . . , ri−1, r
′
i, ri+1, . . . , rN)

Ψ(r1, . . . , ri−1, ri, ri+1, . . . , rN)
dΩr′

i
, (156)

where Pl denotes a Legendre polynomial.

casino currently performs the nonlocal projections for l = 0, 1, 2, 3, 4 only (though any number of
higher angular momentum functions may be omitted if desired, and doing just that can considerably
speed up the code). Many standard pseudopotentials use just l = 0, 1, 2 (s, p, d). The integral over
the surface of the sphere in Eq. (156) is evaluated numerically. The r′ dependence of the many-body
wave function is expected to have predominantly the angular momentum character of the orbitals in
the Slater part of the wave function. A suitable integration scheme is therefore to use a quadrature
rule that integrates products of spherical harmonics exactly up to some maximum value lmax. The
quadrature grids currently available are listed in Table 1. To avoid bias the orientation of the axes is
chosen randomly each time such an integral is evaluated.

Note that the CPP and force modules still require that pseudopotentials contain only s, p and d
components (this should be fixable by a friendly developer on request).

non local grid lmax Np

1 0 1
2 2 4
3 3 6
4 5 12
5 5 18
6 7 26
7 11 50

Table 1: Quadrature grids for the nonlocal integration. non local grid (also known as nlrule) is the label
for the rule, lmax is the maximum value of l which is integrated exactly and Np is the number of points in the
grid.

Within a VMC calculation it is often possible to use a low-order quadrature rule because the error
cancels over the run, but higher accuracy is required for wave-function optimization and DMC cal-
culations, which are biased by errors in the nonlocal integration. In principle the nonlocal energy
should be summed over all the ionic cores and all electrons in the system. However, since the nonlocal
potential of each ion is short ranged, one need only sum over the few atoms nearest to each electron.

Exact sampling of the nonlocal energy with DMC is problematic and we use the localization approxi-
mation in which the nonlocal operator acts on the trial wave function in exactly the same way as in
VMC. The error introduced by this approximation is proportional to (Ψ−Ψ0)

2
[43], where Ψ0 is the

exact wave function.

19.3 The core-polarization potential energy

Core-polarization potentials (CPPs) account for the polarization of the pseudo-ion cores by the fields
of the other charged particles in the system. The polarization of the pseudo-ion cores by the fields of
the valence electrons is a many-body effect which includes some of the core-valence correlation energy
[44]. In the CPP approximation the polarization of a particular core is determined by the electric
field at the nucleus. The electric field acting on a given ion core at RI due to the other ion cores at
RJ and the electrons at ri is

FI = −
∑
J 6=I

ZJ
RJI

|RJI |3
+
∑
i

riI
|riI |3

, (157)

where RJI = RJ −RI and riI = ri −RI . The CPP energy is then

VCPP = −1

2

∑
I

αIFI · FI , (158)

where αI is the dipole polarizability of core I.

178

Equation (157) assumes a classical description, which is valid when the valence electrons are far from
the core. When a valence electron penetrates the core, the classical result is a very poor approximation,
diverging at the nucleus. To remove this unphysical behaviour each contribution to the electric field
in Eq. (157) is multiplied by a cutoff function f(riI/r̄I), which tends to unity at large riI . A further
possible modification is to allow the one-electron term in Eq. (158), which takes the form −αI/(2r4

iI),
to depend on the angular momentum component, l, so that r̄I in the cutoff function is replaced by
r̄lI . With these modifications the CPP energy operator becomes

VCPP = −1

2

∑
I

αI

∑
i

1

r4
iI

∑
l

f

(
riI
r̄lI

)2

P̂l +
∑
i

∑
j 6=i

riI · rjI
r3
iIr

3
jI

f

(
riI
r̄I

)
f

(
rjI
r̄I

)

−2
∑
i

∑
J 6=I

riI ·RJI

r3
iIR

3
JI

f

(
riI
r̄I

)
ZJ +

∑
J 6=I

RJI

R3
JI

ZJ

2
 , (159)

where P̂l is the projector onto the lth angular momentum component of the ith electron with respect
to the Ith ion.

We use the cutoff function [45, 44],

f (x) =
(

1− e−x
2
)2

. (160)

For efficient evaluation, Eq. (159) is written as

VCPP = −1

2

∑
I

αI |F̄I |2 +
1

2

∑
I

αI
∑
i

1

r4
iI

lmx∑
l=0

[
f

(
riI
r̄I

)2

− f
(
riI
r̄lI

)2
]
P̂l , (161)

where

F̄I = −
∑
J 6=I

ZJ
RJI

|RJI |3
+
∑
i

riI
|riI |3

f

(
riI
r̄I

)
, (162)

and the maximum angular momentum is lmx = 2. In our approach the cutoff parameter for all
angular momenta l > 2 is r̄I , which is slightly different from Shirley and Martin [44] who use r̄2I .

Equation (161) contains 5 parameters for each ion, αI , r̄0I , r̄1I , r̄2I and r̄I , whose values are entered at
the end of the xx pp.data file; see Sec. 7.5. Suitable values of the parameters are given in the paper
by Shirley and Martin [44]. If r̄0I = r̄1I = r̄2I = r̄I , the second term in Eq. (161) is zero and it is not
calculated. The second term in Eq. (161) is short-ranged because f(x) → 1 at large x. This term is
calculated in real space.

The second term in Eq. (161) is added to the pseudopotential and the core radii lcutofftol and
nlcutofftol are determined from the resulting potential. The electric field evaluation is activated by
the presence of core-polarization terms in the pseudopotential files; they are not calculated by default
since they may be expensive, especially when periodic boundary conditions are used.

In periodic boundary conditions the electric fields are evaluated directly from the analytic first deriva-
tives of the Ewald potential: see Sec. 19.4. Calculations using CPPs may be 5–10% slower than ones
without CPPs in periodic systems.

Note: the evaluation of the first derivatives of the periodic potential in 1D polymers has not yet been
implemented, and thus the core-polarization energy cannot be evaluated in such systems.

19.4 Evaluation of infinite Coulomb sums

19.4.1 3D Ewald interaction

In three dimensionally periodic systems, the periodic potential of a neutralized lattice of point charges
may be evaluated using the Ewald method [46, 47]. Consider the periodic charge density consisting
of a unit point charge at rj in every simulation cell plus a uniform cancelling background,

ρj(r) =
∑
R

(
δ(r− rj −R)− 1

Ω

)
, (163)

179

where R denotes the lattice translation vectors and Ω is the volume of the simulation cell. The Ewald
formula for the periodic potential corresponding to this charge density is

vE(r, rj) =
∑
R

erfc
(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

− π

Ωγ

+
4π

Ω

∑
G6=0

exp
(
−G2/4γ

)
G2

exp(iG · (r− rj)) , (164)

where G denotes the reciprocal lattice translation vectors. The value of vE(r, rj) is in principle
independent of the screening parameter γ and this also holds in practice provided enough vectors are
included in the sums.21 The larger the value of γ the more rapidly convergent is the real space sum,
but the more slowly convergent is the reciprocal space sum. A compromise is required to minimize

the overall computational cost. In casino, this parameter is set to (2.8/Ω1/3)
2

which approximately
minimizes the cost for a wide variety of Bravais lattices [48].

The full periodic potential of the simulation cell is obtained by adding the potentials of all the N
charges and their cancelling backgrounds (which sum to zero because the cell has no net charge),

v(r) =

N∑
j=1

qjvE(r, rj) . (165)

The potential acting on the charge at ri is therefore

v(ri) =

N∑
j(6=i)

qjvE(ri, rj) + qivM , (166)

where the Madelung constant

vM = lim
r→ri

(
vE(r, ri)−

1

|r− ri|

)
(167)

=
∑
R6=0

erfc(γ
1
2R)

R
− 2γ

1
2

π
1
2

− π

Ωγ
+

4π

Ω

∑
G 6=0

exp(−G2/4γ)

G2
(168)

is the potential acting on the charge at ri due to its own images and cancelling background. The full
Ewald potential energy appearing in the QMC Hamiltonian is therefore

U(r1, . . . , rN) =
1

2

N∑
i=1

N∑
j=1

(j 6=i)

qiqjvE(ri, rj) +
vM

2

N∑
i=1

q2
i (169)

=
1

2

N∑
i=1

N∑
j=1

(j 6=i)

qiqj (vE(ri, rj)− vM) , (170)

where we have used the charge neutrality condition, qi = −
∑
j(6=i) qj . The interaction vE(ri, rj)− vM

approaches 1/|ri − rj | as ri → rj and is independent of the choice of the zero of potential.

The gradient of the 3D Ewald potential [Eq. (164)] is required for evaluation of the core-polarization
contribution to the total energy (Sec. 19.3). It is given by

∇vE(r, rj) = −
∑
R

r− (rj + R)

|r− (rj + R)|2

(
erfc

(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

+
2γ

1
2

π
1
2

exp(−γ|r− (rj + R)|2)

)

− 4π

Ω

∑
G6=0

G
exp

(
−G2/4γ

)
G2

sin (G · (r− rj)) . (171)

21Increasing the input parameter ewald control will increase the number of reciprocal vectors included in the sum,
the effect of which is to increase the range of γ over which the energy is constant. The default value of γ should
normally lie in the middle of the constant energy region for the default number of reciprocal vectors, so playing with
ewald control is normally unnecessary.

180

19.4.2 2D Ewald interaction

Infinite Coulomb sums in systems which are periodic in two dimensions (the xy-plane, according to
casino) are performed using the standard 2D Ewald method originally developed by Parry [49]. One
way to derive the relevant formula is to take the infinite separation limit of the 3D sum for a periodic
stack of finite-width slabs. casino uses this algorithm when treating two-dimensional slabs of atoms
with local Gaussian basis sets (useful in modelling surfaces) and also when treating 2D electron and
electron–hole phases (either as strict 2D planes, 2D slabs with finite thickness, or strict 2D bilayers). In
the case of periodic arrays of slabs separated by a finite vacuum gap (necessary when using plane-wave
basis sets), the regular 3D algorithm is used.

Consider a finite width slab with a charge density periodic in two dimensions consisting of a unit point
charge at rj in every simulation cell plus a uniform cancelling background.

ρj(r) =
∑
R

(
δ(r− rj −R)− 1

A

)
, (172)

where R now denotes the 2D lattice translation vectors in the xy-plane, and A is the area of the
simulation cell in that plane. The Parry formula for the periodic potential corresponding to this
charge density is

v2D
E (r, rj) =

∑
R

erfc
(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

+
π

A

∑
G6=0

exp(iG · (r− rj))

G

[
exp(zG)erfc

(
G

2γ
1
2

+ zγ
1
2

)
+ exp(−zG)erfc

(
G

2γ
1
2

− zγ 1
2

)]

− 2π

A

[
erf(zγ

1
2)z +

exp(−γz2)

(γπ)
1
2

]
, (173)

where G denotes the reciprocal lattice translation vectors in the xy-plane, and z is the z-component

of the r − rj vector. In two dimensions casino sets the screening parameter γ to (2.4/A1/2)
2

which
again should approximately minimize the cost over different Bravais lattices.

The full periodic potential of the simulation cell is obtained by following a procedure analogous to
that described for the 3D case, with the Madelung constant vM given by

vM = lim
r→ri

(
vE(r, ri)−

1

|r− ri|

)
(174)

=
∑
R6=0

erfc
(
γ

1
2R
)

R
− 2γ

1
2

π
1
2

+
2π

A

∑
G6=0

erfc

(
G

2γ
1
2

)
G

− 2π
1
2

Aγ
1
2

. (175)

The first derivatives of the 2D Ewald potential, required for the evaluation of the core-polarization
energy in 2D slabs, are different in directions parallel and perpendicular to the plane of the slab. The
x and y derivatives are given by

∂v2D
E (r, rj)

∂λ
= −

∑
R

(r− (rj + R))µ
|r− (rj + R)|2

[
erfc

(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

+
2γ

1
2

π
1
2

exp(−γ|r− (rj + R)|2)

]
(176)

− π

A

∑
G6=0

Gµ sin(G · (r− rj))

G

[
exp(zG)erfc

(
G

2γ
1
2

+ zγ
1
2

)
+ exp(−zG)erfc

(
G

2γ
1
2

− zγ 1
2

)]
.

where λ = x or y, and the z derivative is given by

∂v2D
E (r, rj)

∂z
= −

∑
R

z

|r− (rj + R)|2

[
erfc

(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

+
2γ

1
2

π
1
2

exp(−γ|r− (rj + R)|2)

]

+
π

A

∑
G6=0

cos(G · (r− rj))

[
exp(zG)erfc

(
G

2γ
1
2

+ zγ
1
2

)
+ exp(−zG)erfc

(
G

2γ
1
2

− zγ 1
2

)]
− 2π

A
erf(zγ

1
2) . (177)

Note finally that in things such as 2D bilayer systems (electrons in one layer, holes in the other, say)
there is an additional ‘capacitor term’ due to interaction of the backgrounds.

181

19.4.3 1D Coulomb interaction

Coulomb sums in systems that are periodic in one dimension (the x-direction, according to casino)
are performed using an algorithm based on the Euler–Maclaurin summation formula.

Such systems are done infrequently enough that it probably isn’t worth writing out all the theory
here. Please refer to Ref. [50], particularly noting Eq. (4.8).

Note that the first derivatives of the 1D Coulomb interaction have never been implemented in casino,
so core-polarization potentials may not be used in one-dimensionally periodic systems with atoms.

19.4.4 MPC interaction

The model periodic Coulomb (MPC) interaction [51, 52, 40] is used to reduce finite size effects in
periodic calculations. The exact MPC interaction operator is

Ĥexact
e−e =

∑
i>j

f(ri − rj) +
∑
i

∫
WS

ρ(r) [vE(ri − r)− f(ri − r)] dr

−1

2

∫
WS

ρ(r)ρ(r′) [vE(r− r′)− f(r− r′)] dr dr′ , (178)

where f(r) is the 1/r Coulomb interaction treated within the ‘minimum-image’ convention, which
corresponds to reducing the vector r into the Wigner-Seitz (WS) cell of the simulation cell, vE is the
Ewald potential, and ρ is the electronic charge density from the many-electron wave function Ψ. The
electron–electron interaction energy is

Eexact
e−e = 〈Ψ|Ĥexact

e−e |Ψ〉 , (179)

which gives

Eexact
e−e =

1

2

∫
WS

ρ(r)ρ(r′)vE(r− r′) dr dr′

+

∫
WS

|Ψ|2
∑
i>j

f(ri − rj) Πk drk −
1

2

∫
WS

ρ(r)ρ(r′)f(r− r′) dr dr′

 , (180)

where the first term on the right-hand side is the Hartree energy and the term in brackets is the XC
energy. We can see that the Hartree energy is calculated with the Ewald interaction while the XC
energy (expressed as the difference between a full Coulomb term and a Hartree term) is calculated
with the cutoff interaction f .

In a DMC calculation we require the local energy at every step, but we only know the DMC charge
density, ρ, at the end of the run. Normally we have a good approximation to the charge density, ρA,
either from an independent particle calculation or a VMC calculation. We can avoid the need to know
ρ exactly by constructing a new interaction operator which involves only ρA,

Ĥe−e =
∑
i>j

f(ri − rj) +
∑
i

∫
WS

ρA(r) [vE(ri − r)− f(ri − r)] dr

− 1

2

∫
WS

ρA(r)ρA(r′) [vE(r− r′)− f(r− r′)] dr dr′ . (181)

The interaction energy becomes

Ee−e = 〈Ψ|Ĥe−e|Ψ〉

=

∫
WS

ρ(r)ρA(r′)vE(r− r′) dr dr′ − 1

2

∫
WS

ρA(r)ρA(r′)vE(r− r′) dr dr′

+

∫
WS

|Ψ|2
∑
i>j

f(ri − rj) Πk drk −
∫

WS

ρ(r)ρA(r′)f(r− r′) dr dr′

+
1

2

∫
WS

ρA(r)ρA(r′)f(r− r′) dr dr′. (182)

Noting that

Ee−e = Eexact
e−e −

1

2

∫
WS

[ρ(r)− ρA(r)] [ρ(r′)− ρA(r′)] [vE(r− r′)− f(r− r′)] dr dr′ , (183)

182

we see that the error due to this approximation is second order in (ρ − ρA), and in addition the
operator (vE−f) becomes very small as the size of the simulation cell goes to infinity. The error term
is therefore usually small and is neglected although it could be calculated after the simulation. We
use the MPC expressions of Eqs. (181) and (182) in both VMC and DMC calculations.

The first term of the Hamiltonian of Eq. (181) is evaluated in real space and the second term in
Fourier space. The third term is a constant which is evaluated in reciprocal space at the start of the
calculation. Introducing the Fourier transformed quantities,

fG =
1

Ω

∫
WS

f(r)eiG·rdr , (184)

ρG =
1

Ω

∫
WS

ρ(r)eiG·rdr , (185)

where Ω is the volume of the cell, and noting that the Fourier transform of the Ewald interaction is
4π/(ΩG2), we have

Ĥe−e =
∑
i>j

f(ri − rj) + Ω
∑
i

∑
G6=0

[
4π

ΩG2
− fG

]
ρA,Ge

−iG·ri − Ω
∑
i

fG=0ρA,G=0 − C , (186)

where

C =
Ω2

2

∑
G6=0

[
4π

ΩG2
− fG

]
ρ∗A,GρA,G −

Ω2

2
fG=0ρ

∗
A,G=0ρA,G=0 (187)

The calculation of fG is achieved using the following scheme developed by Randy Hood. The integrand
in Eq. (184) diverges at the origin and we separate out the divergent behaviour by writing

f(r) = g(r) + h(r) (188)

where

g(r) =

{
y(r) r < L
1/r r > L ,

(189)

(190)

h(r) =

{
1/r − y(r) r < L
0 r > L ,

(191)

and L is the radius of the largest sphere which is contained within the WS cell and y(r) is chosen to
be

y(r) = − r2

2L3
+

3

2L
, (192)

so that both g and h have continuous first derivatives at r = L. The Fourier transform of h(r) is
calculated analytically as

hG =
1

Ω

∫ L

0

∫ +1

−1

(
1

r
+

r2

2L3
− 3

2L

)
2πr2eiGr cos(θ) d cos(θ) dr

=
4π

ΩG2
+

12π

ΩL2G4

[
cosGL− sin(GL)

GL

]
, (193)

from which the G = 0 value can be extracted as

hG=0 =
2πL2

5Ω
, (194)

The Fourier transform of g(r) must be evaluated numerically. The gradient of g(r) is discontinuous
at the boundary of the WS cell. The errors in the Fourier components obtained using the fast Fourier
transform (FFT) method therefore fall off slowly, going approximately as N−2

grid, where Ngrid is the
number of FFT grid points along each lattice vector. It is assumed that the FFT Fourier coefficients
of g satisfy

g
Ngrid

G = aGN
−4
grid + bGN

−2
grid + cG, (195)

where the {aG}, {bG} and {cG} are constants. Note that cG = g∞G , the value of the Fourier coefficient
in the limit of an infinite grid. FFTs are carried out at three different grid sizes in order to determine
the {g∞G }.

183

To investigate whether the extrapolation has been successful, aG is set to 0, and the FFT data for the
two finest grids are used to extrapolate to infinite system size. casino prints out the G = 0 coefficients
obtained by these two extrapolation methods (referred to as ‘quadratic’ and ‘linear’ extrapolation,
respectively). casino also displays the extrapolated coefficients for which the disagreement between
the two schemes is largest. The user should examine these data, and verify that the extrapolation has
been successful.

Once the extrapolated Fourier coefficients of g have been obtained by running casino with runtype
set to ‘gen mpc’, they are added to the analytic Fourier coefficients of f and stored in the file mpc.data.
Note that, for historical reasons, the coefficients stored in mpc.data are actually ΩfG.

Running a ‘gen mpc’ calculation also evaluates the Fourier components of the charge density, using
the orbitals in xwfn.data to evaluate the density. This assumes that the orbitals are (i) orthogonal
and (ii) consistently normalized by the program that generated them. The complex wf keyword
must be set to T and any cusp corrections must be switched off in a ‘gen mpc’ calculation, in order
to preserve the normalization of the orbitals. The orbitals used to evaluate the charge density are the
orbitals that are occupied in the first determinant in a multideterminant wave function.

20 Model interactions

20.1 Manual interactions block

When using a model particle–particle interaction, the interaction keyword should be set to ‘man-
ual’. This should be done, for instance, when describing the interaction between fermions in a
Bose–Einstein condensate. The form of the interaction is set in the manual interaction block.
Currently, the first line of the block can be set to ‘square well’, ‘poschl teller’, ‘hard sphere’, ‘poly-
nomial’, ‘logarithmic’, ‘keldysh’ or ‘clifford’ (other model interactions could easily be implemented).
The manual interactions block is also used to provide the screening parameter r∗ required when
the interaction is ‘ewald kel’.

20.2 Square-well interaction

For the square well the subsequent lines in the manual interaction block should be set to: width

and height, where height is magnitude of the interaction, V0, (negative for a well) and width is the
extent of the interaction of the radial well, L.

v(r) = V0 r ≤ L
= 0 r > L (196)

The interaction exists only between particles of opposite spin (to simulate zero-range interactions).
Note that the square well is the one used by Astrakharchik et al. [53].

20.3 Modified Pöschl-Teller interaction

For the modified Pöschl-Teller interaction the well has the form

v(r) =
V0µ

2

µm cosh2(µr)
, (197)

where r is the distance between the two particles, µm is the reduced mass and V0 is the strength of
the interaction. As with the square well, the interaction exists only between particles of opposite spin.
Note that currently casino only calculates this for particles of the same mass; hence Eq. (197) has
the substitution µm = m/2, which is the same as the method of Carlson et al. [54]. Again V0 < 0
implies a potential well.

20.4 Hard sphere

The condition that the wave function goes linearly to zero whenever two hard-sphere particles come
into contact with each other is imposed by including a term u(r) = log{tanh[(rD − 1)/(1 − r

L)]} in

184

the two-body Jastrow factor, where D is the hard-sphere diameter, and L is a cutoff length normally
chosen to be the Wigner-Seitz radius of the simulation cell. Moves that bring two hard-sphere particles
within D of each other are rejected. Note that, unlike the square well and Pöschl-Teller interactions,
the hard sphere potential acts between all particles (not just particles with anti-parallel spin) unless
the op spins keyword is present in the manual interaction block.

20.5 Polynomial

This allows the specification of a spherically symmetric interparticle interaction V (r) = Θ(r−L)p(r),
where p is a polynomial, L is a cutoff distance and Θ is the Heaviside step function. The interaction acts
only between opposite-spin particles. This can be used to implement interparticle pseudopotentials
[55]. The input block takes the following format,

%block manual_interaction

polynomial

order : 5

cutoff : 2.0

c_0 : 1.0

c_2 : -0.5

c_4 : 0.3

c_5 : -0.1

%endblock manual_interaction

The order keyword should be the order of the polynomial (the highest power present in the poly-
nomial), and the keyword c i identifies the coefficient for the term ri in the polynomial. Omitted
coefficients are given a default value of zero.

20.6 Interactions between charges in 2D semiconductors

20.6.1 Theoretical background

Suppose a charge density ρ(x, y)δ(z) is placed in a 2D semiconductor at z = 0. The resulting electric
displacement field is D = E/(4π) + P = −∇φ/(4π) + P, where E is the electric field, φ is the
electrostatic potential and P = P⊥(x, y)δ(z) is the polarization field, where P⊥(x, y) is the in-plane
polarization. Note that P⊥ has no component in the z direction because the charge lies in-plane. Now
∇ ·D = ρδ(z) by Gauss’s law, and hence

∇2φ = −4πρδ(z) + 4π∇ ·P = −4πρδ(z) + 4π(∇ ·P⊥)δ(z). (198)

But P⊥(x, y) = −κ∇[φ(x, y, 0)], where κ is the in-plane susceptibility of the material. So

∇2φ = −4πρδ(z)− 4πκ
(
∇2[φ(x, y, 0)]

)
δ(z). (199)

If we take the Fourier transform of Eq. (199), using q for the wavevector in the (x, y) plane and k for
the wavenumber in the z direction and rearrange, we find

φ(q, k) = 4π
ρ(q)− κq2φ(q, z = 0)

q2 + k2
. (200)

But

φ(q, z = 0) =
1

2π

∫
φ(q, k) dk

=
2π

q

[
ρ(q)− κq2φ(q, z = 0)

]
. (201)

Rearranging for φ(q, z = 0), we find the in-plane electrostatic potential to be

φ(q, z = 0) =
2πρ(q)

q(1 + 2πκq)
. (202)

Hence the interaction between charges in a 2D semiconductor is [56]

v(q) =
2π

q(1 + 2πκq)
=

2π

q(1 + r∗q)
, (203)

185

where r∗ ≡ 2πκ. Taking the Fourier transform, we find

v(r) =
π

2r∗
[H0(r/r∗)− Y0(r/r∗)] , (204)

where Hn(x) is a Struve function and Yn(x) is a Bessel function of the second kind. This expression
was first obtained by Keldysh [57].

At long range (r � r∗), the effective interaction reduces to the usual Coulomb form: v(r) ≈ 1/r. On
the other hand, at short range (r � r∗), the effective interaction is approximately logarithmic:

v(r) ≈ [log(2r∗/r)− γ]/r∗, (205)

where γ is Euler’s constant [56].

In order to satisfy the analogue of the Kato cusp conditions (i.e., to make the local energy nondiver-
gent at coalescence points), we require that the two-body Jastrow term between two distinguishable
particles of mass mi and mj and charge qi and qj must go as −qiqjmimjr

2 log(r)/[2r∗(mi +mj)] at
short range. The two-body Jastrow term between pairs of indistinguishable particles of mass m and
charge q must go as −mq2r2 log(r)/(8r∗) at short range. These cusp conditions can be imposed using
the ‘EXJAS’ Jastrow term in casino: see Sec. 7.4.3.

When using the logarithmic interaction, it is simpler to use a system of units in which h̄ = e =
µ = 4πεr∗ = 1, where ε is the absolute permittivity and µ is the electron–hole reduced mass. In
these units, r∗ vanishes from the denominator of Eq. (205). The resulting energies are in units of

E0 = e2/(4πεr∗), and lengths are in units of
√

2r0, where r0 =
√

4πεr∗h̄
2/(2e2µ). In these units the

energy only depends on the electron–hole mass ratio and the r∗ value; furthermore, the dependence
of the energy on the r∗ value is a trivial, constant offset of

∑
i>j qiqj log(r∗). Casino assumes that

these “logarithmic excitonic units” are used.

20.6.2 Choosing the logarithmic or Keldysh interaction manual interactions

Two ‘manual interactions’ are available for 2D semiconductors: ‘logarithmic’ and ‘keldysh’, where
the former evaluates the logarithmic approximation of Eq. (205) while the latter evaluates the full
interaction of Eq. (204). The value of the r∗ parameter must be set in the manual interaction block
as rstar.

20.6.3 Evaluating the Keldysh interaction

Equation (204) is approximated using a Taylor expansion in r/r∗ at small r and an expansion in
r∗/r at large r. The small-r expansion is used for r/r∗ <= 18 and the large-r expansion is used
for r/r∗ > 18. This allows us to evaluate the interaction accurately to at least 8 digits of precision
using double-precision arithmetic, as demonstrated by comparing with results obtained using higher
precision. The small-r expansion of Eq. (204) is

v(r) =
1

r∗

∞∑
i=0

(−1)
i+1

(r/r∗)
2i∏i

j=1 (2j)
2

[
log

(
r

2r∗

)
+ γ −

i∑
k=1

1

k

]
+

1

r∗

∞∑
i=0

(−1)
i
(r/r∗)

2i+1∏i
j=0 (2j + 1)

2
. (206)

The large-r expansion of Eq. (204) is

v(r) =
1

r

∞∑
i=0

(−1)i
i−1∏
j=0

(2j + 1)
2
(r∗
r

)2i

. (207)

This series does not converge for finite values of r; hence only a few terms should be used to approxi-
mate the potential at finite r.

20.6.4 Multiple layers of 2D semiconductor: 2D multilayer int

For an N -layer heterostructure of 2D semiconductors, the interactions between charges within layers
and between layers can be determined by solving Poisson’s equation, analogously with the monolayer
case. Consider such a heterostructure of 2D semiconductors comprised of N parallel layers (labelled

186

i = {1, 2, . . . , N}), each having in-plane susceptibility κi and being located at fixed z-coordinates
z = di. Suppose also that this heterostructure is immersed in an isotropic medium of dielectric
constant ε. In this general case we will assume no symmetry whatsoever, and therefore we must
determine N(N − 1)/2 interlayer and N intralayer charge–charge interaction potentials.22

In order to determine the intralayer potential between pairs of charges in layer j, we must consider
the presence of a test charge density, which is confined to layer j:

ρjtot(r, z) = ρj(r)δ(z − dj). (208)

The electric displacement field throughout the rest of space due to this density, and because of screening
in the other layers is then

D = − ε∇φ(r, z)

−
∑
i

κi[∇‖φ(r, di)]δ(z − di), (209)

which, upon use of Gauss’s law, yields

ρj(r, z)δ(z − dj) = − ε∇2φ(r, z)

−
∑
i

κi[∇2
‖φ(r, di)]δ(z − di). (210)

After taking the Fourier transform of this expression we find

ρj(q) exp (−ikdj) = ε(q2 + k2)φ(q, k) +

q2
∑
i

κiφ(q, di) exp (−ikdi), (211)

which, after Fourier inversion in the k variable only, gives

ρj(q) exp (−q|z − dj |) = 2εqφ(q, z) +

q2
∑
i

κiφ(q, di) exp (−q|z − di|). (212)

Evaluating Eq. (212) at each of the layer z coordinates dl (l = {1, 2, . . . , N}), we can write

ρj exp (−q|dl − dj |) = q(2ε− κlq)φ(q, dl) +

q2
∑
i 6=l

κiφ(q, di) exp (−q|dl − di|), (213)

which is a matrix equation
ρjl (q) = Mli(q)φi(q), (214)

with the following definitions

ρjl (q) = ρj(q) exp (−q|dl − dj |),
φl(q) = φ(q, dl),

Mli =

{
q(2ε+ κlq) if i = l
q2κi exp (−q|dl − di|) otherwise

. (215)

The solution to the matrix Eq. (214) is a set of φi which are equal to ρj(q) × vji(q), with vji(q)
the Fourier components of the interaction potential between layer j and layer i. If j = i, then
this is just the intralayer interaction in layer j. This procedure should, in general, be repeated for
j = 1, 2, . . . , N—however, if there is sufficient symmetry (e.g. a mirror symmetry about an imaginary
plane through the centre of the heterostructure), only a subset of j values will require solution of Eq.
(214).

For completeness, we note that the same analysis applies in the case that the surrounding dielectric
medium is anisotropic, having dielectric tensor

ε̃ = diag(ε‖, ε‖, ε⊥) (216)

22There are
(
N
2

)
= N(N − 1)/2 possible pairings of individual layers, each with a corresponding interaction potential

between the two layers in question. Additionally, there are N individual layers, and therefore N intralayer interaction
potentials describing interactions between charges in the same layer.

187

with the caveat that the substitutions

d → D =
√
ε‖/ε⊥d, (217)

ε → ε̄ =
√
ε‖ε⊥, (218)

are also made.

The multilayer interaction can be used by specifying an appropriate manual interactions block. For
example, suppose we have set up a multilayer system with charge in layers 1, 2, 3, and 4 of an electron
gas system (using heg zlayer to specify layer z coordinates, and heg layer to specify particle layer
occupation). We might specify the multilayer interaction with a manual interaction block of the form:

%block manual_interaction

keldysh_multilayer

rstar1 : 100.d0

rstar2 : 100.d0

rstar3 : 100.d0

rstar4 : 30.d0

grid_size : 10000

grid_mult : 10.d0

%endblock manual_interaction

or, equivalently, we could use the rstardef keyword to set the r∗ parameter associated with any
unspecified layers to a fixed value:

%block manual_interaction

keldysh_multilayer

rstardef : 100.d0

rstar4 : 30.d0

grid_size : 10000

grid_mult : 10.d0

%endblock manual_interaction

the two grid parameters grid size and grid mult may be used, as well as the bilayer equivalents
(bilayer grid size and bilayer grid mult), to specify the spatial extent and density of the grid
on which the interactions are evaluated. Their given values (10000 and 10.0, respectively) are the
defaults.

20.6.5 The bilayer case: 2D bilayer int

In the bilayer case (N = 2), it is possible to solve the matrix Eq. (214) by hand (analytical solution
is also possible for N = 3 and 4, but no higher). With j = 1 labelling the position of our test charge
density, the intra- (φ1) and inter-layer (φ2) potentials read

φ1(q) =
(1 + r∗2q) exp(qd)− r∗2q exp(−qd)

2εq [(1 + r∗1q)(1 + r∗2q) exp(qd)− r∗1r∗2q2 exp(−qd)]
,

φ2(q) =
1

2εq [(1 + r∗1q)(1 + r∗2q) exp(qd)− r∗1r∗2q2 exp(−qd)]
, (219)

where we have made the definition r∗i = κi/2ε. An important difference between the intralayer
interaction and the monolayer screened interaction (the Keldysh interaction) is that the intralayer
interaction between charges accounts for the screening provided by the (empty) second layer.

Casino is capable of evaluating these potentials in real space, by calculation of their 1D Hankel
transform, which is equivalent to 2D Fourier transformation in the case of radial symmetry. If one
wishes to use the exact bilayer interactions, one should use the manual interaction specifiers, with the
interaction type 2D bilayer int, and two manual interaction parameters, r∗1 (the r∗ parameter for
layer 1) and r∗2 (the r∗ parameter for layer 2). If one would like to use the adapted interactions (in
the presence of an anisotropic dielectric tensor as specified in the preceeding section), then one will
have to manually scale one’s input parameter values, and use a sensible set of excitonic units. Keldysh
or logarithmic cusp conditions are applied to Jastrow parameter terms in cases where the interactions
become singular (i.e. for the intralayer cases at zero separation).

188

20.6.6 Approximate multilayer potentials

If there are multiple layers of 2D semiconductor then it can be shown that the interaction between
charge carriers at large in-plane distances is of monolayer Keldysh form [Eq. (204)], but with an
effective r∗ value that is the sum of the r∗ values for the individual layers, plus the absolute value
of the interlayer separation. This approximation breaks down at short range. It is valid provided
the layer separation is small compared with the physical size of the excitonic complex being studied.
Meanwhile, if the interaction is keldysh or logarithmic and multiple layers are present then the
interaction between charge carriers will be of monolayer Keldysh form with an effective r∗ value as
described above. Note that the r∗ value supplied to casino in the manual interactions block should
be the sum of the r∗ values for each of the individual 2D semiconductors present in the multilayer.

20.6.7 Ewald–Keldysh interaction for periodic 2D systems

The difference between the Keldysh interaction and the Coulomb 1/r interaction goes as r−3. If
this difference is summed over all periodic images of a pair of particles then we get an absolutely
convergent series which gives a Keldysh correction to the ordinary 2D Ewald energy. The resulting
Ewald–Keldysh energy is appropriate for modelling homogeneous electron(–hole) gases in 2D semi-
conductors. To use the Ewald–Keldysh interaction in casino, set interaction to ‘ewald kel’ and add
a manual interaction block to input with two lines (e.g., ‘ewald kel’, then ‘rstar : 1.7858’).

20.7 Dipolar interaction

The dipolar potential models particles with a repulsive d2/r3 interaction in 2D. This interaction can
be used by writing dipole as the first line of the manual interaction block in the input file, and
the dipole strength d2 is specified in the input block using keyword d^2.

A version of the dipolar interaction for particles aligned at an angle θ to the plane of motion is
also available. This interaction can be used by writing 2D tilted dipole as the first line of the
manual interaction block in the input file, and the dipole strength d2 and angle θ are specified in
the input block using keywords d^2 and θ, respectively.

Note that a special cusp condition appropriate for these interactions may be applied to the gjastrow
Jastrow factor by including a dipole cusp term in the parameters.casl file.

20.8 Pseudodipolar interaction

A pseudopotential for the dipolar interaction is also available. The interaction potential is a polynomial
in r for r < L and d2/r3 for r > L. This interaction can be used by writing pseudodipole as the
first line of the manual interaction block in the input file, which takes the same parameters as the
polynomial interaction described above and the interaction strength d2 using keyword d^2.

A pseudopotential for the anisotropic tilted dipolar interaction is also available, whose input block
takes the form

%block manual_interaction

tilted_pseudodipole

order : 5

tilt_order : 4

c_0 : 1

c_5 : 1

b_0 : 2

b_4 : 1

d^2 : 0.25

theta : 0.615

%endblock manual_interaction

The tilt order keyword gives the order of the anisotropic part of the polynomial, with coefficients
for ri cos 2φ given by b i, and φ is the angle between the inter-particle separation and the x-axis.

189

20.9 Clifford interaction

The Clifford interaction is an alternative to the Ewald interaction for periodic Coulomb systems. At
present it is available for homogeneous electron gases. Let r =

∑3
i=1 xiei be the separation of two

electrons. The separation vector of the two electrons in the Clifford torus embedding space is

x′i =

3∑
j=1

2B−1
ij sin

(
3∑
k=1

1

2
Bjkxk

)
, (220)

where Bij is the jth Cartesian component of the ith simulation-cell reciprocal lattice vectors. The
Coulomb interaction between the two electrons is then taken to be v(r) = 1/|r′|. This is a general-
ization of Eq. (23) of Ref. [58]. Note that at short range, r′ = r + O(r3/a2), where a is the lattice
parameter, so that the short-range interaction converges to 1/r. Furthermore, it is easy to show that
v(r + R) = v(r) for all simulation-cell lattice vectors R.

For HEG systems, an additional constant term due to (i) the electrostatic energy of the neutralizing
background and (ii) the interaction between the electrons and the background should be included
in the total energy [58]. Evaluating this term requires the numerical calculation of low-dimensional
integrals. It is currently left to the user to evaluate this constant energy contribution using an external
program; it is not included in the energy reported by casino when the Clifford interaction is used.

21 Multi-determinant expansions

casino is capable of using multi-determinant expansions of the form

ΨMD(R) =
∑
n

cnD
↑
nD
↓
n , (221)

where {cn} are the determinant coefficients. Multi-determinant expansions are widely used in quantum
Chemistry methods and successfully describe correlations missing from the single-determinant wave
function for small systems. However, the length of the expansion required to achieve a given error in
the energy grows rapidly with system size, and for large systems multi-determinant expansions are
impractical.

In QMC one has the ability to use Jastrow factors (see Sec. 22), which do a good job at describing
electronic correlation. As a consequence, it is possible to use small multi-determinant expansions in
QMC and attain an excellent description of electronic correlations.

21.1 Compressed multi-determinant expansions

It is possible to apply certain algebraic tricks to a multi-determinant expansion in order to reduce
it to a much shorter expansion where the determinants are populated with modified orbitals. This
substantially reduces the cost of using large expansions in QMC. The compression method is described
in Ref. [31].

To use a multi-determinant wave function in casino, you will need to:

• Run casino with runtype set to gen mdet casl to produce an mdet.casl file describing the
multi-determinant expansion.

• Run the det compress utility to produce a cmdet.casl file describing the compressed multi-
determinant expansion.

• Run casino as usual with the cmdet.casl file produced by det compress in the directory
where casino is being run.

22 The Jastrow factor

The Slater-Jastrow wave function is

Ψ(R) = exp [J]
∑
n

cnD
↑
nD
↓
n , (222)

where the Dn are determinants of up and down spin orbitals and J is the Jastrow factor.

190

22.1 General form of CASINO’s Jastrow factor

casino uses the form of Jastrow factor proposed in Ref. [59]. casino’s Jastrow factor is the sum of
homogeneous, isotropic electron–electron terms u, a homogeneous, isotropic electron–electron–electron
term W , isotropic electron–nucleus terms χ centred on the nuclei, isotropic electron–electron–nucleus
terms f , also centred on the nuclei and, in periodic systems, plane-wave expansions of electron–electron
separation and electron position, p and q. The form is

J({ri}, {rI}) =

N−1∑
i=1

N∑
j=i+1

u(rij) +W ({rij}) +

Nions∑
I=1

N∑
i=1

χI(riI) +

Nions∑
I=1

N−1∑
i=1

N∑
j=i+1

fI(riI , rjI , rij)

+

N−1∑
i=1

N∑
j=i+1

p(rij) +

N∑
i=1

q(ri), (223)

where N is the number of electrons, Nions is the number of ions, rij = ri − rj , riI = ri − rI , ri is the
position of electron i and rI is the position of nucleus I. In periodic systems the electron–electron and
electron–nucleus separations, rij and riI , are evaluated under the minimum-image convention. Note
that u, χ, f , p and q may also depend on the spins of electrons i and j.

The plane-wave term, p, will describe similar sorts of correlation to the u term. In periodic systems
the u term must be cut off at a distance less than or equal to the radius of the sphere inscribed in
the WS cell of the simulation cell and therefore the u function includes electron pairs over less than
three quarters of the simulation cell. The p term adds variational freedom in the ‘corners’ of the
simulation cell, which could be important in small cells. The p term can also describe anisotropic
correlations, such as might be encountered in a layered compound. It is expected that the u term will
be considerably more important than the p term, which cannot describe the electron–electron cusps
and is therefore best limited to describing longer-ranged correlations. The q term will describe similar
electron–nucleus correlations to the χI terms.

22.2 The u, χ and f terms in the Jastrow factor

The u term consists of a complete power expansion in rij up to order rC+Nu
ij which satisfies the Kato

cusp conditions at rij = 0, goes to zero at the cutoff length, rij = Lu, and has C − 1 continuous
derivatives at Lu:

u(rij) = (rij − Lu)
C ×Θ(Lu − rij)×

(
α0 +

[
Γij

(−Lu)
C

+
α0C

Lu

]
rij +

Nu∑
l=2

αlr
l
ij

)
, (224)

where Θ is the Heaviside function and Γij = 1/2 if electrons i and j have opposite spins and Γij = 1/4
if they have the same spin. In this expression C determines the behaviour at the cutoff length.
If C = 2, the gradient of u is continuous but the second derivative and hence the local energy is
discontinuous, and if C = 3 then both the gradient of u and the local energy are continuous.

The form of χ is

χI(riI) = (riI − LχI)C ×Θ(LχI − riI)×

β0I +

[
−ZI

(−LχI)C
+
β0IC

LχI

]
riI +

Nχ∑
m=2

βmIr
m
iI

 . (225)

It may be assumed that βmI = βmJ where I and J are equivalent ions. The term involving the ionic
charge ZI enforces the electron–nucleus cusp condition.

The expression for f is the most general expansion of a function of rij , riI and rjI that does not
interfere with the Kato cusp conditions and goes smoothly to zero when either riI or rjI reach cutoff
lengths:

fI(riI , rjI , rij) = (riI − LfI)C(rjI − LfI)CΘ(LfI−riI)Θ(LfI−rjI)
NeN
fI∑
l=0

NeN
fI∑

m=0

Nee
fI∑

n=0

γlmnIr
l
iIr

m
jIr

n
ij . (226)

Various restrictions are placed on γlmnI . To ensure the Jastrow factor is symmetric under electron
exchanges it is demanded that γlmnI = γmlnI ∀ I,m, l, n. If ions I and J are equivalent then it is

191

demanded that γlmnI = γlmnJ . The condition that the f term has no electron–electron cusps is(
∂f

∂rij

)
rij=0
riI=rjI

= 0, (227)

which implies that
NeN
fI∑
l=0

NeN
fI∑

m=0

γlm1Ir
l+m
iI (riI − LfI)2C = 0 , (228)

for all riI . Hence, ∀ k ∈ {0, . . . , 2N eN
fI }, ∑

l,m : l+m=k

γlm1I = 0. (229)

The condition that the f term has no electron–nucleus cusps is(
∂f

∂riI

)
riI=0
rij=rjI

= 0, (230)

which gives
NeN
fI∑

m=0

Nee
fI∑

n=0

(Cγ0mnI − LfIγ1mnI)(−LfI)C−1
rm+n
jI (rjI − LfI)C = 0, (231)

for all rjI . It is therefore required that, ∀ k′ ∈ {0, . . . , N eN
fI +N ee

fI},∑
m,n : m+n=k′

(Cγ0mnI − LfIγ1mnI) = 0. (232)

22.3 The p and q terms in the Jastrow factor

The p term takes the cuspless form

p(rij) =
∑
A

aA
∑
G+
A

cos(GA · rij) , (233)

where the {GA} are the reciprocal lattice vectors of the simulation cell belonging to the Ath star of
vectors that are equivalent under the full symmetry group of the Bravais lattice, and ‘+’ means that,
if GA is included in the sum, −GA is excluded. The p term is important if the finite-size correction
to the kinetic energy is to be calculated (see Sec. 29).

For systems with inversion symmetry the q term takes the cuspless form

q(ri) =
∑
B

bB
∑
G+
B

cos(GB · ri), (234)

where the {GB} are the reciprocal lattice vectors of the primitive unit cell belonging to the Bth star
of vectors that are equivalent under the space-group symmetry of the crystal, and the ‘+’ means that,
if GB is included in the sum, −GB is excluded. The q term is rarely of use in practice.

22.4 The three-body W term

The W term is given by

W =

N∑
j,k,l

δ̄jk δ̄jlδ̄klslj · slk , (235)

sjk = wjkrjk , (236)

where wjk = w(rjk) is a suitably parametrized function of the distance between electrons j and k,
rjk = rj − rk, and the symbol δ̄jk (no-delta of j, k) is short-hand for 1− δjk.

192

The core function wij is parametrized in casino as

wij = w(rij) = fC(rij ;Lw)

n∑
l=0

clr
l
ij . (237)

where n is the order of the expansion, cl are the expansion coefficients and fC(rij ;Lw) = (rij − Lw)
C

is the usual cutoff function.

22.5 The ucyl term

We may include two-body terms of the form

ucyl(rij) =

Nuρ∑
l=0

Nuz∑
m=0

εlmρ
l
ij |zij |m(ρij − Luρ)C(|zij | − Luz)CΘ (Luρ − ρij) Θ(Luz − |zij |), (238)

where ρij and zij are the radial and axial cylindrical polar coordinates of rij , the {εlm} and the cutoff
lengths Luρ and Luz are variational parameters, and Nuρ and Nuz determine the amount of variational
freedom. The parameters εlm may be different for parallel and antiparallel-spin pairs of electrons.
This two-body correlation function has cylindrical symmetry and is symmetric under exchange of
electrons. To ensure the wave function has a continuous derivative we must have ε1m = ε0mC/Luρ
and εl1 = εl0C/Luz; all the other parameters may be varied freely. The largest value that Luρ can
take is the radius of the largest circle that can be inscribed in the Wigner–Seitz cell of the simulation
supercell.

22.6 The χcyl term

We may include one-body terms of the form

χcyl(ri) =

Nχρ∑
l=0

Nχz∑
m=0

ωlmρ
l
i|zi|m(ρi − Lχρ)C(|zi| − Lχz)CΘ (Lχρ − ρi) Θ(Lχz − |zi|), (239)

where ρi and zi are the radial and axial cylindrical polar coordinates of ri − r0, the {ωlm} and the
cutoff lengths Lχρ and Lχz are variational parameters, and Nχρ and Nχz determine the amount of
variational freedom. r0 is an optimisable origin for the χcyl term. The parameters ωlm may be different
for spin-up and spin-down electrons. This Jastrow term has cylindrical symmetry. To ensure the wave
function has a continuous derivative we must have ω1m = ω0mC/Lχρ and ωl1 = ωl0C/Lχz; all the
other parameters may be varied freely. The largest value that Lχρ can take is the radius of the largest
circle that can be inscribed in the Wigner–Seitz cell of the simulation supercell.

23 Backflow transformations

The most widely used form of the trial wave function ΨT is the Slater-Jastrow (SJ) form

ΨT = eJΨS , (240)

where the Jastrow correlation factor eJ is an optimizable function of the particle coordinates, J =
J({ri}), and the Slater part ΨS is in general a multideterminant expansion,

ΨS =

ND∑
k=1

ck

NS∏
j=1

D(jk) , (241)

D(jk) = D(jk)({ri}) , (242)

where {ck} are the expansion coefficients, and D(jk) is the Slater determinant of the one-electron
orbitals of electrons of spin j in the kth term of such expansion.

Backflow corrections in QMC are capable of introducing further correlations in ΨT by substituting
the coordinates in the Slater determinants by a set of collective coordinates xi({rj}), given by

xi = ri + ξi({rj}) , (243)

193

where ξi is the backflow displacement of particle i, which depends on the configuration of the system
{rj}, and contains optimizable parameters that can be fed into a standard method like variance
minimization.

While the use of a Jastrow factor does not modify the nodal surface of the wave function, backflow
transformations do change it.

23.1 The generalized backflow transformation

The form of the backflow displacement ξi in homogeneous systems has traditionally been taken as [60]

ξ
(e−e)
i =

N∑
j 6=i

ηijrij , (244)

where ηij = η(rij) is an appropriate function of interparticle distance. Equation (244) can be regarded
as the most general two-body coordinate transformation for a homogeneous system.

Notice that the above expression implicitly assumes that there is a set of preferred directions in the
system, given by the electron–electron vectors {rij}. In a system with nuclei a new set of preferred
directions is introduced, the electron–nucleus vectors {riI}. Following the same idea, one is led to
introduce an electron–nucleus contribution to ξi, of the form:

ξ
(e−N)
i =

Nion∑
I

µiIriI , (245)

where µiI = µ(riI). However, this is a one-electron term; to be consistent with the order of the η term,
it is necessary to introduce an inhomogeneous two-electron term (i.e., an electron–electron–nucleus
term), which would be given by

ξ
(e−e−N)
i =

N∑
j 6=i

Nion∑
I

(
ΦjIi rij + ΘjI

i riI
)
, (246)

where ΦjIi = Φ(riI , rjI , rij) and ΘjI
i = Θ(riI , rjI , rij).

These functions must be cut off at given lengths for efficiency. We use a simple truncation function,

f(r;L) =

(
L− r
L

)C
Θ(L− r) , (247)

where L is a cutoff length, C is the truncation order and Θ denotes the Heaviside function.

Notice that the above can be easily extended to inhomogeneities other than atoms by introducing any
other coordinates appearing in the potential energy into the expressions. This is not implemented in
casino yet.

23.1.1 The η function

Three forms of the homogeneous backflow function have been tested with casino. Following extensive
tests, no advantages were found from using the rational and Gaussian forms, and only the polynomial
form remains in the code,

ηij = f(rij ;Lη)

Nη∑
k=0

ckr
k
ij , (248)

where Nη is the expansion order and {cl} are the optimizable coefficients. We expect this simple form
to be flexible and efficient. The natural polynomial basis is used to improve the speed of evaluation,
and rounding errors are not likely to appear for Nη + C < 20 23.

23It is estimated that numerical problems arise in the evaluation of polynomials beyond order ∼ 20 when using
double-precision arithmetics. More complicated polynomial forms (e.g., Chebyshev polynomials) should be used to be
able to exceed this limit.

194

23.1.2 The µ function

We use the following polynomial expansion for µ,

µiI = f(riI ;Lµ,I)

Nµ,I∑
k=0

dk,Ir
k
iI , (249)

where Lµ,I is the cutoff length for ion I, Nµ,I is the expansion order and {dk,I} are the optimizable
coefficients.

23.1.3 The Φ and Θ functions

Our choice for ΦjIi and ΘjI
i are the following power expansions,

ΦjIi = f(riI ;LΦ,I)f(rjI ;LΦ,I)

NeN,I∑
k=0

NeN,I∑
l=0

Nee,I∑
m=0

ϕklm,Ir
k
iIr

l
jIr

m
ij , (250)

ΘjI
i = f(riI ;LΦ,I)f(rjI ;LΦ,I)

NeN,I∑
k=0

NeN,I∑
l=0

Nee,I∑
m=0

θklm,Ir
k
iIr

l
jIr

m
ij , (251)

where NeN,I and Nee,I are the expansion orders, LΦ,I are the truncation lengths and ϕklm,I and θklm,I
are optimizable coefficients.

23.1.4 The Π function

The backflow Π term is of the form of the gradient of the Jastrow P term. Specifically, the contribution
to the backflow displacement ξi is

N∑
j 6=i

π(rij), (252)

where rij = ri − rj and

π(rij) =
∑
A

αA
∑
G+
A

− sin(GA · rij)GA, (253)

where the {GA} are the reciprocal lattice vectors of the simulation cell belonging to the Ath star of
vectors that are equivalent under the full symmetry group of the Bravais lattice, and ‘+’ means that,
if GA is included in the sum, −GA is excluded. The {αA} are optimizable parameters.

Like the Jastrow P term, the Π term is intended to capture long-range behaviour, allowing the
description of correlation between electrons in the “corners” of the Wigner-Seitz cell of the simulation
cell. The Π term is cuspless and irrotational by construction.

23.2 Constraints on the backflow parameters

In SJ wave functions it is common practice to impose the electron–electron cusp conditions on the
parameters in the Jastrow factor and the electron–nucleus ones on the orbitals in the Slater determi-
nant. Backflow can modify the cusp conditions; we have constrained the backflow parameters so that
they do not.

When AE atoms are present, it can be shown that the electron–nucleus cusp conditions cannot be
fulfilled unless there is no homogeneous backflow term present. However, this issue can be bypassed
by smoothly truncating η(rij) around such nuclei. This is automatically done by casino.

An additional set of constraints can be added in order to satisfy the relation

ξi({rj}) = ∇iY ({rj}) , (254)

where Y ({rj}) is an object called backflow potential, which appears in the derivation of backflow of
Ref. [61]. This equation is already satisfied by both the electron–electron and the electron–nucleus
terms by definition, and it can be imposed on the electron–electron–nucleus backflow functions by
using an appropriate set of constraints, which correspond to the ‘no-curl’ flag in the phi term in
correlation.data. It is found that the ‘no-curl’ conditions do not give particularly good backflow
functions; it has been left in casino as a means of drastically reducing the number of free parameters
in cases where this is absolutely necessary.

195

23.3 Improving the nodes of ΨT

casino’s implementation of backflow has the ability to improve the nodal surface of the trial wave-
function with respect to that of the SJ form. There is an additional computational expense in going
from SJ to backflow (BF), which is a factor of ∼ 2 for the AE neon atom—based on the CPU time
taken to achieve a given error bar in the mean energy—in both VMC and DMC; other systems may
vary, but we expect backflow to be a reasonably efficient way of reducing the fixed-node error in most
cases.

Plot of the wave-function nodes of a water molecule, performed by moving an electron in the molecular plane

(XY) while keeping all others fixed in an arbitrary configuration (generated using HF-VMC).

-1 -0.5 0 0.5

-0.06

-0.04

-0.02

0

0.02

0.04

HF
SJ
BF

Plot of the HF, SJ and BF wave-functions across a node in a water molecule, corresponding to moving (x, y)

from (−1,−1) to (−1, 0.5) in the previous graph.

It should be noticed, however, that the application of backflow has a greater effect on VMC than on
DMC. For instance, BF-VMC applied on AE neon has been found to recover a 53% of the correlation
energy missing at the SJ-VMC level, while BF-DMC achieves about 38% with respect to SJ-DMC.
The case of AE Carbon is even more pronounced, the figures being 45% for VMC and a mere 17% for
DMC.

The reason for this is clear: the backflow parameters are optimized within VMC, where the nodal
error is far less important than the bulk error—bulk meaning ‘the wave-function away from the nodes’
in this context—simply because of the difference in the size of the two regions in configuration space.

196

Theoretically, it is even possible to worsen the DMC results by using a wave-function that improves
the VMC energies, but this case has not been found in practice. It is unknown whether a different
optimization scheme may be used to systematically improve the nodal surface of a wave-function
regardless of its bulk.

Even so, there are two solid points that encourage the use of backflow on many problems:

• It reduces the fixed-node error by a statistically significant amount in VMC and DMC at little
additional cost in many cases.

• BF-VMC energies are often found to be very close to the SJ-DMC ones. The VMC method is
thus turned into a powerful, yet simple tool delivering highly reliable results.

24 Statistical analysis of data

24.1 The reblocking method

Each configuration generated by the QMC algorithms is related to a configuration from the previous
iteration, so the raw QMC data in the vmc.hist and dmc.hist files are serially correlated. A näıve
calculation of the variance of the energy (and hence the standard error in the mean) is an under-
estimate, because successive local energies are more similar on average than they would be if the
configurations were independent.

The effects of serial correlation can be eliminated by gathering successive data points into blocks and
averaging over the data in each block [62]. The variance of the set of block averages can then be
calculated. If the block length is greater than the correlation length between data points then the
block averages are uncorrelated and an unbiased estimate of their variance is obtained. Thus, if the
estimated standard error in the mean energy is plotted against block length then it should, for large
enough blocks, be distributed about a constant value, which is the true standard error in the mean.
If it does not reach such a plateau then there is insufficient data to estimate the standard error in the
energy estimate.

Each iteration is equally weighted in a VMC calculation; however, for DMC, each iteration is weighted
by the total weight of the configurations multiplied by the Π-weight. In either case, let the iteration
weights be wi, the total number of data points be M and the energy from iteration i be ei.

Consider the bth reblocking transformation, in which the block length is Bb = 2b−1. The data range
may be divided into Mb blocks, the last of which is usually incomplete.

For each block j, the block weight is

Wbj =
∑
i∈j

wi, (255)

and the corresponding block energy is

Ebj =

∑
i∈j eiwi

Wbj
. (256)

The ‘reblocked’ energy is

Eb =

∑
j EbjWbj∑
jWbj

=

∑
i eiwi∑
i wi

≡ E, (257)

which is therefore independent of reblocking transformation. On the other hand, the reblocked variance
is

σ2
b =

∑
jWbj(Ebj − E)

2

∑
jWbj −

∑
j
W 2
bj∑

j
Wbj

, (258)

which does depend on the reblocking transformation number.

197

The number of blocks at the bth reblocking transformation is Nb = M/Bb. (Note that Nb is not
necessarily an integer, because the last block may be incomplete.) The standard error in the energy
estimate at reblocking transformation number b is

δb =
σb√
Nb

, (259)

and the error in δb may be estimated as

εb =
δb√

2(Nb − 1)
. (260)

The reblocking procedure is performed ‘on-the-fly’ by casino itself for total energies and their com-
ponents, and the reblocked error bars should be printed out at the end of the out file. The algorithm
for determining the best block size is based on that given in Ref. [63], giving a robust algorithm that
offers an apparently optimal tradeoff between statistical and systematic error in the error bar. If
casino thinks the reblocking procedure has not converged (as it won’t for shorter runs) then it will
say so and print out additional information.

The separate reblock utility may be used to post-process the data in the vmc.hist or dmc.hist file
and produce a table of δb and εb against b; the user can then manually look for a region in which
the standard error δb has reached a plateau as a function of b, and choose an appropriate reblocking
transformation number, which is then used to calculate the error bars on all the different components
of energy.

The reblock utility will be invoked automatically if you use ‘haltqmc -r’ to tidy up your output
files.

24.2 Estimate of the correlation time given by CASINO

The correlation time of the energy is computed and shown for every block in a VMC calculation, and
also when using the reblock utility. The correlation time measures the average number of Monte
Carlo steps between two uncorrelated values of the energy, and should be unity for optimal statistics.
Note that in this context by ‘Monte Carlo step’ we mean ‘every step for which an energy is stored’. For
example, in a VMC calculation, every vmc decorr period×vmc ave period configuration moves
produce a single datum for later analysis.

The definition of the correlation time τ of an observable H is

τ =

∫ +∞

−∞
A(t)dt =

∫ +∞

−∞

〈(Ht′ − 〈Ht′′〉t′′)(Ht′+t − 〈Ht′′〉t′′)〉t′
σ2
H

dt, (261)

where A(t) is the value of the autocorrelation function at an interval of t, σ2
H = 〈(Ht′ − 〈Ht′′〉t′′)2〉t′ is

the variance of the expectation values, and the latter are taken with respect to their subscript, which
we shall remove for the sake of clarity. For a discrete set of values, equally spaced by an amount
∆t = 1,

τ =

+∞∑
t=−∞

A(t) = 1 + 2

+∞∑
t=1

A(t) = 1 + 2

+∞∑
t=1

〈(Ht′ − 〈H〉)(Ht′+t − 〈H〉)〉
σ2
H

(262)

and for a finite set of length N ,

τ = 1 + 2

N−1∑
t=1

〈(Ht′ − 〈H〉)(Ht′+t − 〈H〉)〉
σ2
H

. (263)

Numerically, the problem with this expression is that if averages are used instead of proper expectation
values (which are, of course, unknown), great fluctuations will appear at the tail of the autocorrelation
function. This problem is solved by introducing a cutoff in the summation [64]:

τ(tmax) = 1 + 2

tmax∑
t=1

(Ht′ −H)(Ht′+t −H)

σ̂2
H

, (264)

where the numerator is the average of the measured values of its arguments over the configurations
indexed by 1 ≤ t′ ≤ N − t, and σ̂2

H is the variance of these measures. One possibility for setting the

198

cutoff is to check against the self-consistent inequality tmax < 3τ(tmax) while computing the sum, and
truncate it as soon as it stops being true. This allows an estimate of the error in above expression to
be calculated:

ετ (tmax) = τ

√
2(2tmax + 1)

N
. (265)

The reblocking method and the correlation time are in principle equally valid methods for estimating
the error in the energy. Each of them has its own disadvantages, though: the plot of reblocked standard
errors can often become noisy before the plateau is reached, preventing accurate determination of the
optimal reblocking length, whereas the error in the correlation time decays very slowly with the
number of energies in the sample. It is recommended that both measures of serial correlation be taken
into account for optimal results.

The corrected error bar from the correlation time analysis is printed at the end of all VMC calculations
(both for single runs and for sequences of continued calculations).

24.3 Estimating equilibration times and correlation periods

The root-mean-square distance diffused by a particle in a period T of imaginary time is
√

2NDDAT ,
where A is the move acceptance ratio (which is usually close to 1 in DMC and 1/2 in VMC), ND is the
dimensionality of the system (which is usually 3, unless a strict 2D or 1D system is being studied) and
D = 1/2m is the diffusion constant, where m is the particle mass (note that D = 1/2 for electrons).
We expect that correlation effects will disappear when the particles have diffused through distances
in excess of the largest physically relevant length-scale λ. Let T = Nmove × τ , where Nmove is the
number of moves and τ is the time step. Then the number of moves over which we expect correlation
effects to be present is

Nmove =
λ2

2NDDτA
. (266)

The number of equilibration moves should be substantially larger than the above estimate of the
correlation period in order to ensure that all of the transient effects due to the initial distribution die
away. The required equilibration period is often greater than one might expect by simply examining
the variation of the total energy with time.

In practical QMC calculations, with sensible choices of time step, we often find the VMC correlation
period to be about 5 configuration moves and the DMC correlation period to be about 1000 moves.

25 Wave-function optimization

Optimization of the trial wave function is a crucial part of a VMC or DMC calculation. casino
allows optimization of the parameters in the Jastrow factor, the coefficients of the determinants in
a multideterminant wave function, the parameters in the backflow functions, pairing parameters in
electron–hole gases and parameters in the orbitals for certain electron and electron–hole phases as
well as modification functions for atomic orbitals. All optimizable parameters are contained in the
file correlation.data. Furthermore, each optimizable parameter is followed by a flag indicating
whether the parameter is fixed (‘0’) or free to be optimized (‘1’). See Sec. 7.4 for information on
correlation.data.

There are two methods available within casino for wave function optimization: variance minimiza-
tion and energy minimization. Both methods can be used to optimize any or all of the parameters
mentioned above. In addition to the ‘standard’ variance-minimization method, there also exists a
much faster version, which can be used when only parameters which appear linearly in the Jastrow
factor are being optimized.

25.1 Variance minimization: the standard method

Consider a real trial wave function Ψ(R), where R is a point in the electron configuration space. In
VMC the energy is written as

E =

∫
|Ψ(R)|2EL(R) dR∫
|Ψ(R)|2 dR

, (267)

199

where the local energy, EL, is
EL(R) = Ψ(R)

−1
Ĥ(R)Ψ(R), (268)

and Ĥ is the Hamiltonian. The variance of the energy is

σ2 =

∫
|Ψ(R)|2|EL(R)− E|2 dR∫

|Ψ(R)|2 dR
. (269)

We write the trial wave function as Ψ{α}(R), to denote that it depends on a set of free parameters,

{α}. Consider a set of NC configurations {R} distributed according to
∣∣Ψ{α0}(R)

∣∣2 for some fixed
parameter set {α0}. The variance σ2 is then estimated for any given parameter set {α} using a
correlated-sampling procedure, which gives rise to the reweighted variance,

σ2
w =

T
{α}
{α0}(

T
{α}
{α0}

)2

−
∑

R

(
W
{α}
{α0}(R)

)2

∑
R

∣∣∣E{α}L (R)− Ēw
∣∣∣2W {α}{α0}(R), (270)

where the reweighted energy is

Ēw =
1

T
{α}
{α0}

∑
R

Re
(
E
{α}
L (R)

)
W
{α}
{α0}(R), (271)

which is an estimate of E, and the total weight is

T
{α}
{α0} =

∑
R

W
{α}
{α0}(R), (272)

and the weights W are

W
{α}
{α0}(R) =

∣∣∣∣ Ψ{α}(R)

Ψ{α0}(R)

∣∣∣∣2 . (273)

The nodal surface of the trial wave function is independent of parameters in the Jastrow factor, so
the weights cannot diverge when such parameters change. For parameters that do affect the nodal
surface, however, it is possible for the weights to diverge.

The unreweighted variance as a function of parameter set {α} is defined to be

σ2
u =

1

NC − 1

∑
R

∣∣∣E{α}L (R)− Ēu
∣∣∣2 , (274)

where the unreweighted energy is

Ēu =
1

NC

∑
R

Re
(
E
{α}
L (R)

)
. (275)

The reweighted and unreweighted variances are identical when the same set of configurations is used
and {α} = {α0}. However, for any given {α0} they are different functions of {α}, and there is no
reason to expect that their minima coincide with each other, or that either minimum should coincide
with that of the (reweighted) energy.

Both σ2
w and σ2

u are non-negative, but are zero when Ψ{α} is an eigenstate of Ĥ. The reweighted
and unreweighted variances are therefore reasonable cost functions for wave-function optimizations.
The reweighted energy is also a reasonable cost function. However, the problem with the reweighted
energy and variance is that the weights W may vary rapidly as the parameters change, especially for
large systems, which leads to instabilities in optimization procedures [65]. From these considerations
we conclude that the cost function with the most suitable mathematical properties for the stable
optimization of wave functions within the correlated-sampling approach is the unreweighted variance.

The usual variance-minimization procedure is to generate a set of electron configurations {R} dis-

tributed according to
∣∣Ψ{α0}(R)

∣∣2 using VMC, and then to minimize the reweighted or unreweighted
energy variance over this set. Since the variance landscape depends on the distribution of configura-
tions, several cycles of configuration generation and optimization are normally carried out, with the
optimized wave function from the previous cycle being used in each VMC configuration-generation
phase. We usually iterate several times and choose the wave function that gives the lowest variational

200

energy. In the limit of perfect sampling, the reweighted variance is equal to the actual variance, and
is therefore independent of the configuration distribution, so that the optimized parameters would
not change over successive cycles of reweighted variance minimization. This is not the case for un-
reweighted variance minimization; nevertheless, by carrying out a number of cycles, a ‘self-consistent’
parameter set may be obtained.

In casino the minimization of the variance is carried out by the routine nl2sno in module nl2sol,
which performs an unconstrained minimization (without requiring derivatives) of a sum of m squares
of functions which contain n variables, where m ≥ n. (Information on the minimization routine can
be found in Ref. [66]).

Before carrying out this process, the user must decide how they wish to parametrize the trial wave
function, and with how many parameters. They must also decide on the number of configurations to
be used in the optimization. These choices are system specific, and depend on the level of accuracy
to which the user wishes to work.

A systematic approach to deciding on an appropriate number of variational parameters is to start by
optimizing a few parameters, then to add more and re-optimize, and so on, until the decrease in energy
resulting from the inclusion of additional parameters is small compared with the energy difference that
the user wishes to resolve. Note that the error bars on the VMC energy must be smaller still, so that
the user can make accurate judgements about the energy differences.

It is clearly desirable for the VMC-generated configurations to be completely uncorrelated. This can
be achieved by giving vmc decorr period a large value (e.g., 10). Reblocking VMC energies in
a preliminary VMC run will allow the user to determine the correlation period for VMC energies,
which in turn suggests a suitable value for vmc decorr period. It is also essential that the VMC
configuration-generation run is fully equilibrated. Since VMC equilibration is usually computationally
inexpensive, this should be straightforward enough. The utility plot hist can be used to verify that
the VMC energies have equilibrated.

The user may choose whether to optimize the Jastrow factor, determinant-expansion coefficients,
or the pairing parameters and orbital coefficients, by setting the opt jastrow, opt detcoeff and
opt orbitals flags as appropriate. For most applications, it is only necessary to optimize the Jastrow
factor. If only linear parameters in casino’s Jastrow factor are to be optimized then the ‘varmin-linjas’
method should be used: see Sec. 25.2.

The user may choose between the reweighted or unreweighted variance-minimization algorithms by
choosing the vm reweight keyword to be T or F, respectively. As shown in Ref. [67], the unreweighted
variance-minimization has several desirable properties, which often make it a more useful technique
than reweighted variance minimization: (i) the unreweighted algorithm is numerically more stable; (ii)
in general the unreweighted variance has a simple functional form and only a single minimum in the
space of linear Jastrow parameters; (iii) for a large number of model systems it can be demonstrated
that the wave functions generated by unreweighted variance minimization iterated to self-consistency
have a lower variational energy than wave functions optimized by reweighted variance minimization.

If reweighted variance minimization is performed then it is possible to limit the values that the weights
can take, in an attempt to improve the stability. The vm w max and vm w min parameters can
be used to specify the maximum and minimum values that the weights can take.

When optimizing parameters that affect the nodal surface, the local energies of configurations may
diverge as the nodal surface is moved. The affected configurations will then have a disproportionate
effect on the value of the unreweighted variance. It is therefore desirable to remove configurations
from the optimization procedure when their local energies deviate substantially from the mean local
energy. This can be achieved by introducing an effective weight for each configuration, which is a
function of the deviation of the local energy from the mean local energy,

f(EL) =

1

∣∣EL − Ē
∣∣ /σEL < T

exp

[
−
(
|EL−Ē|/σEL

−T
W

)2
] ∣∣EL − Ē

∣∣ /σEL
> T

, (276)

where T is a user-defined threshold, W is a user-defined filter width, EL is the local energy of a
configuration, Ē is the average energy, and σEL

is the square root of the unreweighted variance. To
activate the configuration-filtering scheme, turn vm filter to T in input; the T parameter corresponds
to the keyword vm filter thres and W corresponds to vm filter width. The default values of T = 4
and W = 2 are found to work well in most cases.

201

Another variant of variance minimization which has proven to be very robust is the minimization of
the mean-absolute-deviation (MAD) of the local energies with respect to the median local energy Ēm,

MAD =
1

NC

∑
R

∣∣∣E{α}L (R)− Ēm
∣∣∣ , (277)

which is found to be adequate for parameters which affect the nodes of the trial wave function. To
use this optimization method, set opt method to madmin in the input file.

It has been suggested [68] that using an estimate of the ground-state energy in place of the mean (or
median) energy in the expression for the variance can improve the variance-minimization algorithm
by adding an element of energy minimization. This can be achieved by setting vm use E guess to
T and supplying the energy estimate using vm E guess. However, we have very rarely obtained any
advantage by doing this.

It is possible to choose how much information casino will provide during the optimization process.
Setting opt info to 1 will provide no information during the minimization; setting it to 2 will provide
a list of the parameters, the mean energy and variance at each iteration [default]; 3 will give addi-
tional information about the numerical derivatives that are computed between iterations to build the
Jacobian; 4 will add the mean and variance of the weights to the output (note that the weights are
then computed but not actually used unless vm reweight is set); 5 provides an enormous amount of
detail and is only likely to be of use for development or debugging purposes.

When carrying out variance minimization, one usually observes a sharp fall in both the variance and
the energy at the first cycle. Thereafter the energy ‘bounces around’. Note that the energies of
subsequent cycles may change by more than the statistical error bars on the individual VMC runs,
because the reoptimization of the parameters constitutes an additional source of variance.

If one wishes to obtain an ‘adequate’ wave function without spending a lot of time on the optimiza-
tion process then it is advisable to (i) use unreweighted variance minimization; (ii) err on the side
of underparametrization, as this reduces the chance of encountering instabilities; (iii) use as many
configurations as is practicable, but certainly more than 10,000; (iv) carry out a few (e.g., 4) variance-
minimization cycles, in order to check that the optimization process was successful.

If one wishes to obtain a highly accurate wave function then the following approach is often successful:
(i) use unreweighted variance minimization; (ii) systematically investigate the use of different num-
bers of parameters and different forms of parametrization; (iii) ensure that the VMC error bars are
much smaller than the energy differences to be resolved; (iv) carry out a large number of variance-
minimization cycles (e.g., 20) and choose the correlation.data file that gives the lowest variational
energy.

25.2 Variance minimization: the ‘varmin-linjas’ method

25.2.1 Background

Consider the linear parameters in casino’s Jastrow factor (the expansion coefficients {αl}, {βm},
{γlmn}, {aA}, {bB} and εlm in the u, χ, f , p, q, ucyl and χcyl terms, respectively). The local
energy of a single configuration can be shown to be a quadratic function of the linear parameters;
hence the variance of the local energies of a fixed, finite set of configurations is a quartic function
of the parameters. But this is precisely the quantity that is minimized in an unreweighted variance-
minimization calculation. The process of variance minimization can therefore be greatly simplified
and accelerated if only linear Jastrow parameters are to be optimized.

In an ordinary variance-minimization calculation, the VMC method is used to generate a set of con-
figurations distributed according to the initial trial wave function. During the optimization process,
the variance of the local energies of this configuration set is computed for different sets of parameters,
and the variance is minimized with respect to the parameters. By contrast, in the ‘varmin-linjas’
method, the quartic expansion coefficients of the unreweighted variance are accumulated directly in
VMC: there is no need to write out a set of configurations. Furthermore, when the unreweighted
variance—referred to as the least-squares function (LSF)—is evaluated during the subsequent opti-
mization stage, there is no need to sum repeatedly over a set of configurations: the quartic LSF can
be evaluated directly.

The fact that the LSF can be evaluated as a quartic function of the parameters gives two significant
advantages over the standard variance-minimization algorithm: (i) the LSF can be evaluated extremely

202

rapidly (typically thousands of times per second); furthermore the CPU time required is independent
of the system size; and (ii) the LSF along any line in parameter space is a simple quartic polynomial,
so that the exact, global minimum of the LSF along that line can be computed analytically.

The method has two drawbacks: (i) only linear Jastrow parameters can be optimized in this fashion;
and (ii) the number of quartic coefficients to be evaluated and stored in memory grows as the fourth
power of the number of parameters to be optimized.

Detailed information about the varmin-linjas method can be found in Ref. [67].

25.2.2 Using the varmin-linjas method

A casino variance-minimization calculation using the varmin-linjas method is carried out in exactly
the same way as an ordinary variance-minimization calculation except that:

1. The opt method keyword in input should be set to varmin linjas.

2. If desired, the user may change the method used to minimize the LSF with respect to the
set of parameters by using the vm linjas method keyword. This can take the values: ‘CG’
(conjugate gradients); ‘SD’ (steepest descents); ‘GN’ (Gauss-Newton); ‘MC’ (Monte Carlo line
minimization); ‘LM’ (simple line minimization); ‘CG MC’ (alternate conjugate gradients and
Monte Carlo line minimization); ‘BFGS’ (Broyden-Fletcher-Goldfarb-Shanno); ‘BFGS MC’ (al-
ternate BFGS and Monte Carlo line minimization); or ‘GN MC’ (alternate Gauss-Newton and
Monte Carlo line minimization). If the vm linjas method keyword is omitted then the BFGS
method will be used by default. If you experience difficulty optimizing a large set of parame-
ters then the Gauss-Newton method is worth trying. The BFGS method seems to be the most
efficient method in general, however.

3. If desired, the user can change both the maximum number of iterations and the number of
line minimizations to be performed by means of the vm linjas its keyword. If this keyword is
omitted, or it is given a negative value, then a default number of iterations will be performed.

The cutoff lengths in the Jastrow factor are important variational parameters, and some attempt
to optimize them should always be made. It is recommended that a (relatively cheap) calculation
using the standard variance-minimization method should be carried out in order to optimize the
cutoff lengths, followed by an accurate optimization of the linear parameters using the varmin-linjas
method. For some systems, good values of the cutoff lengths can be supplied immediately (for example,
in periodic systems at high density with small simulation cells, the cutoff length Lu should be set equal
to the radius of the sphere inscribed in the WS cell of the simulation cell), and one can make use of
the varmin-linjas method straight away.

25.3 Energy minimization

25.3.1 Motivation

There are several reasons why optimizing the energy instead of the variance is desirable:

• Since trial wave functions generally cannot exactly represent an eigenstate, the energy and
variance minima do not coincide. Energy minimization should therefore produce lower VMC
energies. This might in turn yield lower DMC energies, although it is not clear how improvements
in the energy (or variance) relate to improvements in the nodal surface. (In practice, lower VMC
energies usually lead to lower DMC energies.)

• Energy-optimized wave functions have been shown to give better estimates of other expectation
values [69, 70, 71].

• It is known that the variance of the DMC wave function is proportional to the difference between
the ground-state energy and the VMC energy [72, 73].

The energy minimization method used in casino is especially accurate when optimizing parameters
which appear linearly in the wave function (i.e., determinant coefficients). When only optimizing such
parameters, the global energy minimum is found, usually in one cycle.

203

Sections 25.3.2 and 25.3.3 briefly summarize the theory of the method, and Sec. 25.3.7 explains its use.
The theoretical background given here is far from exhaustive. For a much more thorough discussion,
see Refs. [74, 75, 76, 77].

25.3.2 Basic theory

Consider a (generally complex) trial wave function Ψ which depends upon a set of p real, variable
parameters α. If the cycle Ψ(n) → Ψ(n+1) involves parameter changes α(n) → α(n) + δα(n), then we
can Taylor-expand Ψ(n+1) = Ψ(α(n+1)) as:

Ψ(α(n+1)) = Ψ(α(n)) +

p∑
i=1

δα
(n)
i

∂Ψ

∂αi

∣∣∣∣
α(n)

+O
(

[δα(n)]
2
)

(278)

= Ψ
(n+1)
lin +O

(
[δα(n)]

2
)
, (279)

where Ψ
(n+1)
lin is the linear sum

Ψ
(n+1)
lin =

p∑
i=0

aiφi, (280)

with the coefficients {ai} and the basis functions {φi} defined as:

ai =

{
1 i = 0

δα
(n)
i i 6= 0

(281)

φi =

{
Ψ(α(n)) i = 0
∂Ψ
∂αi

∣∣∣
α(n)

i 6= 0.
(282)

The form of Ψ
(n+1)
lin allows {ai} to be optimized using diagonalization (the freedom of normalization

in the resulting eigenvectors of coefficients can be exploited to demand that a0 = 1). The energy
minimization method in casino makes the approximation that

Ψ(n+1) ' Ψ
(n+1)
lin , (283)

and determines the parameter changes {δαi} at each cycle by optimizing {ai} using diagonalization,
and taking the eigenvector of coefficients corresponding to the lowest eigenvalue. This approach is
motivated by the existence of a formulation of diagonalization for VMC which incorporates a zero-
variance principle similar to that enjoyed by variance minimization [77].

In the standard derivation of diagonalization, Ψ
(n+1)
lin would be optimized by demanding that the

variational energy be stationary with respect to the variable parameters:

∂

∂αi

〈Ψ(n+1)
lin |Ĥ|Ψ(n+1)

lin 〉
〈Ψ(n+1)

lin |Ψ(n+1)
lin 〉

= 0, (284)

which leads to the generalized eigenproblem

(H + HT)a = E(S + ST)a, (285)

where:

Sij =
〈φi|φj〉

〈Ψ(n+1)
lin |Ψ(n+1)

lin 〉
; (286)

Hij =
〈φi|Ĥ|φj〉

〈Ψ(n+1)
lin |Ψ(n+1)

lin 〉
. (287)

Since HT = H∗, there is more than one possible way to VMC-estimate H + HT. For example, the
choice 〈(

φi
φ0

)∗(
Ĥφj
φ0

)
+

(
φj
φ0

)∗(
Ĥφi
φ0

)〉
|φ0|2

(288)

204

ensures that the VMC estimate of the H matrix is symmetric, but does not ensure that it is real. The
different choice 〈(

φi
φ0

)∗(
Ĥφj
φ0

)
+

(
φi
φ0

)(
Ĥφj
φ0

)∗〉
|φ0|2

(289)

ensures that it is real, but not necessarily symmetric. (The exact H+HT is both real and symmetric.)

In Ref. [77], Nightingale and Melik-Alaverdian show that it is possible to rederive diagonalization as a
least-squares fit, over a finite number of VMC configurations, to the ideal situation in which the basis
functions {φi} span an invariant subspace of the Hamiltonian. Because this approach incorporates
finite-sampling from the beginning, it removes the ambiguity over how to VMC-estimate H + HT.
The analysis introduced in Ref. [77] (and used in Ref. [74, 75, 76]) assumes the wave function is real,
but it is not difficult to extend it to the complex case: what follows is a very concise outline.

Assume that the basis functions span an invariant subspace of the Hamiltonian, i.e.,

Ĥ|φi〉 =

p∑
j=0

Eji|φj〉 ∀ i, (290)

meaning that Ψ
(n+1)
lin will be an eigenstate of Ĥ if a is an eigenvector of E. In general, {φi} are

complex, but we choose to restrict {Eji} to be real. Equation (290) cannot be exactly satisfied, so
instead we seek an approximate solution for E by minimizing:

χ2 =

M∑
σ=1

p∑
i=0

∣∣∣∣∣∣Ĥφi(Rσ)−
p∑
j=0

Ejiφj(Rσ)

∣∣∣∣∣∣
2

. (291)

Demanding that
∂χ2

∂Epq
= 0 ∀ p, q, (292)

and seeking the eigenvalues and eigenvectors of the resulting approximation to E, leads to exactly
the same eigenproblem as in Eq. (285). The difference is that the VMC estimate of H + HT is now
specified, as: 〈(

φi
φ0

)∗(
Ĥφj
φ0

)
+

(
φi
φ0

)(
Ĥφj
φ0

)∗〉
|φ0|2

. (293)

Using this expression to estimate H + HT gives the method a zero-variance principle: if the basis
functions {φi} genuinely do span an invariant subspace of the Hamiltonian, exact diagonalization will
be achieved for any number of configurations greater than p. In practice, this condition never holds
true. Nevertheless, using this expression to VMC-estimate H + HT massively reduces the statistical
noise in the diagonalization process. As noted above, this expression does not guarantee that the
estimate of H + HT is symmetric. This means that the eigenvalues {E} and {a} may not be real,
but, since their imaginary parts only arise from statistical noise, we can simply discard them.

Using this method to optimize the trial wave function relies on the accuracy of the approximation
made in Eq. (283). If all the parameters being optimized appear linearly in the wave function, the
approximation is exact, and the global minimum of the energy will be found in one cycle.24 If other
parameters are included in the optimization, the energy will converge to a local minimum over several
cycles, provided that the central approximation holds true.

25.3.3 Stabilization

The basic method described above can encounter two main problems: (i) linear dependencies in
the basis functions {φi}; (ii) parameter changes too large for the approximation of Eq. (283) to be
valid. The first problem, which arises from redundancies in the parameters, leads to the algorithm
attempting to invert a singular matrix. Exact redundancies in the parameters should be avoided
when setting up the wave function, but parameters which are approximately redundant (to within
the numerical precision of the computer) are harder to detect. The solution, as described in Ref.

24In fact, a second cycle may sometimes improve the accuracy of the optimized parameters. The parameters resulting
from the first cycle will be inexact because of statistical noise. The second cycle uses an improved wave function, which
will result in lower noise when determining the second cycle’s parameters.

205

[77], is to use Singular Value Decomposition [78] for matrix inversions. The practical problems of
redundant parameters are discussed in more detail in Sec. 25.3.7. The second problem can cause
the optimization to diverge. Two techniques are used in casino to prevent divergence and stabilize
the algorithm: semi-orthogonalization of the basis functions, and ‘level-shifting’ [79, 80] in either the

H + HT matrix or the (S + ST)
−1

(H + HT) matrix. Both ideas were first introduced to the method
by Umrigar et al. [74, 75].

25.3.4 Semi-orthogonalization

Consider multiplying Ψ by a (complex) renormalizing factor A(α) which does not depend on R:

Ψ̃(R,α) = A(α)Ψ(R,α). (294)

The same parameter set minimizes the energy expectation value taken using both Ψ and Ψ̃, so we
are free to choose any A(α). However, the energy expectation values taken using Ψlin and Ψ̃lin are
minimized by different parameter sets. We can choose A(α) to improve the parameter changes. The
new basis {φ̃i} is given by:

φ̃0 = A(α(n))φ0; (295)

φ̃i =
∂(AΨ)

∂αi

∣∣∣∣
α(n)

= A(α(n))φi + φ0
∂A

∂αi

∣∣∣∣
α(n)

(i 6= 0). (296)

Following Ref. [74, 75], we choose A(α(n)) = 1 (such that φ̃0 = φ0), and

∂A

∂αi

∣∣∣∣(n)

α

= Ai(α
(n)) = − 〈Λ|φi〉

〈Λ|Ψ(n)〉
∀ i. (297)

The basis {φ̃i} is ‘semi-orthogonalized’, in the sense that, while the basis functions are not orthogonal
to one another, they are all orthogonal to a chosen wave function Λ. Umrigar et al. suggest choosing

Λ = ξ
Ψ(n)

||Ψ(n)||
+ σ(1− ξ)

Ψ
(n+1)
lin

||Ψ(n+1)
lin ||

, (298)

where 0 ≤ ξ ≤ 1 is a parameter which can be chosen freely, and σ takes the value 1 when the angle

between Ψ(n) and Ψ
(n+1)
lin is acute, and −1 when it is obtuse, i.e.,

σ = 1× sgn
[
Re(〈Ψ(n)|Ψ(n+1)

lin 〉)
]
. (299)

The primary purpose of this choice of Λ is simply to reduce the size of the parameter changes, although
it also achieves certain other conditions for particular choices of ξ. This can be seen using geometrical
arguments, presented and explained25 in Ref. [76]. Although it is possible to vary ξ in casino (see
Sec. 25.3.7), the default value of 0.5 is believed to be effective in all circumstances.

To use the semi-orthogonalized basis {φ̃i}, an expression for Ai(α
(n)) is needed. From expanding Eq.

(297):

Ai =
−ξS̄0iD − σ(1− ξ)(S̄0i +

∑p
j=1 δαjS̄ji)

ξD + σ(1− ξ)(1 +
∑p
j=1 δαjS̄j0)

, (300)

where

D =

√√√√1 +

p∑
j=1

δαj(S̄j0 + S̄0j) +

p∑
j,k=1

δαjδαkS̄jk, (301)

and S̄ij is the VMC estimate of Sij (note that, unlike for Hij , there is no ambiguity over how to do
these VMC estimates). These expressions differ very slightly from those appearing in Refs. [74, 75, 76],
because here the wave function is allowed to be complex.

25The treatment in Ref. [76] does not include σ, but its necessity (noted by Umrigar et al.) is clear when one considers

the case where the angle between Ψ(n) and Ψ
(n+1)
lin

is obtuse. Also, in Ref. [76], Ψ is assumed to be real, although the
extension to the complex case is simple, and the correct expressions are given here.

206

25.3.5 Matrix manipulation (level-shifting)

We can rewrite Eq. (285) as a simple eigenproblem:

(S + ST)
−1

(H + HT)a = Ea. (302)

If the (S + ST)
−1

(H + HT) matrix had the form
λ0 0 0 0
0 λ1 0 0

0 0
. . . 0

0 0 0 λp

 , λ0 < λi ∀ i = 1 . . . p, (303)

then there would be no change at all in the variable parameters α. It is possible to bring any

(S + ST)
−1

(H + HT) matrix qualitatively closer to this ‘no-change’ condition using ‘level-shifting’
[79, 80], in which a positive real constant L is added to all the diagonal elements of the matrix except
the first:

λ0 • • •
• λ1 • •

• •
. . . •

• • • λp

→

λ0 • • •
• λ1 + L • •

• •
. . . •

• • • λp + L

 . (304)

The approximation in Eq. (283) fails when the parameter changes are too large. Level-shifting can
be used to reduce the size of the parameter changes, stabilizing the optimization. In casino, the
best value for the constant L is determined automatically by performing a line minimization of the
VMC energy estimate with respect to L. (Where possible, correlated sampling is used, both to reduce
computational effort and to increase the statistical precision of energy differences.) As noted by
Umrigar et al. [74, 75], level-shifting can equally well be applied to the H + HT matrix.

In principle one would find the optimal value of parameter L by minimizing the mean energy of
the VMC configurations using the resulting parameter values. However this could result in choosing
a parameter set which yields an unphysically low mean energies for the fixed set of configurations.
Such parameter sets are usually associated with very large variance of the local energy, and Ref. [75]
suggests minimizing a linear combination of the energy and variance. This is of course problematic in
that these quantities have dimensions of energy and squared energy, respectively, necessarily requiring
system-dependent mixing parameters to produce equivalent target functions in different systems.
Casino instead optimizes L by minimizing the mean energy plus three standard deviations, which
accomplishes the same goal in a universal manner.

25.3.6 Correlated sampling

As in the case of variance minimization, casino uses correlated sampling during energy minimization,
performing several iterations of the basic algorithm on the same set of VMC configurations at different
values of the wave function parameters. When starting from an “empty” Jastrow factor, variance
minimization uses VMC configurations distributed according to a Jastrow-less wave function and
introduces the “empty” Jastrow factor (usually containing non-zero cusp-enforcing parameters) in
the first optimization cycle. Energy minimization is found to be sensitive to this initial mismatch
between the configurations and the wave function, and in casino the initial configurations are instead
generated using the “empty” Jastrow factor.

25.3.7 Using energy minimization

Energy minimization is used very similarly to standard variance minimization. After selecting it by
setting opt method to ‘emin’, the user must choose the number of optimization cycles (opt cycles),
and the number of optimization configurations per cycle (vmc nconfig write). As for variance
minimization, vmc decorr period should be chosen so as to generate approximately uncorrelated
configurations, and the number of configurations required is usually similar to the number required
for variance minimization; increasing the number of configurations beyond typical values for variance
minimization does however reduce the likelihood of unstable behaviour.

207

As described above, some of the candidate wave functions during level-shifting may be so poor that
they result in unphysically low energy estimates which is actually spurious. In addition to using the
mean energy plus three standard deviations as the target function in obtaining L, casino also imple-
ments a mean-energy threshold below which parameter sets are rejected, controlled by the keyword
emin min energy. This parameter also affects diagonalization, with eigenvalues being thrown away
if they are below emin min energy.

The default value of emin min energy is the VMC energy minus three times the square root of
the variance of the local energies. This default value works well in practice, but in very special cases
one might want to explicitly set emin min energy to ensure that the target ground-state energy is
above it. For example, this would be the case of the hydrogen molecule with full quantum nuclear
motion using exponential orbitals and a Jastrow factor, in which case the dissociated state (H+H)
can be exactly described by the wave function, while the bound state (H2) can be described only
approximately. If a VMC cycle is run on the H+H wave function, the variance of the local energy will
be zero, and the subsequent energy minimization cycle would set emin min energy to exactly the
energy of H+H (−1 Hartree), effectively blocking the ability to optimize the wave function parameters
to describe the lower-energy H2 molecule (∼ −1.165 Hartree). In this case it would be advisable to
set emin min energy to, e.g., -1.2 hartree.

Keyword emin xi value, mainly intended for developer use, controls the value of ξ in Eq. (298); the
default value of 0.5 performs well in all tests.

As mentioned in Sec. 25.3.3, the presence of parameters which the energy is a shallow function of may
adversely affect the optimization. Casino offers the possibility of fixing parameters internally flagged
as ‘shallow’ during the final opt noctf cycles cycles of a multi-cycle optimization run. However, if
cut-off lengths or other ‘shallow’ parameters need to be optimized it is usually a better idea to increase
the number of VMC configurations used in the configuration-generation stage.

Finally, a brief list of possibilities to investigate if an energy minimization run appears to misbehave:

• Having trouble optimizing from an “empty” Jastrow factor? You might want to start your
optimization with a single cycle of, e.g., opt method: madmin.

• Are enough configurations being used? The stability of energy minimization depends on how
many VMC configurations are used (set by vmc nconfig write), and the optimal value is
usually larger than for variance minimization. Typically, if you can afford to use 105–106 con-
figurations, it is a good idea to do so.

• Are the VMC configurations serially correlated? If the reported VMC correlation time is signif-
icantly greater than 1, you should increase vmc decorr period.

• Is emin min energy too high? (See above.)

26 Alternative sampling strategies

26.1 Summary

In VMC we directly use Monte Carlo sampling to estimate expectation values defined as the quo-
tient of two integrals over 3N dimensional space, such as the total energy expectation value,
Etot = 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉. Estimation of integrals using Monte Carlo methods can generally be per-
formed using samples drawn from any of a wide range of distributions. The usual VMC choice of
P (R) = λ|Ψ2(R)| (with λ an unknown and un-required normalization prefactor) is an analytically
convenient choice, but is not in any sense optimal [81]. This leaves open the possibility of choosing a
different sampling distribution, such as one that is optimal in the sense of providing the minimum sta-
tistical error for a given number of samples, or one that is maximally efficient in the sense of providing
a given accuracy for less computational cost than other choices.

Unfortunately there are some strong limitations on the distribution functions that we can use. Firstly,
we require the ‘estimate’ to be an estimate, that is, to converge to the true value with increasing sample
size due to the law of large numbers (LLN) being valid. Secondly, we usually require meaningful error
bars to be available for a finite sample size estimate, that is that the central limit theorem (CLT)
is valid in some form. The validity of either of these conditions must be arrived at analytically, and
if they are not true then the conventional formulae for the sample mean and standard error provide

208

numerical results that are unrelated to the estimate and error. Examples of when this occurs are
provided by force estimates [82] and parameter optimization [83].

In what follows, estimates constructed using an arbitrary distribution are described. Following this,
three alternative choices of sampling distribution are summarized. The usual VMC choice is referred
to as ‘standard sampling’, whereas the alternative methods are referred to as ‘alternative sampling’.

26.2 Alternative sampling

For estimating the Hamiltonian expectation value using an arbitrary sampling distribution, P (R), the
estimate is composed of the quotient of two sample means

Ētot =

∑
w(R)EL(R)∑

w(R)
, (305)

where w(R) = |Ψ2|/P (R). In the limit of large sample size, this is a value drawn from a normal
distribution with mean Etot and variance

σ2
E =

1

N

∫
|Ψ2(R)|/w(R)d3R

∫
w(R)|Ψ2(R)|2(EL(R)− Etot)

2
d3R[∫

|Ψ2(R)|2d3R
]2 , (306)

whose estimate is

σ̄2
E =

N

N − 1

∑
w(R)

2(
EL(R)− Ētot

)2
[
∑
w(R)]

2 (307)

as long as the bivariate CLT is valid. For standard sampling as described below, the random error is
normal for energy estimates, but is not normal for most other estimates such as the energy surface
implicit in optimization. For the three alternative sampling strategies, the random error is normal for
most estimates, including the energy surface implicit in optimization.

Note that the estimates given above are not the sample mean and standard error of any set of inde-
pendent identically distributed random variables. In the input file this form of alternative sampling
is activated by setting the vmc sampling keyword to one of the values described below.

26.2.1 Standard sampling

For the standard choice of sampling distribution the weight w is constant, and the usual estimates and
standard error are recovered. This can be activated for alternative sampling by setting vmc sampling
to ‘standard’ (the default).

26.2.2 Optimum sampling

Since we have an analytic expression for random error we may seek the sampling distribution that
provides the lowest statistical error for a given sample size. A somewhat generalized version of this
distribution is given by

P (R) = λ|Ψ2(R)|
[
(EL(R)− E0)

2
+ 2ε2

] 1
2

, (308)

where (E0, ε) are user-supplied parameters (vmc optimum e0 and vmc optimum ew). The best
values for these parameters are E0 = Etot and ε = 0, which provide the lowest possible statistical error
for a given number of samples, but using a rough estimate with an accompanying error usually brings
us close to this. It is worth emphasizing that the choice of parameters does not bias the estimate—for
example, any E0 with ε → ∞ provides a valid sampling distribution (standard sampling)—but it is
advantageous to have ε ≈ |Etot − E0|. A particular special case that should be avoided is ε = 0, for
which both the LLN and CLT are invalid and the quotient of weighted means given above is not an
estimate (unless E0 is exactly equal to the quantity we are estimating).

If no values are provided by the user they are set ad hoc to E0 = 0 and ε = 100, which usually gives
similar accuracy to standard sampling. A rule of thumb is to use the best VMC total energy estimate
available so far (e.g., from a test calculation), or to use the best ab initio total energy estimate for E0

and 10% of this for ε. During optimization vmc optimum e0 and vmc optimum ew are updated
after each cycle to the best estimates available so far.

209

Although this sampling strategy reduces random error in the estimate for a given system to close
to the best value possible with a given sample size, it can be more expensive; for example, for all-
electron atomic calculations with accurate trial wave functions such sampling results in a ×2 increase
in computational cost for a given accuracy due to long correlation times in the Metropolis algorithm
for these systems [83].

This sampling scheme can be activated by setting vmc sampling to ‘optimum’, together with values
for E0 and ε via the keywords vmc optimum e0 and vmc optimum ew, respectively (notice that
these are of type ‘physical’ and require energy units to be specified, as in ‘37.45 hartree’).

26.2.3 Simplified optimum sampling

We may attempt to achieve a more accurate estimate for a given computational cost by approximating
the above optimum distribution with something that increases the fixed-sample-size error a little, but
that allows the sample size to be increased. A computationally cheaper candidate implemented in
the code is referred to as simplified optimum sampling, and corresponds to sampling the optimum
distribution associated with a simplified version of the actual trial wave function. Note that this
simplification occurs only in the sampling distribution; the expectation value estimated is still that of
the full trial wave function.

A number of different forms of trial wave functions are implemented in the code, and we limit ourselves
to a multideterminant expansion combined with a Jastrow factor and backflow. For these it is natural
to take the dominant determinant, remove the Jastrow factor, and remove the backflow to provide a
computationally undemanding wave function, Φ, whose optimum sampling distribution,

P (R) = λ|Φ2(R)|
[
(EL(R)[φ]− E0)

2
+ 2ε2

] 1
2

, (309)

may be used, in which the local energy is that of the simplified trial wave function.

A good choice of parameters are as suggested for optimum sampling, but with ε replaced by a rough
overestimate of the correlation energy in the system such as 10% of best total energy available so far.
During optimization E0 is updated, whereas ε is left unchanged.

This sampling strategy reduces random error by a smaller amount than optimum sampling for a
given sample size, but is computationally cheaper. For example, for accurate trial wave functions in
all-electron atomic calculations the efficiency is comparable to standard sampling [83].

It may be activated by setting vmc sampling to ‘HF optimum’, together with values for E0 and ε
via the keywords vmc optimum e0 and vmc optimum ew, as above.

26.2.4 Efficient sampling

We may reduce computational expense further at the cost of an increase in fixed-sample-size error,
and still obtain a net increase in performance when compared to standard sampling. This is achieved
by avoiding the evaluation of the Jastrow factor, backflow function, multideterminant expansion and
local energy that appears in the previous distributions and using the form

P (R) = λ

[(
D↑1(R)D↓1(R)

)2

+
(
D↑2(R)D↓2(R)

)2
]
. (310)

This is an arbitrary choice that is not the mod-square of any fermionic trial wave function, is not
an approximation to any physical quantity, and does not possess a nodal surface. This choice is not
unique, but has been specifically chosen such that the LLN and CLT are valid and for the increase
in fixed-sample-size error to be manageable (note that the validity of the CLT relies on the presence
of two terms in this expansion, and dropping the second term results in an invalid estimate.) As
implemented we do not sum the mod-square of the first two determinants, but the mod-square of the
first two configuration state functions (CSFs), in order to avoid naturally the coincidence of nodal
surfaces for the two terms through symmetry.

For such a choice we achieve a net gain in computational efficiency even though the fixed-sample-size
error is greater, since more samples are accessible for a given computational budget. For example,
to achieve a given accuracy in all-electron atomic carbon calculations, standard sampling takes ×25
longer than efficient sampling [83].

Efficient sampling can be activated by setting vmc sampling to ‘efficient’. The first two CSFs are
included in the sum as above.

210

26.2.5 Optimization

Optimization proceeds as for standard sampling, with the same control keywords and with variance
and energy minimization defined using estimates of the same integral expressions using the different
sampling distributions provided above. The only significant change arises for variance minimization.
It is often not clear whether to interpret the optimized quantity in terms of a Monte Carlo estimate
or as a least-squares fitting with random sample points, hence many interpretations arise that are
equivalent for standard sampling but differ for general sampling. In addition, many of the variations
of variance minimization available are specifically designed to prevent the failure of the CLT during
optimization, something that does not occur for any of the alternative sampling methods presented
here. As it stands the code minimizes only one quantity in variance minimization: the Monte Carlo
estimate of the actual error in the estimated energy, σ̄2

E . Note that this has not been tested, and a
wide range of other options may perform better, such as minimizing an estimate of the optimum or
standard error.

27 Use of localized orbitals and bases in CASINO

27.1 Theoretical background

27.1.1 Introduction

The rate-determining step in practical QMC calculations is the evaluation of the orbitals in the Slater
part of the trial wave function after each electron has moved26. We explain how the amount of CPU
time spent evaluating the orbitals after each electron move can be made essentially independent of
system size.

27.1.2 ‘Standard’ QMC

Let the number of electrons in our system be N . In ‘standard’ QMC the orbitals are HF or DFT
eigenfunctions extending over the entire system. On the other hand, the basis functions used to
represent those orbitals are usually localized functions. Each time an electron is moved, all O(N)
occupied orbitals must be evaluated; however, only the O(1) basis functions in the vicinity of the
electron need to be computed to evaluate each orbital. So, the time taken to carry out a configuration
move of all N electrons in the system is O(N2).

If the orbitals are represented by extended basis functions, such as plane waves, then the time taken
for a configuration move scales as O(N3), because every basis function in every orbital has to be
computed for every electron.

27.1.3 Localized orbitals

It is easy to show that a nonsingular linear transformation of a set of orbitals can only change
the normalization of the Slater determinant of those orbitals. For insulating materials there exist
straightforward and efficient algorithms for determining linear transformations to highly localized sets
of orbitals [84, 85].

Highly localized orbitals can be truncated to zero at a certain distance from their centres without
introducing a substantial bias. Therefore, each time an electron is moved, only a few orbitals need to
be evaluated; the others must be zero because the electron lies outside their truncation radii. So the
number of orbitals to be computed after each electron move is O(1) [86].

The truncation of the orbitals results in small discontinuities in the Slater wave function. These are
potentially serious for QMC because they result in the presence of Dirac delta functions in the kinetic-
energy integrand. The delta functions cannot be sampled, so their contribution to the total energy
is lost. However, in practice the resulting bias is extremely small, provided the truncation radii are
sufficiently large. In fact the bias can be made arbitrarily small by increasing the truncation radii.

26The time spent updating the cofactor matrices will in principle dominate in the limit of large system size, but this
limit is not usually reached in practice. Note that, throughout this section, we assume that electron-by-electron QMC
algorithms are used.

211

The discontinuities can be avoided by bringing the localized orbitals smoothly to zero over a thin,
spherical skin. Surprisingly, it has been shown that the bias resulting from the use of smooth truncation
schemes is larger than the bias that occurs if the orbitals are truncated abruptly at their cutoff radii
[87]. The reason for this is that the smooth truncation schemes introduce a new, small length scale
(the skin thickness) into the problem, and the local kinetic energy in the truncation region is extremely
large. A time step that is physically reasonable for the system being simulated is much too large for
the length-scale introduced by the truncation region. This results in large time-step bias and frequent
population-explosion catastrophes. We therefore recommend truncating localized orbitals abruptly:
the bsmooth input parameter should be set to F.

27.1.4 Localized bases

Suppose the basis functions are zero outside fixed radii about their centres. Then the only functions
that have to be evaluated when an electron is moved are those with the electron inside their radii. So
the number of basis functions to be computed simply depends on the local environment of the electron
and is therefore independent of system size.

Gaussian basis functions can be regarded as localized if they are truncated to zero outside a certain
radius. This is done by default in casino: Gaussian functions exp(−ar2) are assumed to be zero
when exp(−ar2) < 10−GT , where GT is the gautol input parameter. Gaussian basis sets cannot yet
be used in conjunction with localized orbitals, however.

Alternatively, orbitals can be represented numerically using blip functions, which also constitute a
localized basis. If the orbitals are localized then the memory requirements are greatly reduced (by
a factor of O(N)), because we only have to store the blip coefficients needed to evaluate the orbital
within its truncation radius.

27.1.5 ‘Linear-scaling’ QMC

If the numbers of orbitals and basis functions to be evaluated are both O(1) then the CPU time for
a configuration move scales as O(N). This is what is meant by ‘linear-scaling QMC’. Note, however,
that the number of configuration moves required to achieve a given error bar on the total energy scales
as O(N); hence, in practice, the CPU time for ‘linear-scaling’ QMC calculations scales as O(N2).

27.2 Using CASINO to carry out ‘linear-scaling’ QMC calculations

27.2.1 Generation of Bloch orbitals

At present the Bloch orbitals must be represented in a plane-wave basis. A plane-wave DFT code
should be used to generate a pwfn.data file as though an ordinary QMC calculation with a plane-wave
basis were to be carried out. Note that only one k point may be used: the Γ point. This is not a
severe restriction since, for large systems, one would usually only carry out calculations at Γ anyway.

27.2.2 Generation of localized orbitals

The localizer code should be used to carry out the linear transformation to a localized set of orbitals.
The code has the following features:

• localizer implements the method described in Ref. [84].

• localizer requires a pwfn.data file holding the Bloch orbitals represented in a plane-wave basis
and a centres.dat file of format:

Number of centres

<N>

Display coefficients of linear transformation (0=NO; 1=YES)

<iprint>

Use spherical (1) or parallelepiped (2) localization regions

<icut>

x,y & z coords of centres ; radius ; no. orbs on centre (up & dn)

<pos(1,1)> <pos(2,1)> <pos(3,1)> <radius(1)> <norbs_up(1)> <norbs_dn(1)>

212

...

<pos(1,N)> <pos(2,N)> <pos(3,N)> <radius(N)> <norbs_up(N)> <norbs_dn(N)>

where ‘N’ is the total number of localization centres. If ‘iprint’ is 1 then the coefficients of the
linear combination are written to stdout; otherwise they are not. ‘icut’ can take values 1 or
2, specifying that the localization regions are spherical or parallelepiped-shaped, respectively.
‘pos(i,j)’ is the ith Cartesian component of the position vector of the jth centre. ‘radius(j)’ is
the cutoff radius for the jth localization centre. ‘norbs up(j)’ and ‘norbs dn(j)’ are the number
of spin-up and spin-down orbitals to be localized on the jth centre, respectively. Note that if a
parallelepiped-shaped localization region is used then the shape of the parallelepiped is defined
by the lattice vectors, but the distance to each face is given by the cutoff radius.

• The choice of localization centres requires some chemical intuition. See the discussion in Ref.
[84]. At some point in the future, the optimization of the localization centres will be enabled.
Note that in some highly symmetric molecules, symmetric choices of localization centres can
lead to two localized orbitals being identical. This problem can be avoided by breaking the
symmetry of the localization centres.

• Note that the orbitals will become linearly dependent as two centres approach one another. In
the limit that two centres are located in the same place, the orbitals localized on those centres
will be identical. (One should instead define a single centre and increase the number of orbitals
localized on that centre.)

• localizer produces a pwfn.data.localized file that contains the localized orbitals represented
in the same plane-wave basis as that specified in pwfn.data.

• localizer can only work with Bloch orbitals at Γ. Since it is intended for use in large systems,
this should not be a serious restriction.

• One can only choose different numbers of localized orbitals for spin-up and spin-down electrons
if pwfn.data contains spin-polarized data.

• If the number N of localized orbitals specified in centres.dat is less than the number M of
orbitals included in pwfn.data then only the first N orbitals are included in the localization
transformation; the remainder are left as extended orbitals. The orbitals in pwfn.data are
usually arranged in ascending order of eigenvalue, so the orbitals left out of the localization
transformation are those with the highest eigenvalue. If you want to leave particular orbitals of
lower eigenvalue out of the transformation, you could edit the pwfn.data file to put the orbitals
that are to be localized at the start of the file.

27.2.3 Generation of a blip representation of the localized orbitals

A truncated blip representation of a set of localized orbitals can be generated using a blip-generation
calculation (runtype=‘gen blip’), which was described in Sec. 9. In a blip-generation calculation,
casino reads in (i) a pwfn.data file containing plane-wave orbital data (pwfn.data localized should
be renamed pwfn.data beforehand) and (ii) a centres.dat file. Note that the latter file is optional.
Casino produces a bwfn.data file holding a blip representation of the localized orbitals. The format
of the centres.dat file is the same as that which is read by localizer, except that two lines may
added to the end of the file:

Number of centres

<N>

Display coefficients of linear transformation (0=NO; 1=YES)

<iprint>

Use spherical (1) or parallelepiped (2) localization regions

<icut>

x,y & z coords of centres ; radius ; no. orbs on centre (up & dn)

<pos(1,1)> <pos(2,1)> <pos(3,1)> <radius(1)> <norbs_up(1)> <norbs_dn(1)>

...

<pos(1,N)> <pos(2,N)> <pos(3,N)> <radius(N)> <norbs_up(N)> <norbs_dn(N)>

Minimum skin thickness (a.u.) <- OPTIONAL LINE

0.d0 <- OPTIONAL LINE

213

• If a centres.dat file is not present when a blip-generation calculation is performed then the
orbitals in pwfn.data will be represented by a blip grid spanning the entire simulation cell.
Likewise, any orbitals that are not included in the localization transformation described in
centres.dat will be represented by a blip grid that spans the entire cell.

• If one requests that the kinetic energy be calculated then casino will calculate the kinetic
energies of the orbitals represented by plane waves and the truncated orbitals represented by
blips. Note that the kinetic energies of nonorthogonal orbitals cannot be summed to obtain the
HF kinetic energy. Nevertheless, the kinetic energies of the plane-wave and blip orbitals should
be in agreement. Casino will also calculate the ratio of the squared norm of the truncated
orbitals to that of the original plane-wave ones. This fraction should be very close to 1. For
example, percentages in excess of 99.7% are typical.

• The smallest array of blip grid points that completely spans the requested localization region
(including the ‘minimum skin thickness’) is worked out for each state. The skin thickness is
then given the largest possible value such that the localization region is contained within the
region spanned by the localized blip grid. The requested localization radius (excluding the skin
thickness) is referred to as the inner truncation radius and the localization radius (including
the actual skin thickness) is referred to as the outer truncation radius. In the subsequent QMC
calculation, if bsmooth is T then the orbital is brought smoothly to zero between these radii.
If bsmooth is F then the abrupt truncation of the orbital occurs at the outer truncation radius.
It is recommended that bsmooth be set to F and that the minimum skin thickness be set to 0
(which is the default if it is not specified).

27.2.4 Running a QMC calculation with localized orbitals

The bwfn.data file containing the truncated, localized orbitals can be read by casino. The
usual input files (input, correlation.data and pseudopotentials) should also be supplied. The
atom basis type input parameter should be set to ‘blip’.

Please note the following:

• It is possible to use blip orbitals to study systems that are finite, or periodic in just the x direc-
tion, or in the (x, y) plane, or are periodic in all three dimensions by setting the blip periodicity
keyword to 0, 1, 2 or 3, respectively. The periodic keyword must be set to T if the system is
periodic in any direction. Note that if reduced-periodicity systems are studied then the atoms
should be placed in the centre of the unit cell spanned by the blip grid, i.e., the unit cell defined
by the lattice vectors.

• When excitations are specified, it should be noted that band indices start at the first nonlocalized
band. For example, if all bands apart from the highest occupied molecular orbital (HOMO) are
localized then the HOMO is band 1. Likewise, when casino reports the number of bands
occupied at a given k point, it does not include the number of localized orbitals.

• Multideterminant calculations involving localized orbitals are possible, but all localized orbitals
must be occupied in every determinant. (It only makes sense to carry out a localization trans-
formation between the set of occupied orbitals.)

• The bsmooth input parameter is used to specify whether localized orbitals with spherical
truncation surfaces should be abruptly or smoothly truncated. It is recommended that bsmooth
be set to F.

• For large systems it is advisable to set the sparse input parameter to T in order to exploit
the fact that most of the orbital values are zero when updating cofactor matrices used in the
evaluation of the Slater determinants.

28 Twist averaging in QMC

28.1 Periodic and twisted boundary conditions

Suppose we wish to calculate the energy per particle of a periodic solid. In one-electron theories
we can often reduce the problem to the primitive unit cell and integrate over the first Brillouin zone.

214

Reduction to the primitive cell is not possible in many-body calculations, however, because correlation
effects may be long-ranged; hence such calculations must be performed in periodic simulation cells
consisting of several primitive cells.

Suppose the simulation cell is of volume Ω and contains N electrons, and let {r1, . . . , rN} be the
electron coordinates. The Hamiltonian Ĥ must satisfy

Ĥ(r1, . . . , ri + Rs, . . . , rN) = Ĥ(r1, . . . , ri, . . . , rN) ∀i ∈ {1, . . . , N}, (311)

where Rs is a simulation-cell lattice vector. This translational symmetry leads to the many-body
Bloch condition

Ψks
(r1, . . . , rN) = Uks

(r1, . . . , rN) exp

(
iks ·

∑
i

ri

)
, (312)

where U has the periodicity of the simulation cell for all electrons [88]. The use of a nonzero simulation-
cell Bloch vector ks is sometimes described as the application of twisted boundary conditions [89].

In a finite simulation cell subject to periodic boundary conditions, each single-particle orbital is usually
taken to be of Bloch form ψk(r) = exp[ik · r]uk(r), where uk has the periodicity of the primitive cell
and k lies on the grid of integer multiples of the simulation-cell reciprocal-lattice vectors within the
first Brillouin zone of the primitive cell, the grid being offset from the origin by the simulation-cell
Bloch vector ks. For metallic systems some of the ground-state orbitals are nonanalytic functions
of k, because the occupancy depends on k. Instead of integrating over single-particle orbitals inside
the Fermi surface to calculate the HF kinetic and exchange energies, one sums over a discrete set
of k vectors when a finite cell is used. As the system size is increased, the fineness of the grid of
single-particle Bloch k vectors increases, and the HF energy changes abruptly as shells of orbitals pass
through the Fermi surface.

One usually finds that the fluctuations in the QMC energy due to single-particle finite-size effects are
proportional to the corresponding fluctuations in the HF kinetic energy or the DFT energy. Hence
HF or DFT energy data can be used to extrapolate QMC energies to infinite system size. Note that a
judicious choice of ks (e.g., the Baldereschi point [90] for insulators) can greatly reduce single-particle
finite-size errors [88]. The common choice of ks = 0 generally maximizes shell-filling effects and is
therefore usually the worst possible value for estimating the total energy, although it does maintain
the correct symmetry of the system.

Twist averaging within the canonical ensemble means taking the average of expectation values over
all simulation-cell Bloch vectors ks in the first Brillouin zone of the simulation cell, i.e., over all offsets
to the grid of k vectors, keeping the number of electrons fixed [89]. At the HF level, the effect of
twist averaging is to replace sums over the discrete set of single-particle orbitals by integrals over the
volume of reciprocal space defined by placing copies of the simulation-cell Brillouin zone around each
ground-state occupied k point. The boundary of this region tends to the Fermi surface in the limit of
infinite system size and the region has the correct volume at all system sizes. Twist averaging removes
a large part of the error caused by the use of a discrete set of orbitals, although some residual errors
remain because the shape of the Fermi surface is not quite correct. At the single-particle level this
gives a small positive bias to the KE, in which shell-filling effects are still visible.

28.2 Using twisted boundary conditions in CASINO

28.2.1 Complex wave functions and the fixed-phase approximation

The procedure described in Sec. 15 for constructing real orbitals cannot be carried out if orbitals at
arbitrary k points are used. In general the trial wave function must be complex under twisted boundary
conditions. To specify that a complex wave function is to be used in casino the complex wf keyword
should be set to T. Using complex arithmetic causes casino to run more slowly, so complex wf should
be set to F wherever possible.

The use of a complex wave function makes very little difference to the VMC and wave-function
optimization algorithms. Since the expectation values of Hermitian operators are real, only the real
parts of the local-energy components are calculated and gathered.

The use of a complex trial wave function necessitates the use of the fixed-phase approximation in DMC
[91], in which DMC wave function is constrained to have the same phase as the trial wave function.
In fact it turns out that the fixed-node algorithm needs very few modifications to allow the use of

215

complex wave functions within the fixed-phase approximation: the real part of the drift vector is used
when proposing trial electron moves; it is not possible to reject node-crossing electron moves27; and,
as in VMC, only the real parts of the local energies are gathered. The fixed-phase approximation is
discussed at greater length in Sec. 38.

28.3 Monte Carlo twist averaging within CASINO

With casino twist-averaging can be done in two ways depending on the type of system. For electron(-
hole) fluid phases the procedure can be performed wholly within casino. Unfortunately this is not
the case for real systems with atoms since a new xwfn.data file is required for each twist angle, and
such calculations must therefore be done in conjunction with an external wave-function generating
code. These two methods are described below.

28.3.1 Electron(-hole) fluid phases

For electron-hole fluid phases [89] the following procedure is used. At specified intervals during the
simulation, a new k-vector offset is chosen at random, then a short period of equilibration is carried
out before statistics accumulation is resumed.

To specify an offset ks to the grid of k vectors for an electron(-hole) fluid, use the k offset keyword
(or the k offset frac keyword) in the free particles block in input. This should be followed by the
Cartesian components of the offset vector. For example:

%block free_particles

r_s 3

dimensionality 3

cell_geometry

0.0 0.5 0.5

0.5 0.0 0.5

0.5 0.5 0.0

particle 1 det 1 : 9 orbitals free

particle 2 det 1 : 9 orbitals free

k_offset 0.1 0.2 0.3

%endblock free_particles

Note that ground-state calculations for electron(-hole) fluids with real wave functions must have
‘magic’ numbers of electrons, such that there are no partially filled shells of k vectors. If the wave
functions is complex, however, then any number of electrons may be used. This reflects the fact that
for general twisted boundary conditions each shell contains just one k vector.

Anyway, to specify that twist averaging is to be used in VMC, set vmc ntwist to the required
number of twist angles to sample. After each change of the k-vector offset, vmc reequil nstep VMC
equilibration moves will be carried out. Note that vmc reequil nstep can be much smaller than
vmc equil nstep, because the distribution of configurations obtained at different k-vector offsets
should be similar. A typical value for vmc reequil nstep might be 100.

To specify that twist averaging is to be used in DMC, set dmc ntwist to the desired number of
twist angles to sample. In the statistics-accumulation phase of DMC the following process will
occur dmc ntwist times: (i) a random k-vector offset will be chosen, (ii) dmc reequil nstep
DMC equilibration moves will be carried out, but no data will be written to dmc.hist and (iii)
dmc stats nstep statistics-accumulation moves will be carried out. So the total amount of data
generated is dmc ntwist × dmc stats nstep. Note that the number of post-twist-change equi-
libration moves dmc reequil nstep can be much less than the number of equilibration moves
dmc equil nstep because the configuration distribution at one twist angle is a reasonably good
approximation to the configuration distribution at another.

Obviously, if twist averaging is to be used in either VMC or DMC then complex wf should be
set to T. The twist-averaged HF energy of the HEG will be calculated and written to the out

file for single-determinant ground-state calculations. One can check that vmc reequil nstep and
dmc reequil nstep are sufficiently large by setting use jastrow, backflow and ibran to F and
comparing the VMC and DMC energies with the twist-averaged HF value (they should be the same).

27In fact rejecting moves that cross the nodal surface has almost no effect on the time-step bias in systems with real
wave functions anyway.

216

Note that one cannot expect to find a plateau when performing reblocking analysis until the block
length is greater than the number of data points between changes of twist angle, i.e., greater than
vmc nstep for VMC data and dmc stats nstep for DMC data. In any case, we recommend using
the mcta post process, twistanalysis heg external and twistanalysis heg internal utilities
to analyse the result of a Monte Carlo twist averaged calculation for the HEG; see Sec. 28.3.2.

28.3.2 Statistical analysis of Monte Carlo twist averaged (MCTA) calculations

MCTA-QMC calculations exhibit jumps in the local energy when the twist angle changes, resulting
in large sample variances and difficulties to converge the result to the target error bar. In the case
of the homogeneous electron gas (HEG) it is possible to model the jumps in the local energy and
reduce their effect very significantly, since these jumps correlate very strongly with the HF energy
components [92]. An example of this is shown in Fig. 1 for an MCTA-VMC calculation.

5900 6000 6100 6200 6300 6400
VMC step number

0.4

0.5

0.6

0.7

V
M

C
 l

o
ca

l
en

er
g

y
 (

a.
u

./
el

ec
tr

o
n

)

Figure 1: Local energies in a MCTA-VMC calculation (blue) and offsets induced by twist-angle changes
(red).

Suppose we have knowledge of a function of the twist angle F that mirrors the jumps in the local
energy as closely as possible. Then we can define a modified local energy ẼL,

ẼL(R; koffset) = EL(R; koffset)− F (koffset) , (313)

whose variance is substantially smaller than that of EL. In this context, F is called a control variate.
We can then evaluate the QMC energy as

EQMC = 〈ẼL〉+ 〈F 〉 , (314)

with squared error bar
σ2
EQMC

= σ2
〈ẼL〉

+ σ2
〈F 〉 . (315)

Given that the sample variance of ẼL is smaller than that of EL, this error bar is much smaller than
that obtained from simply averaging EL, provided that 〈F 〉 has been evaluated to an accuracy such
that σ〈F 〉 � σ〈ẼL〉.

In the case of the HEG we can set F to

F (koffset) = aKHF(koffset) + bXHF(koffset) , (316)

where KHF(koffset) and XHF(koffset) are the finite-system HF kinetic and exchange energies at the
given koffset, and a and b are free parameters. Minimizing the variance of ẼL(R; koffset) with respect

217

to a and b yields

a =
c2c3 − c4c5
c25 − c1c2

, (317)

and

b =
c1c4 − c3c5
c25 − c1c2

, (318)

where

c1 = 〈(KHF)
2〉 − 〈KHF〉2 , (319)

c2 = 〈(XHF)
2〉 − 〈XHF〉2 , (320)

c3 = 〈ELK
HF〉 − 〈EL〉〈KHF〉 , (321)

c4 = 〈ELX
HF〉 − 〈EL〉〈KHF〉 , (322)

c5 = 〈KHFXHF〉 − 〈KHF〉〈KHF〉 . (323)

With the above, one can obtain the QMC energy as

EDMC = 〈ẼL〉+ 〈F 〉 , (324)

with squared error bar
σ2
EDMC

= σ2
〈ẼL〉

+ σ2
〈F 〉 . (325)

Ideally 〈F 〉 should be evaluated to an accuracy such that σ〈F 〉 � σ〈ẼL〉, and should not be evaluated
from the set of twist angles used in the MCTA-QMC calculation.

The mcta post process script implements this method for HEGs. A similar method could be applied
to any system where the jumps in the local energy are accurately modelled as a function of quantities
that can be computed inexpensively.

An alternative (equivalent) way of viewing the situation is that we wish to fit the function

Ei = Ē + b(KHF
i − K̄HF) + c(XHF

i − X̄HF) (326)

to the QMC energy per particle at each twist i, where KHF
i and XHF

i are the HF kinetic and exchange
energies per particle at that twist, and K̄HF and X̄HF are the averages of these quantities, which
can be calculated with very high precision. There are three parameters to be determined by fitting:
b, c, and the twist-averaged energy Ē. The parameter b is an approximation to the inverse of the
quasiparticle effective mass. This is the approach used by the twistanalysis heg external and
twistanalysis heg internal utilities.

One can use this approach to remove some of the residual single-particle errors in the twist-averaged
energy by replacing K̄HF with the infinite-system HF kinetic energy per particle KHF

∞ , which is
straightforward to calculate by pen and paper. One should not replace X̄HF with its infinite-system
value, however, as there is also a long-range finite-size error in the exchange energy.

If the number of re-equilibration steps between twists is sufficiently large and/or the number of steps
at each twist is sufficiently large, we can assume the mean energy at each twist to be statistically
independent. If we also assume the error in the QMC energy at each twist to be normally distributed
about the optimal fitting function with equal standard deviations, we can use the covariance matrix
from the fit together with the assumption that the χ2 function is equal to the number of degrees
of freedom (the number of twists minus the number of fitting parameters) to estimate the error in
Ē. If there is a non-negligible error bar associated with the estimates of K̄HF and X̄HF then it can
incorporated into the fitted parameters by Gaussian propagation of errors.

If the re-equilibration period after changes to twist is less than the longest correlation period then the
approach taken by mcta post process is preferred, as it allows for reblocking analysis of the corrected
energy data. However, one should aim to avoid this situation, as it can also lead to bias. Generally
mcta post process and twistanalysis heg internal should give very similar answers.

28.3.3 Real systems

For real systems one can perform the DFT/HF wave-function generation calculations at arbitrary
grids of k points, then use the wave-function converters in the usual fashion to generate casino input

218

files, then read in and use those wave functions in casino, provided that complex wf is set to T.
This functionality is not yet available for Gaussian orbitals, however.

We provide a couple of scripts which quasi-automate this procedure: twistav pwscf for use with the
pwscf plane-wave DFT code, and twistav castep for use in conjunction with the castep plane-
wave DFT code, the castep2casino utility and the casino program. Note that these scripts just
produce the correct data files for you to analyse manually; they do not analyse the results themselves.
How you want to analyse the data is up to you. Do you (i) just average the QMC energies and include
the random error from twist averaging with the statistical error or (ii) do you use the DFT energies
to correct the QMC energies before averaging or (iii) some other way. . . As an example, in Ref. [93]
option (ii) was chosen.

It is not generally necessary to re-optimize the Jastrow factor and backflow functions for the different
twists; just a single correlation.data file should be supplied.

28.3.4 Monte Carlo twist averaging for real systems using CASINO and CASTEP

This is automated with the twistav castep utility. This script repeatedly offsets the grid of k
vectors in the castep .cell file and runs castep, then castep2casino, then casino. The castep
and casino output files are put in directories called twist0001, twist0002, etc. The progress of
the calculations is reported in a file called STATUS. All the necessary castep and casino input files
must be set up in the directory in which the calculation is run. The complete list of k vectors must
be specified (note that both members of a ±k pair must be given), and complex wf must be T in
the input file. By default, the offsets to the grid of k vectors are chosen randomly. If one wishes
to specify a set of offsets, to compare different phases of a material for example, then the ‘-twists’
flag should be used. The specified twists should be placed in a file called ‘twists.data’ containing a
castep-style input block named TWISTS.

By default the script uses runqmc to run the casino calculations. If the script is to be used on a
machine with a queueing system then the ‘-batch’ flag should be set and the command for running
casino should be specified with, e.g., ‘-casino "runqmc --nproc=4 --walltime=1h5m"’. The script
doesn’t currently let you submit the castep jobs to a queue, but the castep runs are relatively quick.
The number of twists to use is specified using the ‘-ntwist’ flag (default 12 at the time of writing).
For more information on available options, type twistav castep -help.

A script called twistanalysis is available to analyse DMC results generated by twistav castep.
This script is also capable of “twist-reblocking” these same results. The set of twists is divided up
into blocks with size equal to a factor of the total number of twists. Then, within each of these blocks
the script extrapolates the DMC results at each twist to zero time step, and fits

EDMC(t) = 〈EDMC〉+ c
[
EDFT(t)− Efine

DFT

]
(327)

to the DMC energy EDMC(t) at each twist t. 〈EDMC〉 and c are fitting parameters, with the former
being the twist-averaged DMC energy. EDFT(t) is the DFT energy from the wave-function generation
calculation at a particular twist t, while Efine

DFT is the DFT energy with a large Monkhorst–Pack grid.
Following fitting the data within each block to Eq. (327) the twist-averaged results are then averaged
to give the twist-reblocked result. The results of this twist-reblocking procedure are printed to the file
‘twistblocked energy.results’, where each row contains: the number of blocks, the twist-reblocked
energy, the standard error in the twist-reblocked energy, and the error in the standard error. In the
case of there being one block the error printed is error resulting from fitting the data to Eq. (327). The
script performs twist-reblocking for all possible divisors of the total number of twists, provided each
block contains at least three twists to allow fitting of Eq. (327); it is therefore recommended to use a
total of number of twists that has many divisors, e.g. 12,24,48. One can perform twist-averaging, in
a single block, without using a DFT control variate (i.e., without fitting to Eq. (327)) by supplying
the flag ‘--unweighted’. In this case, the twist-averaged energy is simply the mean of the energies at
the different twists and the error is the standard error calculated over all of the twists.

To use twistanalysis:

1. Use twistav castep to generate the input files for casino (i.e., use castep and castep2casino
but not casino by using the -justcastepblip argument to twistav castep).

2. In each twistxxxx directory, create two or more directories that contain DMC calculations at
that twist with different time steps. (These directories should contain: input, dmc.hist and
dmc.status.)

219

3. The user will be asked to enter the results of a DFT calculation with a fine k-point mesh.
In all other regards, this DFT calculation should be the same as the wave-function-generation
calculations. The twistanalysis script currently assumes that the density-mixing algorithm is
used in castep (no fixed-occupancy calculations).

4. In the directory containing the twistxxxx directories, run twistanalysis. The twist-averaged
results will be placed in the file twistanalysis.results. In the ideal case of a perfect fit
(i.e., perfect correlation between the fluctuations in the DFT energy and the DMC energy as a
function of twist ks), the reduced χ2 value of the fit would be 1. In practice it is often one or
two orders of magnitude larger, depending on how small you make your error bars.

5. Beware of the following: twistanalysis will only run reblock in each DMC directory if the
dmc.hist file has been modified more recently than the reblock.results file; hence if you
rerun twistanalysis and make a different choice of energy units then you could end up with
different energy units in the different reblock.results files and hence nonsense results when
you twist average. You should therefore be careful to make the same choice of energy units
throughout or, if you really have to change this, touch all of the dmc.hist files before rerunning
twistanalysis. To be honest, I think the best policy in general is to stick to Hartree a.u. per
unit cell throughout your calculations, and only convert to eV or kcal mol−1 or megatonnes of
TNT or whatever at the point at which you write your paper.

The clearup twistav script can be used to clear up the output from a castep twist-averaging run.

28.3.5 Monte Carlo twist averaging for real systems using CASINO and PWSCF

This is automated with the twistav pwscf utility. The support provided by this script is currently
more advanced than its castep equivalent since it uses the standard casino architecture system
(meaning it should run automatically on any system, batch or otherwise) and the full range of run time
options are available. pwscf itself by default works with binary bwfn.data.b1 files which obviates
the need for using huge bwfn.data files as in castep, and no multi-step conversions (involving e.g.,
castep2casino and blip-conversion casino calculations) are required.

Usage:

twistav_pwscf [--help --nproc_dft=I --splitqmc[=N] --startqmc=M

--dft_only/--qmc_only --ntwist=L [<runqmc/runpwscf options>]

This script is used to automate the collection of twist-averaged data using casino and the pwscf
DFT code (part of the Quantum espresso package, available at http://www.quantum-espresso.org).
pwscf must be version 4.3 or later.

This script works by repeatedly calling the runpwscf and runqmc scripts which know how to run
pwscf/casino on any individual machine. With the exception of those listed above, almost all
optional arguments to this script are the same as for runpwscf/runqmc and are passed on automatically
to these subsidiary run scripts (the --background/-B option is also used by twistav pwscf, and for
the same purpose). Type ‘runpwscf --help’ or ‘runqmc --help’ to find out what these options are.
The short list of optional flags specific to twistav pwscf are described below.

It is assumed that pwscf lives in $HOME/espresso and casino lives in $HOME/CASINO. There are
override options available if this is not the case.

If you are running on a multi-user machine with an account to be charged for the cal-
culations, you might consider aliasing twistav pwscf as alias twistav pwcf="twistav pwscf

--user.account=CPH005mdt " or whatever.

To run a twist-averaged calculation you should in general do something like the following:

Setup the pwscf input (‘in.pwscf’) and the casino input (‘input’, etc., but no wave function file)
in the same directory. For the moment we assume you have an optimized Jastrow from somewhere
(the same one will be used irrespective of the twist angle).

Have the pwscf input file set up with calculation = scf, both nosym and noinv (system section)
set to T, wf collect = T (control section), and verbosity to high (control section). Some required
k-point information is not printed in output without the latter. The in.pwscf file must also contain
a K POINTS block written using the ‘crystal’ format, i.e., something like:

220

http://www.quantum-espresso.org

K_POINTS crystal

8

0.250000 0.250000 0.250000 0.1250000

-0.250000 0.250000 0.250000 0.1250000

0.250000 -0.250000 0.250000 0.1250000

-0.250000 -0.250000 0.250000 0.1250000

0.250000 0.250000 -0.250000 0.1250000

-0.250000 0.250000 -0.250000 0.1250000

0.250000 -0.250000 -0.250000 0.1250000

-0.250000 -0.250000 -0.250000 0.1250000

This block will be manipulated by twistav pwscf and the runscripts that it calls.

In your casino input file, complex wf must be T. Note that the VMC/DMC runs for each twist can
be relatively short and need not be fully converged; the idea is that we collect enough data to achieve
an acceptable error bar when the data is averaged over all twist angles. If a normal run without
twist-averaging takes N moves to arrive at an acceptable error bar, then each twist angle might be
run for around N/ntwist moves.

The twistav pwscf script will then repeatedly run pwscf to generate ‘ntwist ’ xwfn.data files (ntwist
default = 12, or change with optional argument --ntwist=xx), then it will run casino on each of the
xwfn.data. The casino out files, xwfn.data files, config.out and vmc.hist/dmc.hist files will be
renamed with an appropriate integer suffix.

The calculation can be run through pwfn.data, bwfn.data or bwfn.data.b1 formats as specified
in the pw2casino.dat file (see casino and pwscf documentation). When pwscf is upgraded to
produce new-format bwfn.data.bin files, then this script will need to be changed; ask MDT to do so.

If you wish to do the (fast) DFT wave function generation calculations and the (slow) QMC calcula-
tions on different machines, for example to avoid batch queue waiting time, then use the --dft only

option to generate the full set of xwfn.data files, transfer these to the more powerful machine, then
run on that using the --qmc only option—see below.

The clearup twistav script can be used to clear up the output from a pwscf twist-averaging run.

Default behaviour of twistav pwscf (on all machines):

Note: in the following ntwist is 12, or the value of the optional argument --ntwist, while xwfn.data

refers to whatever wave function file is specified in the pw2casino.dat file (either bwfn.data.b1

[default], bwfn.data or pwfn.data).

For a complete twist-averaging run, the following steps are performed in sequence:

(A) pwscf generates ntwist xwfn.data.$ files, where $ is a sequence number from 1 to ntwist. Each
succeeding run will have a different twist.
(B) casino runs a relatively short VMC or VMC-DMC run on each of the xwfn.data.

On batch queue systems, twistav pwscf will by default do two batch script submissions, the first—
handled by the runpwscf script—executing step (A), and the second—handled by the runqmc script—
executing step (B).

In principle, this wastes some unnecessary time (the time spent waiting for the QMC batch script to
start) but this is unavoidable if twistav pwscf uses separate runpwscf and runqmc scripts to handle
the DFT xwfn generation and QMC calculations. This may be changed in the future if anyone thinks
it’s worth it.

Note that usually all calculations will be done on the number of cores requested on the command line
(with the --nproc or -p flag), irrespective of whether they are DFT or QMC calculations. Since
typically DFT calculations in fact require fewer cores, you may override this for the DFT calculations
by using the --nproc dft flag to twistav pwscf.

Modifications to default behaviour (on all machines)

(1) twistav_pwscf --dft_only : execute only step (A), generating ntwist

xwfn.data.$ files. Usually used if you want

to run DFT and QMC on different machines.

(2) twistav_pwscf --qmc_only : execute only step (B). Usually used if you want

221

to run DFT and QMC on different machines.

This latter option requires that the ntwist xwfn.data.$ files already exist; if they don’t the script
will whinge and die.

(3) twistav_pwscf --startqmc=M : Start the chain of QMC runs with file xwfn.data.M .

Modifications to default behaviour (batch machines only)

On batch machines, there is an additional complication because of the presence of walltime limits.
Full twist-averaging runs might need to be split into multiple sections if all ntwist QMC calculations
run one after another would exceed the walltime limit. The following method may be used to do this.

(4) twistav_pwscf --splitqmc=N : Split step B into N separate sequential batch

script submissions, run one after another. If no value is supplied

[--splitqmc] the run will be split into two.

Example: ntwist=13, and twistav pwscf --splitqmc=4 will result in four step B batch submis-
sions with 3, 3, 3, 4 twists. Recall that the QMC calculations for each twist angle are considerable
shorter than normal, and the entire twist-averaging run should not take much longer than a standard
calculation done with a constant twist angle.

Note there is no facility for splitting step A into sections, i.e., all DFT wave function generation runs
will always be run in a single batch script submission. This is because we assume the DFT runs are
fast and you have adequate job time limits. If this is not the case then simply do multiple sets of
twistav pwscf runs.

The use of ensemble jobs (which are anyway supported only on some machines) to run the multiple
short QMC runs simultaneously is currently not supported; it could in principle be implemented.
However, if you are choosing to run ntwist calculations simultaneously on ntwist×M cores rather
than running sequentially on M cores, then why not just run the sequential run on ntwist ×M
cores using fewer moves (that way you avoid multiplying the queueing time—which can be weeks on
overcrowded machines—by ntwist.

The twistav pwscf script needs to run in the background throughout the sequence of calculations,
so make sure it stays alive. Logging out is inadvisable on some machines.

Note finally that we expect to generalize the twistanalysis utility to pwscf very soon; if this is
urgent, tell MDT.

There is a set of input files demonstrating how to setup twist-averaging calculations with pwscf in
the examples/crystal/twistav/PWSCF directory of the main casino distribution. If attempting to
do twist-averaging on a complicated batch machine, users are advised to first use this set of files to
verify that everything works before concentrating on their own calculations.

29 Finite-size correction to the kinetic energy

29.1 Finite-size correction due to long-ranged correlations

Consider a periodic system of N particles. Suppose there are Ns species present, each with mass mα

and charge qα, and let Nα be the number of particles of type α. Let riα be the position vector of the
ith particle of type α. Let the simulation supercell have volume Ω.

Suppose the ground-state trial wave function Ψ can be written as the product of a part involving
long-ranged two-body correlations uαβ and a part consisting of everything else, Ψs [18, 15]:

Ψ(R) = Ψs(R) exp

 Ns∑
α=1

Ns∑
β=α+1

Nα∑
i=1

Nβ∑
j=1

uαβ(riα − rjβ) +

Ns∑
α=1

Nα−1∑
i=1

Nα∑
j=i+1

uαα(riα − rjα)

 , (328)

where uαβ(r) has the periodicity of the simulation cell and uαβ(r) = uαβ(−r). Note that, throughout
this section, we use u to denote the two-body Jastrow factor; in fact this is the sum of the u and p
terms in casino’s Jastrow factor.

222

Let the Fourier transform of uαβ be

ũαβ(G) =

∫
Ω

uαβ(r) exp(−iG · r) dr, (329)

where the {G} are the simulation-cell reciprocal lattice vectors. Let

ρ̃α(G; R) =

Nα∑
i=1

exp(−iG · riα) (330)

be the Fourier transform of the density operator ρα(r; R) =
∑Nα
i=1 δ(r− riα). Then

Ψ(R) = Ψs(R) exp

 1

Ω

Ns−1∑
α=1

Ns∑
β=α+1

∑
G

ũαβ(G)ρ̃∗α(G; R)ρ̃β(G; R)

+
1

2Ω

Ns∑
α=1

Nα∑
i=1

∑
G

ũααρ̃
∗
α(G; R)ρ̃β(G; R)− 1

2Ω

Ns∑
α=1

Nα
∑
G

ũαα(G)

)

= Ψs(R) exp

 1

2Ω

Ns∑
α=1

Ns∑
β=1

∑
G6=0

ũαβ(G)ρ̃∗α(G; R)ρ̃β(G; R) +K

 , (331)

where K is independent of R.

If we assume that only electrons are present, the ‘TI’ kinetic-energy estimator [11] may be written as

T (R) =
−1

4
∇2 log(Ψ) = Ts(R)− 1

8Ω

Ns∑
α=1

Ns∑
β=1

∑
G6=0

ũαβ(G)∇2 [ρ̃∗α(G; R)ρ̃β(G; R)] , (332)

where Ts = −∇2 log(Ψs(R))/4 [15].

It can easily be shown that

∇2 [ρ̃∗α(G; R)ρ̃β(G; R)] = −2|G|2 [ρ̃∗α(G; R)ρ̃β(G; R)−Nαδαβ] . (333)

Hence the kinetic energy is

〈T (R)〉 = 〈Ts〉+
1

4Ω

∑
G6=0

|G|2
 Ns∑
α=1

Ns∑
β=1

ũαβ(G) 〈ρ̃∗α(G; R)ρ̃β(G; R)〉 −
Ns∑
α=1

Nαũαα(G)

 . (334)

The Fourier transform of the translationally averaged structure factor is

S̃αβ(k) =
1

N

(〈
ρ̃α(k; R)ρ̃∗β(k; R)

〉
− 〈ρ̃α(k; R)〉

〈
ρ̃∗β(k; R)

〉)
. (335)

The charge density has the periodicity of the primitive lattice and therefore 〈ρ̃α(k; R)〉 is only nonzero
for G vectors of the primitive lattice. In particular, the second term in the Fourier-transformed
structure factor is zero for small k, which is the regime of relevance here. Hence

〈T 〉 = 〈Ts〉+
N

4Ω

∑
G6=0

|G|2
Ns∑
α=1

Ns∑
β=1

ũαβ(G)S̃∗αβ(G)− 1

4Ω

∑
G 6=0

|G|2
Ns∑
α=1

Nαũαα(G). (336)

In the infinite-system limit, the sums over G in Eq. (336) should be replaced by integrals over k [18].
The leading-order finite-size corrections are due to the differences between these integrals and sums.
The relevant theory can be found in Ref. [15]. The RPA suggests that we can approximate ūαα(k) by
−4π(Aα/k

2 + Bα/k) at small k in 3D, where Aα and Bα are constants. In 2D we can approximate
ūαα(k) by −aα/k3/2 − bα/k. In each case the constants are determined by fitting the model of ūαα
to its values at the first few nonzero stars of Gs vectors.

We evaluate the finite-size correction to the kinetic energy in 3D as

∆T =

Ns∑
α=1

[
NαπAα

Ω
+
C3DNαBα

Ω4/3

]
, (337)

223

where

C3D =
Ω4/3

4
lim
α→0

 1

πα2
− 4π

Ω

∑
Gs 6=0

Gs exp(−αG2
s)

 (338)

is a lattice-specific constant. This constant is evaluated by numerically by casino. We use three
different values of α and extrapolate the term in square brackets quadratically to α = 0. For a given
value of α we evaluate the sum over Gs explicitly inside a sphere of radius Qc, and approximate the
sum by an integral outside Qc. Qc is chosen to be sufficiently large that the summand is very small
at this radius. In 2D, we evaluate the finite-size correction as

∆T =

Ns∑
α=1

C2DNαaα
4πP 5/4

, (339)

where P is the simulation-cell area and

C2D =
P 5/4

2
lim
α→0

Γ(5/4)

2α5/4
− 2π

P

∑
Gs 6=0

√
Gs exp(−αG2

s)

 , (340)

where Γ is the Gamma function.

The leading term is O(1) in 3D, so the error in the kinetic energy per electron falls off as O(N−1). The
leading term is O(N−1/4) in 2D, so the error in the kinetic energy per electron falls off as O(N−5/4).

29.2 Fourier transformation of CASINO’s two-body Jastrow factor

29.2.1 The two-body Jastrow factor

casino’s two-body Jastrow factor consists of two terms: u and p [59]. For any given spin-type, u is
of the form

u(r) = (r − Lu)
C

Θ(Lu − r)
Nu∑
l=0

αlr
l, (341)

where Lu, C and {α} are parameters, Θ is the Heaviside function, and r is the magnitude of electron–
electron distance evaluated within the minimum-image convention. (Throughout this section we omit
the spin indices α and β.)

The Fourier transformation of the two-body Jastrow factor is just the sum of the Fourier transforms
of u and p. Note that the Fourier transform of u is spherically symmetric, whereas spherical averaging
may have to be performed for the Fourier transform of p.

29.2.2 Fourier transformation of p

The p term in the Jastrow factor is

p(r) =
∑
A

aA
∑
G+
A

cos(GA · r) =
∑
A

∑
GA

1

2
aA exp(iGA · r), (342)

where A denotes a set of symmetry-equivalent simulation-cell G vectors and ‘+’ means that, if G is
included in the sum, −G is excluded [59]. So the Fourier coefficient for GA is ΩaA/2 in 3D, AaA/2
in 2D and LaA/2 in 1D.

29.2.3 Fourier transformation of u in 3D

Suppose k 6= 0. Then

ũ(k) =

∫
Ω

u(r) exp(−ik · r) dr

=
4π

k

∫ Lu

0

ru(r) sin(kr) dr

=
4π

k

Nu∑
l=0

αl

C∑
m=0

(
C

m

)
(−Lu)

C−m
∫ Lu

0

rm+l+1 sin(kr) dr. (343)

224

Let In(k) =
∫ Lu

0
rn sin(kr) dr. Then I0 = [1− cos(kLu)]/k and I1 = −Lu cos(kLu)/k + sin(kLu)/k2,

and, for n ≥ 2,

In(k) =
1

k

[n
k

(
Ln−1
u sin(kLu)− (n− 1)In−2(k)

)
− Lnu cos(kLu)

]
. (344)

Hence we can rapidly evaluate In(k) for all n required (that is, up to n = Nu + C + 1).

For k = 0 we have

ũ(0) = 4π

Nu∑
l=0

αl

C∑
m=0

(
C

m

)
(−Lu)

C−m Ll+m+3
u

l +m+ 3
. (345)

29.2.4 Fourier transformation of u in 2D

An analytic expression for ũ(k) is not available in two dimensions. We therefore evaluate ũ(k) nu-
merically using a fast Fourier transform.

29.2.5 Fourier transformation of u in 1D

ũ(k) =

∫ L/2

−L/2
u(|x|) exp(−ikx) dx

= 2

Nu∑
l=0

αl

∫ Lu

0

(x− Lu)
C
xl cos(kx) dx

= 2

Nu∑
l=0

αl

C∑
n=0

(
C

n

)
(−Lu)

C−n
Jn+l(k), (346)

where L is the length of the simulation cell and Jn =
∫ Lu

0
xn cos(kx) dx. Suppose k 6= 0. Then

J0(k) = sin(kLu)/k, J1(k) = Lu sin(kLu)/k + [cos(kLu)− 1]/k2 and, for n ≥ 2

Jn(k) =
1

k

[n
k

(
Ln−1
u cos(kLu)− (n− 1)Jn−2(k)

)
+ Lnu sin(kLu)

]
. (347)

Hence we can rapidly evaluate Jn(k) for all n required (from n = 0 to n = Nu + C). If k = 0 then
Jn = Ln+1

u /(n+ 1).

29.3 Fitting form for the long-ranged two-body Jastrow factor (3D)

29.3.1 The ‘RPA–Kato’ Jastrow factor

Consider the infinite-system ‘RPA–Kato’ two-body Jastrow factor [11] for pairs of particles of type α,
which satisfies the Kato cusp condition and has the long-ranged 1/r decay predicted by the RPA [94],

uαα(r) = −Aα
r

[1− exp(−r/Fα)] , (348)

where Aα is a free parameter and F 2
α = cαAα is determined by the cusp conditions, where cα =

2/(q2
αmα). The Fourier transformation of this two-body Jastrow factor is

ũαα(k) = −4πAα

(
1

k2
− 1

k2 + 1/(cαAα)

)
. (349)

Note that this has the k−2 divergence predicted by the RPA [94]. If the value of ũαα(k) is known at
a single point k then the parameter Aα may be evaluated as

Aα =
−k2ũαα(k)

4π + cαk4ũαα(k)
. (350)

The missing contribution to the infinite-system kinetic energy in Eq. (336) is approximately

∆T ≈ −
∑
α=1

Ns
Nα

4(2π)
3
mα

∫ Q

0

4πk2 × k2ūαα(k) dk, (351)

225

where Q = (6π2/Ω)
1/3

is the radius of the sphere with volume (2π)
3
/Ω.

If one inserts the RPA–Kato form for ũαα into Eq. (351), noting that it is already spherically sym-
metric, then one obtains

∆T =

Ns∑
α=1

Nα
2πmα

(
Q

cα
−

tan−1
(√
cαAαQ

)
cα
√
cαAα

)
. (352)

Making use of the Taylor expansion of tan−1, it is found that the leading-order correction to the
kinetic energy is

∆T =

Ns∑
α=1

πNαAα
Ωmα

+O(N−2/3), (353)

where the first term is independent of N , so the error in the kinetic energy per particle falls off as
O(N−1).

29.3.2 Application to the HEG

The Jastrow factor of Eq. (348) for a HEG of density parameter rs has Aα = 1/ωp where ωp =
√

3/r3
s is

the plasma frequency [11]. Note that Ω = 4πr3
sN/3 = 4πN/ω2

p, and mα = 1. Hence the leading-order
correction to the kinetic energy is ∆T = ωp/4, as found by Chiesa et al. [18].

29.4 Applying the correction scheme in practice

The steps carried out by casino in order to calculate the kinetic-energy correction for a 3D system
are as follows:

1. Calculate the Fourier transformation of uαα(r) + pαα(r) in the Jastrow factor for each spin α
and perform spherical averaging over G vectors of equal length.

2. For each α, determine the parameters Aαα and Bαα by a least-squares fit to the values of
ũαα + p̃αα at the first few nonzero stars of G vectors.

3. Use Eq. (337) to calculate the kinetic-energy correction.

4. As a check, calculate Aαα in Eq. (352) using the values of ũαα + p̃αα at the smallest nonzero
star of G vectors [Eq. (350)]. Then evaluate the kinetic-energy correction using Eq. (352). The
user can verify that the two estimates of the kinetic-energy are in reasonable agreement.

Similar steps are carried out for a 2D system is available in this case.

In order to calculate the finite-size correction to the kinetic energy, the user should set the fi-
nite size corr flag to T. The finite-size correction will only be calculated if the correlation.data

file contains a nonempty Jastrow factor with either p or u terms. The finite-size correction is displayed
near the top of the out file.

Note that it is usually essential to use p terms in the Jastrow factor when calculating the kinetic-energy
correction. Even if the p term only gives a small decrease in the total energy, it is needed in order
to get the shape of the long-ranged two-body Jastrow factor correct. To generated a blank p term to
paste into the Jastrow factor in correlation.data, the make p stars utility can be used.

30 Finite-size correction to the interaction energy

An alternative to using the MPC interaction is to calculate corrections to the XC energy from an
accumulated structure factor (essentially as described in Ref. [18]). Accumulation of the structure
factor is automatically activated if finite size corr is set to T, and the finite-size correction to the
interaction energy is written out at the end of the out file.

226

31 Electron–hole systems

casino has the ability to include positively charged particles of variable mass (holes) in the simulation
in addition to electrons. Currently these may only be used in electron–hole phases without an external
potential, but the code needs only a few trivial changes for these things to be able to wander around
inside real crystals (useful for studying positron problems—contact Mike Towler if you want this to
be implemented).

In this section the changes required to the casino code and to the basic equations in the presence of
holes are discussed. These largely stem from the possibility of having a variable mass ratio between
the positively and negatively charged particles. The basic differences are:

• The diffusion Green’s function, Eq. (46), becomes,

GD(R← R′, τ) =
1

(4πDeτ)
3Ne/2

exp

(
− (Re −R′e − 2τDeVe(R

′
e))

2

4Deτ

)

× 1

(4πDhτ)
3Nh/2

exp

(
− (Rh −R′h − 2τDhVh(R′h))

2

4Dhτ

)
, (354)

where e and h denote electron and hole quantities, Ne and Nh are the numbers of electrons and
holes, the diffusion constants are defined as De = 1/(2me) and Dh = 1/(2mh), where me and
mh are the electron and hole masses in atomic units (i.e., in units of the mass of the electron).

• When particle i is moved, Eq. (50) becomes,

ri = r′i + χ+ 2Diτvi(R
′), (355)

where χ is a 3D vector of normally distributed numbers with variance 2Diτ and zero mean.

• The probability of accepting this move, Eq. (54) is then,

pi ' min

{
1, exp ([r′i − ri + τDi (vi(R

′)− vi(R))] · [vi(R′) + vi(R)])
Ψ(R)

2

Ψ(R′)
2

}
. (356)

• The effective time step, Eq. (62), is given by,

τeff(α,m) = τ

∑
imipi∆r

2
d,i∑

imi∆r2
d,i

(357)

• The drift vector limiting, Eq. (63), takes the form,

ṽi =
−1 +

√
1 + 4Dia|vi|2τ

2a|vi|2Diτ
vi . (358)

• Separate Jastrow factors must be defined for the electron–electron, hole–hole and electron–hole
interactions. The general form of the cusp condition for Coulomb interactions is,

1

Ψ

dΨ

dr

∣∣∣∣
r=0

=
2qiqjµij
d± 1

, (359)

where qi and qj are the charges in units of the charge of the electron, µij = mimj/(mi +mj) is
the reduced mass and d is the dimensionality. The minus sign is used for distinguishable particles
(e.g., anti-parallel-spin electrons or electron and holes) and the plus sign for indistinguishable
particles (e.g., parallel-spin electrons).

• Backflow transformations for the pairing wave-function have to be carefully rederived.

• The kinetic energy term in the local energy is modified to include the mass,

K =

N∑
i=1

Ki =

N∑
i=1

− 1

2mi
Ψ(R)

−1∇2
iΨ(R) . (360)

227

Similarly,

Ti = − 1

4mi
∇2
i (ln |Ψ|) = − 1

4mi

∇2
iΨ

Ψ
+

1

4mi

(
∇iΨ

Ψ

)2

, (361)

and for the drift vector Fi,

Fi =
1√
2mi
∇i (ln |Ψ|) =

1√
2mi

∇iΨ
Ψ

. (362)

32 Mahan wave function module

The trial wave functions used in casino consist of a product of two terms: the Jastrow factor, and
a term controlled by the keyword psi s in the input file. In general, both components can contain
optimizable parameters. The Jastrow factor is symmetric with respect to particle interchange (in fact,
it is always positive), often accounts for the cusp conditions (see Sec. 22) and usually recovers the
largest part of the correlation energy. The other component of the trial wave function, ΨS, enforces the
required symmetry properties under particle interchange, provides the part of the trial wave function
acted upon by a backflow transformation and can often significantly improve the trial wave function.
Importantly, only the ΨS component of the trial wave function can affect the nodal surface, meaning
that even the DMC energy can be improved via optimizing this component of the trial wave function.

Several types of ΨS components are implemented in casino, including Slater determinants of plane
waves and several types of pairing orbitals (see Sec. 7.4.10), geminal wave functions and a form
tailored to the description of excitonic molecules called exmol. The choice of which form to use should
be guided by the kind of system being studied. In this section, we describe a new form of ΨS suitable
for studying a positive impurity (such as a hole or positron) immersed in a homogeneous electron gas.

The trial wave function takes the form

ΨT(R) = eJ(R)ΨS [X(R)] , (363)

where R is the set of particle coordinates, eJ(R) is a Jastrow factor that describes correlations between
the particles, X(R) is the set of backflow-transformed coordinates, and ΨS, the ‘Mahan’ part of the
wave function, is a product of Slater determinants containing orbitals which pair each of the electrons
with the hole,

ΨS(R) = det
[
φi(r

↑
j − rh)

]
det
[
φi(r

↓
j − rh)

]
, (364)

where rσj is the position vector of the jth electron of spin σ and rh is the position vector of the hole.
Backflow significantly improves the quality of this trial wave function form, but if backflow is not
being used, simply consider an identity transformation X(R) = R above.

Flexible pairing orbitals whose parameters are optimized within VMC are used in the determinants.

φi(r) = exp [uGi(r)] exp [iGi · (r − ηGi(r))r̂] , (365)

where Gi is the ith shortest reciprocal lattice vector and r̂ is the unit vector in the direction of r. The
orbital-dependent electron-hole Jastrow function uG is of the form

uG(r) =

(
1− r

Lu,G

)C
Θ(r − Lu,G)

nu∑
l=0

cG,lr
l , (366)

where C is an integer truncation order, Θ is the Heaviside step function, nu is the expansion order,
and LG and cG,l are optimizable parameters. The orbital-dependent electron-hole backflow function
ηG is of the form

ηG(r) =

(
1− r

Lη,G

)C
Θ(r − Lη,G)

nη∑
l=0

dG,lr
l , (367)

where nη is the expansion order and Lu,G and dG,l are optimizable parameters. The functions in Eq.
(366) and (367) are smoothly truncated at optimizable distances Lu,G and Lη,G which are constrained
to be less than or equal to the radius of the largest circle that can be inscribed in the Wigner-Seitz cell.
To avoid redundancy, we set u0 = 0, as one of the uG functions factorizes out and can be absorbed
into the global Jastrow factor. Both the electron-electron and electron-hole cusps are enforced via
the Jastrow factor, and so the determinants of orbitals are constrained to be cuspless at electron-hole
coalescence points.

228

The wave functions have currently been implemented for a simulation-cell Bloch vector of ks = 0
only, and have been tested in paramagnetic systems (containing equal numbers of up- and down-spin
electrons) only, although it would not be difficult to go beyond either limitation.

To use this form for ΨS, one should set input keyword psi s to mahan and provide a ‘MAHAN’ block
in correlation.data following the outline in Sec. 7.4.11. Complex wave functions should be used
(complex wfn set to T) and to optimize the orbitals, set opt orbs to T.

33 Relativistic corrections to energies

Relativistic corrections to the nonrelativistic Hamiltonian can be calculated to order c−2, where c is
the velocity of light, using first-order perturbation theory [95, 96]. This method works well for atoms
of low nuclear charge Z when the relativistic corrections are small, but is unsatisfactory when Z is
large.

In casino the perturbative relativistic corrections can be calculated for VMC or DMC28 by setting
the relativistic flag in the input file to T. By default the relativistic corrections are not calculated.

First we consider the mass-polarization term ε1, which accounts for the correction due to the finite
total nuclear mass to order 1/M , where M is the total nuclear mass in a.u. (NB, this isn’t actually a
relativistic term as such.) If there is just one nucleus present then all finite-mass effects are accounted
for to O(M−1); otherwise some finite-mass effects are neglected. The estimator used for this term is

ε1 =
1

M

∑
i<j

vi · vj , (368)

where vi(R) = Ψ(R)
−1∇iΨ(R) is the drift vector of electron i. By default casino uses nuclear

masses averaged over isotopes, which are listed in Table 2. If a nuclear mass for a specific isotope is
required, the default setting can be overridden by the isotope mass keyword in the input file.

The relativistic terms can be written as a sum of the mass-velocity term, Darwin terms and the
retardation term. The mass-velocity term ε2 arises from the relativistic variation of mass with velocity,
and an estimator can be written as

ε2 = − 1

8c2

∑
i

(∇i · vi + |vi|2)
2
. (369)

The spread of electronic charge is described by the electron–nucleus and electron–electron Darwin
terms

ε3 + ε4 =
∑
I

∑
i

ZIπ

2c2
δ(riI) +

∑
i<j

π

c2
δ(rij), (370)

where ZI is the atomic number of ion I. Hence the expectation value, valid in both VMC and DMC,
is

〈ε3 + ε4〉 =
∑
I

ZIπ

2c2
ρ(rI) +

π

c2

〈∑
i<j

δ(rij)

〉
, (371)

where ρ(rI) is the electronic charge density at ion I. For a homogeneous, periodic system,〈∑
i<j δ(rij)

〉
= ρ2Ωg(0)/2, where g(r) is the pair-correlation function and Ω is the cell volume.

It is almost certainly best to evaluate the electron–electron Darwin term for a HEG using the contact
PCF. Alternatively, note that ∇2(1/r) = −4πδ(r). Likewise, ∇2vE(r) = −4πδ(r) in a periodic sys-
tem, where vE is the Ewald interaction. Applying this to the VMC expectation value of Eq. (370),
we obtain the following estimator for the Darwin terms:

ε′3 + ε′4 =
1

4c2

[∑
i

(∇i · vi + 2|vi|2)

]
×

−∑
I

∑
j

ZI
rjI
−
∑
j<k

1

rjk

 . (372)

28Note that the estimators used for the relativistic corrections are approximate in DMC, in the same way that the TI
and FISQ kinetic-energy estimators are approximate. The error in the DMC relativistic corrections is of the same order
as the error in the VMC corrections, and the order of the error is not reduced by the usual extrapolated-estimation
procedure.

229

In a periodic system, the Ewald interaction vE(r) should be used in place of 1/r in the last factor
of Eq. (372). Gathering adequate statistics with this estimator can be difficult, because it diverges
whenever particles approach each other or a nucleus.

For systems such as the HEG where there is a neutralizing background of charge density ρ0, there is
an associated ‘Darwin constant’: πρ0N/(2c

2). This is the analogue of the electron–nucleus Darwin
term.

The last term, known as the retardation term ε5, arises from the interaction between spin magnetic
moments which are not mutually penetrating. An estimator for this term is

ε5 = − 1

2c2

∑
i<j

[
(rij · vi)(rij · vj)

r3
ij

+
vi · vj
rij

]
, (373)

where rij = ri − rj . For periodic systems the term is evaluated using minimum-image separations.
The resulting finite-size errors are small [96].

Calculations for the beryllium atom [95] show that the total relativistic correction to the energy is ap-
proximately 0.00239 a.u., with the mass-velocity term having the greatest contribution of 0.0145 a.u.,
followed by the Darwin terms of 0.0119 a.u.

34 Expectation values computable by CASINO

Although the total energy is indeed the expectation value of the Hamiltonian, the term ‘expectation
value’ in casino is generally intended to refer to all other observables that the program is able to
calculate. In the current version of the code there are twelve of these, and in this section we will
describe how to calculate and plot them, and outline some of the theoretical details.

The thirteen currently available expectation values are as follows (with the letters in brackets indicating
whether they are implemented for ATOMs, MOLecules, FINite systems without fixed nuclei such as
isolated biexcitons, PERiodic systems containing atoms, and HOMogeneous systems such as the HEG):

• Density - density (ATOM, PER)

• Spin-density - spin density (ATOM, PER)

• Reciprocal-space pair-correlation function - pair corr (PER, HOM)

• Spherical real-space pair-correlation function - pair corr sph (FIN, HOM)

• Structure factor - structure factor (PER, HOM)

• Spherically averaged structure factor - struc factor sph (HOM)

• One-body density matrix (OBDM) - onep density mat (HOM)

• Two-body density matrix (TBDM) - twop density mat (HOM)

• Condensate fraction estimator (∼ TBDM−OBDM2) - cond fraction (HOM)

• Momentum density - mom den (HOM)

• Two-body momentum density (Fourier transform of TBDM) - twop dm mom (HOM)

• Condensate fraction estimator in momentum space - cond fraction mom (HOM)

• Localization tensor - loc tensor (PER)

• Dipole moment - dipole moment (MOL)

• Population - population (ATOM, MOL, FIN, PER)

By default these observables are not accumulated during a VMC/DMC simulation; to do this one must
set to T the corresponding input keyword (the bold terms in brackets in the above list). With the ex-
ception of the dipole moment (for which the required information is stored in the vmc.hist/dmc.hist

230

1
2

H
H

e

1
.0

0
7
9
4

4
.0

0
2
6
0

3
4

5
6

7
8

9
1
0

L
i

B
e

B
C

N
O

F
N

e

6
.9

4
1

9
.0

1
2
1
8
7

1
0
.8

1
1

1
2
.0

1
0
7

1
4
.0

0
6
7
4

1
5
.9

9
9
4

1
8
.9

9
8
4
0

2
0
.1

7
9
7

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

N
a

M
g

A
l

S
i

P
S

C
l

A
r

2
2
.9

8
9
7
7

2
4
.3

0
5
0

2
6
.9

8
1
5
4

2
8
.0

8
5
5

3
0
.9

7
3
7
6

3
2
.0

6
6

3
5
.4

5
2
7

3
9
.9

4
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

K
C

a
S
c

T
i

V
C

r
M

n
F
e

C
o

N
i

C
u

Z
n

G
a

G
e

A
s

S
e

B
r

K
r

3
9
.0

9
8
3

4
0
.0

7
8

4
4
.9

5
5
9
1

4
7
.8

6
7

5
0
.9

4
1
5

5
1
.9

9
6
1

5
4
.9

3
8
0
5

5
5
.8

4
5

5
8
.9

3
3
2
0

5
8
.6

9
3
4

6
3
.5

4
6

6
5
.3

9
6
9
.7

2
3

7
2
.6

1
7
4
.9

2
1
6
0

7
8
.9

6
7
9
.9

0
4

8
3
.8

0

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

R
b

S
r

Y
Z

r
N

b
M

o
T

c
R

u
R

h
P

d
A

g
C

d
In

S
n

S
b

T
e

I
X

e

8
5
.4

6
7
8

8
7
.6

2
8
8
.9

0
5
8
5

9
1
.2

2
4

9
2
.9

0
6
3
8

9
5
.9

4
9
8
.0

1
0
1
.0

7
1
0
2
.9

0
5
5
0

1
0
6
.4

2
1
0
7
.8

6
8
2

1
1
2
.4

1
1

1
1
4
.8

1
8

1
1
8
.7

1
0

1
2
1
.7

6
0

1
2
7
.6

0
1
2
6
.9

0
4
4
7

1
3
1
.2

9

5
5

5
6

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

C
s

B
a

L
u

H
f

T
a

W
R

e
O

s
Ir

P
t

A
u

H
g

T
l

P
b

B
i

P
o

A
t

R
n

1
3
2
.9

0
5
4
5

1
3
7
.3

2
7

1
7
4
.9

6
7

1
7
8
.4

9
1
8
0
.9

4
7
9

1
8
3
.8

4
1
8
6
.2

0
7

1
9
0
.2

3
1
9
2
.2

1
7

1
9
5
.0

7
8

1
9
6
.9

6
6
5
5

2
0
0
.5

9
2
0
4
.3

8
3
3

2
0
7
.2

2
0
8
.9

8
0
3
8

2
0
9
.0

2
1
0
.0

2
2
2
.0

8
7

8
8

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

F
r

R
a

L
r

R
f

D
b

S
g

B
h

H
s

M
t

D
s

U
u
u

U
u
b

U
u
t

U
u
q

U
u
p

U
u
h

U
u
s

U
u
o

2
2
3
.0

2
2
6
.0

2
6
2
.0

2
6
1
.0

2
6
2
.0

2
6
3
.0

2
6
4
.0

2
6
5
.0

2
6
8
.0

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

L
a
n
th

a
n
o
id

s
L

a
C

e
P

r
N

d
P

m
S
m

E
u

G
d

T
b

D
y

H
o

E
r

T
m

Y
b

1
3
8
.9

0
5
5

1
4
0
.1

1
6

1
4
0
.9

0
7
6
5

1
4
4
.2

4
1
4
5
.0

1
5
0
.3

6
1
5
1
.9

6
4

1
5
7
.2

5
1
5
8
.9

2
5
3
4

1
6
2
.5

0
1
6
4
.9

3
0
3
2

1
6
7
.2

6
1
6
8
.9

3
4
2
1

1
7
3
.0

4

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

A
c
ti

n
o
id

s
A

c
T

h
P

a
U

N
p

P
u

A
m

C
m

B
k

C
f

E
s

F
m

M
d

N
o

2
2
7
.0

2
3
2
.0

3
8
1

2
3
1
.0

3
5
8
8

2
3
8
.0

2
8
9

2
3
7
.0

2
4
4
.0

2
4
3
.0

2
4
7
.0

2
4
7
.0

2
5
1
.0

2
5
2
.0

2
5
7
.0

2
5
8
.0

2
5
9
.0

T
ab

le
2
:

T
h
e

d
ef

a
u
lt

n
u
cl

ea
r

m
a
ss

es
u
se

d
in

c
a
si
n
o

.

231

file) the activation of any of the above keywords will flag the creation of an expval.data file (see Sec.
7.13) wherein the required data will be accumulated.

The data in the expval.data file is stored in independent sets corresponding to each observable. If
a data set is already present at the start of a calculation, then any newly accumulated data will be
added to the existing data. The expval.data file also contains basic information about the system,
plus all the G-vector sets necessary to represent any reciprocal-space quantities.

At the end of the calculation, the data in expval.data can usually be visualized using the plot expval
utility. The use of this program is fairly self-explanatory. Type ‘plot expval’ in any directory con-
taining an expval.data file, and the utility will read the data then ask you a series of questions
designed to elicit information about exactly what kind of plot you want. It will then write out the
data in a file readable by standard plotting programs such as xmgrace (for 1D data) or gnuplot (for
2D/3D data). A casino shell-script—plot 2D—is available which will call gnuplot with appropriate
arguments.

Note that, for operators that do not commute with the Hamiltonian, the error in the usual DMC
mixed estimator will be linear in the error in the wave function. However, the error in the extrapolated
estimator 2pDMC − pVMC will be quadratic in the error in the wave function (Here pVMC and pDMC

are the VMC and DMC estimates of the expectation value using the same wave function). One may
also use the future walking technique (see Sec. 36) to obtain better estimates for such observables.

After a short summary of relevant theoretical results, each expectation value will now be described in
turn.

34.1 Basics

34.1.1 Fourier transforms

Define the Fourier transform and its inverse by

f̃(G) =
1

Ω

∫
Ω

f(r) eiG·r dr (374)

f(r) =
∑
G

f̃(G) e−iG·r, (375)

where the set of G vectors are the reciprocal lattice vectors of the simulation cell lattice. Using this
definition, the Kronecker delta is

δG,G′ =
1

Ω

∫
ei(G

′−G)·r dr, (376)

and the Dirac delta function is

δ(r− r′) =
1

Ω

∑
G

e−iG·(r−r
′). (377)

The 3N -dimensional Fourier transform of the wave function is

Ψ̃(k1, . . . ,kN) =
1

ΩN

∫
Ψ(r1, . . . , rN) eik1·r1 . . . eikN ·rN dr1 . . . drN (378)

Ψ(r1, . . . , rN) =
∑

k1,...,kN

Ψ̃(k1, . . . ,kN) e−ik1·r1 . . . e−ikN ·rN . (379)

34.1.2 Translational averaging

Consider a function f(r, r′) whose Fourier transform is

f̃(k,k′) =
1

Ω2

∫
f(r, r′) eik·reik

′·r′ dr dr′. (380)

The translational average of f(r, r′) is

fT(r) =
1

Ω

∫
f(r′′, r′′′) δ(r′′ − r′′′ − r) dr′′dr′′′. (381)

232

The Fourier transform of the translational average is

f̃T(k) =
1

Ω

∫
fT(r) eik·r dr (382)

=
1

Ω2
f̃(k,−k). (383)

Therefore the Fourier transform of f(r, r′) and the Fourier transform of its translational average are
related by

f̃(k,−k) = Ω2f̃T(k). (384)

The operations of translational averaging and Fourier transforming commute.

The function f(r, r′) has the periodicity of the simulation cell,

f(r, r′ + R) = f(r, r′), (385)

where R is a translation vector of the simulation cell lattice. Equation (385) implies that fT(r) is
also periodic,

fT(r + R) = fT(r). (386)

The Fourier transforms of fT(r) and f(r, r′) are therefore nonzero only on the reciprocal lattice vectors
of the simulation cell lattice.

34.1.3 Rotational averaging

The rotational average of a function is

fR(r) =
1

4πr2

∫
f(r′) δ(|r′| − r) dr′. (387)

The rotationally averaged function fR(r) is no longer periodic. The Fourier transform of the rotational
average is

f̃R(k) =
1

Ω

∫
fR(r) eik·r dr (388)

=
1

Ω

∫ ∞
0

fR(r) 4πr2 sin(kr)

kr
dr. (389)

The operations of rotational averaging and Fourier transforming commute because

1

4πk2Ω

∫
f(r) eik

′·rδ(|k′| − k) dk′ dr =

∫
1

4πr2Ω
f(r′) δ(|r′| − r) eik·r dr′ dr. (390)

In practise, two-point correlation functions such as the pair correlation function and density matrix
are calculated by summing over the contributions from pairs of particles whose separation is defined
by the minimum image convention. We accumulate contributions from all pairs of particles whose
separation is less than or equal to the radius LWS of the sphere inscribed within the WS cell of the
simulation cell. We then accumulate

f̃R
WS(k) =

1

Ω

∫
fR(r) Θ(LWS − r) eik·r dr (391)

=
1

Ω

∫ ∞
0

fR(r) Θ(LWS − r) 4πr2 sin(kr)

kr
dr, (392)

which is the convolution of f̃(k) with the Fourier transform of the Heaviside function. Rather than
perform the deconvolution it is probably better just to calculate the translational average in reciprocal
space on the reciprocal lattice vectors of the simulation cell, averaging over the length of the vectors
as the calculation proceeds.

A spherical average can be performed in reciprocal space to obtain

f̃TR(G) =
1

NG

NG∑
i=1

f̃T(Gi), (393)

where NG is the number of reciprocal lattice vectors of length G. The spherical average can be
accumulated as the calculation proceeds.

233

34.2 Density and spin density

K eywords: density, spin density

34.2.1 Periodic systems

The charge density operator for spin α is

ρα(r) =

Nα∑
i=1

δ(r− riα). (394)

The Fourier transform of the charge density operator is

ρ̃α(k) =
1

Ω

∫ Nα∑
i=1

eik·rδ(r− riα) dr (395)

=
1

Ω

Nα∑
i=1

eik·riα . (396)

The charge density for spin α is

nα(r) =

∫
|Ψ|2ρα(r) dR∫
|Ψ|2 dR

(397)

=

∫
|Ψ|2

∑Nα
i=1 δ(r− riα) dR∫
|Ψ|2 dR

. (398)

The Fourier transform of the charge density is

ñα(k) =
1

Ω

∫
nα(r) eik·r dr. (399)

So the charge density may be accumulated by summing exp(iG · r) for each primitive-cell G vector
after each single electron move from r′ −→ r. At the end of the simulation, we then divide by the
total weight (e.g., the number of accumulation steps in VMC) to get the average of each n(G). The
Fourier coefficients are normalized such that n(G = 0) is the number of electrons in the primitive cell
(which is obtained from the above average n(G) through division by the number of primitive cells in
the simulation cell).

34.2.2 Atomic densities

K eywords: density or spin density (both produce the same thing)

In the single-atom case, the charge density is obviously spherically symmetric, ρ(r) = ρ(r). The
spherical average of the charge density is

ρsph(r) =
1

4πr2

N∑
i=1

∫
f(R)δ(|ri| − r)dR∫

f(R)dR
, (400)

where f(R) is the distribution of configurations. The charge density is normalized such that∫
4πr2ρsph(r)dr = N .

The analytical behaviour of ρ(r), ρsph(r) at r → 0 and r →∞ is known,

ρ′sph(0) = −2Zρsph(0) , (401)

where Z is the atomic number, and

ρsph(r) →
r→∞

Ar2B exp
(
−2
√

2Ir
)
, (402)

where A is a constant, B = (Z −N + 1)/
√

2I − 1, and I is the ionization energy.

234

The method used to calculate the charge density in QMC is presented below for the general case of
the charge density, but it is easily applied to quantities such as the spherical average of the charge
density.

Suppose we are performing a QMC calculation, sampling a distribution f(R). In the case of VMC,

f(R) = |Ψ(R)|2, while in DMC the distribution is f(R) = Ψ(R)Φ(R). The charge density can be
evaluated in QMC as

ρ(r) ≈ ρ̄(r) =

∑M
m=1 wmρ(Rm)∑M

m=1 wm
, (403)

where {Rm}Mm=1 are the M configurations visited during the simulation and wm is the weight of each
of them, which is constant in VMC and varies from configuration to configuration in DMC. The
‘approximately equal’ sign becomes an ‘equal’ sign in the limit of perfect sampling, that is, when
M →∞.

We can identify
∑
i δ(ri − r) with ρ(R), resulting in

ρ(r) ≈ ρ̄(r) =

∑M
m=1

∑
i wmδ(ri,m − r)∑M
m=1 wm

. (404)

However, Eq. (404) is not useful for accumulating ρ̄(r) since Dirac delta functions cannot be evaluated
outside an integral.

We overcome this by accumulating data in bins of finite width. Let us partition three-dimensional
space into Nexp disjoint regions or bins {Ωp}, and let us define the step function

Θp(r) =

{
1 if r ∈ Ωp

0 if r /∈ Ωp
. (405)

Denoting the volume of region Ωp by the same symbol, Ωp, we can construct an orthogonal functional

basis hp(r) = Ω
−1/2
p Θp(r). Then, Eq. (404) becomes

ρ̄(r) ≈
Nexp∑
p=1

∑M
m=1

∑
i wmΘp(ri,m)

Ωp

∑M
m=1 wm

Θp(r) , (406)

that is, the function inside Ωp is approximated by a single value

ρp =

∑M
m=1

∑
i wmΘp(ri,m)

Ωp

∑M
m=1 wm

. (407)

When plotting a binned estimator, it is convenient to draw a single point per bin rather than a
horizontal line, and this point should be located at the geometrical centre of the bin,

rp =
1

Ωp

∫
Ωp

rdr . (408)

If any symmetry constraints are imposed, e.g., the function is spherically symmetric and it is accu-
mulated in spherical bins along a radial grid, the above expression should be modified so that the
integrand remains the coordinate on the left-hand side. For example, to calculate the radius rp at
which we should plot ρp ≈ ρ̄(rp) in the spherical annulus Ωp, we would use the expression

rp =
1

Ωp

∫
Ωp

rdr =
4π

4π (b3 − a3) /3

∫ b

a

r3dr =

(
b4 − a4

)
/4

(b3 − a3) /3
=

3

4

b3 + b2a+ ba2 + a3

b2 + ba+ a2
, (409)

where a and b are the inner and outer radii of Ωp, respectively.

Using similar analysis, we can calculate the standard error in ρ̄, σρ̄(r), given by

σ2
ρ̄(r) =

∑M
m=1 wm(ρ(Rm)− ρ̄(Rm))

2

M

(∑M
m=1 wm −

∑M

m=1
w2
m∑M

m=1
wm

) . (410)

Note that contribution to the error from serial correlation has been neglected; the configurations are
assumed to be independent.

235

We are also interested in expectation values that represent a quantity associated with the relative
vectorial position of two particles (the ith and the jth particles, for instance) being fixed at r, such
as the intracule density, h(r).

The spherical average of the intracule density, hsph(r) is

hsph(r) =
1

2

1

4πr2

∑
i6=j

∫
f(R)δ(|rij | − r)dR∫

f(R)dR
, (411)

such that
∫

4πr2hsph(r)dr = N(N − 1)/2.

This accumulation process in this case is analogous to that in the single-particle case, and one only
needs to include a factor of 1/2 and replace ri with rij in the formulae in this section to adapt them
to the two-particle case.

The nth radial moment µn of a function g(r) is defined as

µn =

∫
|r|n g(r)dr = 4π

∫ ∞
0

rn+2gsph(r)dr . (412)

The moments of the charge density are given by g(r) = ρ(r) and the moments of the intracule density
are given by g(r) = h(r). They are calculated for n = −2,−1, 1, 2, 3 and written to rad mom.dat.

The systems we deal with usually contain several indistinguishable particles for which the expectation
value of any ri-dependent observable should give the same result. It is possible to take statistical
advantage of the presence of indistinguishable particles by averaging any QMC-accumulated quantities
over all particles of the same type.

Moreover, in cases where different particle classes are equivalent (e.g., when there are the same number
of up- and down-spin electrons in a system without magnetic fields, provided g(ri) does not itself
depend on the spin of the particles) one can average over classes as well.

For rij-dependent expectation values it is also possible to make use of the presence of indistinguishable
particles to achieve better statistics. In this case one has to average any QMC-accumulated quantities
over all particle pairs of the same relative type (e.g., all parallel-spin electron pairs).

This average has been omitted in this document for simplicity. However, it is important to do this in
practice for improved statistics.

34.2.3 Molecular density

K eywords: density or spin density in an aperiodic system (both produce the same thing).

The charge density may be accumulated by binning on a regular l × m × n mesh aligned with the
Cartesian axes, spanning a cuboid with diagonally opposite vertices at points A and B. The grid
dimensions l, m and n and the Cartesian coordinates of points A and B are specified in the ‘MOLEC-
ULAR DENSITY’ block in expval.data. One set is written out for each species of particle. The
plot expval utility will allow the user to perform spherical or cylindrical averaging of the molecular
charge density.

34.2.4 Spin-density matrix

K eywords: density or spin density in a non-collinear spin system (both produce the same thing).

The spin-density matrix is a two-by-two matrix which is the generalization of the spin density in a
noncollinear-spin system (see Sec. 37). It is diagonal for the case of collinear spins, with the two
diagonal elements being equal to the spin densities.

Let xi ≡ {ri, si}, where ri and si are the spatial and spin coordinates of electron i. We use the
notation

∫
f(x) dx ≡

∑
s

∫
f({r, s}) dr.

The spin-density matrix is defined as

ρsdm(r; s, s′) =
N
∫

Ψ∗({r, s′},x2, . . . ,xN)Ψ({r, s},x2, . . . ,xN) dx2 . . . dxN∫
|Ψ|2 dx1 . . . dxN

. (413)

Note that ρsdm(r; s, s′) = ρ∗sdm(r; s′, s).

236

The diagonal elements of the spin-density matrix, which are real, give the spin density:

ρs(r; s) = ρsdm(r; s, s). (414)

The magnetization density operator is defined as

M̂(r) = 2
∑
i

δ(r− ri)ŝi, (415)

where ŝi is the spin operator for electron i. Let M(r) = 〈M̂(r)〉.
So

Mz(r) =
2
∑
i

∫
Ψ∗δ(r− ri)ŝizΨ dx1 . . . dxN∫
|Ψ|2 dx1 . . . dxN

=
2N
∑
s1

∫
Ψ∗({r, s1},x2, . . . ,xN)ŝ1zΨ({r, s1},x2, . . . ,xN) dx2 . . . dxN∫

|Ψ|2 dx1 . . . dxN

= N

∫
|Ψ({r, ↑},x2, . . . ,xN)|2 dx2 . . . dxN −

∫
|Ψ({r, ↓},x2, . . . ,xN)|2 dx2 . . . dxN∫

|Ψ|2 dx1 . . . dxN

= ρsdm(r; ↑, ↑)− ρsdm(r; ↓, ↓) = ρ↑(r)− ρ↓(r). (416)

We also have

Mx(r) =
2
∑
i

∫
Ψ∗δ(r− ri)ŝixΨ dx1 . . . dxN∫
|Ψ|2 dx1 . . . dxN

= N

∑
s1

∫
Ψ∗({r, s1},x2, . . . ,xN)[ŝ1+ + ŝ1−]Ψ({r, s1},x2, . . . ,xN) dx2 . . . dxN∫

|Ψ|2 dx1 . . . dxN

= N

[∫
Ψ∗({r, ↑},x2, . . . ,xN)Ψ({r, ↓},x2, . . . ,xN) dx2 . . . dxN∫

|Ψ|2 dx1 . . . dxN

+
∫

Ψ∗({r, ↓},x2, . . . ,xN)Ψ({r, ↑},x2, . . . ,xN) dx2 . . . dxN∫
|Ψ|2 dx1 . . . dxN

]
= ρsdm(r; ↓, ↑) + ρsdm(r; ↑, ↓) = 2Re [ρsdm(r; ↓, ↑)] , (417)

where we have used the raising and lowering properties of the ladder operators ŝ+ = ŝx + iŝy and
ŝ− = ŝx − iŝy. In a similar fashion,

My(r) = 2Im [ρsdm(r; ↓, ↑)] . (418)

To evaluate the spin-density matrix in VMC, we rewrite it as

ρsdm(r; s, s′) =
∑
i

∫
|Ψ|2 δ(r− ri) δsi,s′

Ψ(...,{ri,s},...)
Ψ(...,{ri,s′},...) dx1 . . . dxN∫

|Ψ|2 dx1 . . . dxN

=

〈∑
i

δ(r− ri) δsi,s′
Ψ(. . . , {ri, s}, . . .)
Ψ(. . . , {ri, s′}, . . .)

〉
. (419)

In practice we gather the Fourier components of the spin-density matrix, which are

ρ̃sdm(G; s, s′) =
1

Ω

〈∑
i

exp(−iG · ri) δsi,s′
Ψ(. . . , {ri, s}, . . .)
Ψ(. . . , {ri, s′}, . . .)

〉
, (420)

where G is a reciprocal lattice vector of the simulation cell.

After each configuration move, we can evaluate a contribution to two out of the four components of
ρ̃sdm for each electron. Given that the ith electron has spin value si, we can record ρ̃sdm(G; s, si) for
both values of s by evaluating the ratio of the wave functions for those two values.

Casino evaluates the Fourier components of the spin-density matrix if the spin density keyword is
set to T in a noncollinear-spin calculation. The Fourier components are stored in the expval.data

file. The plot expval utility reads the Fourier components in the expval.data file and enables the
user to plot the components of the spin-density matrix along lines in real space. It also asks the user
if he or she wishes to plot the components of the magnetization density along lines in real space.

237

34.3 Reciprocal-space and spherical real-space pair-correlation functions

K eywords: pair corr, pair corr sph

The two-particle density matrix is defined as

γ
(2)
αβ (r, r′; r′′, r′′′) = Nα(Nβ − δαβ)

∫
Ψ∗(r, r′, r3, . . . , rN)Ψ(r′′, r′′′, r3, . . . , rN) dr3 . . . drN∫

Ψ∗(r1, r2, . . . , rN)Ψ(r1, r2, . . . , rN) dR
, (421)

where r and r′′ are α-spin electron coordinates and r′ and r′′′ are β-spin electron coordinates. The
diagonal elements of the two-particle density matrix,

γ
(2)
αβ (r, r′; r, r′) = Nα(Nβ − δαβ)

∫
Ψ∗(r, r′, r3, . . . , rN)Ψ(r, r′, r3, . . . , rN) dr3 . . . drN∫

Ψ∗(r1, r2, . . . , rN)Ψ(r1, r2, . . . , rN) dR
, (422)

are of special interest. The normalization has been chosen so that∫
γ

(2)
αβ (r, r′; r, r′) dr dr′ = Nα(Nβ − δαβ). (423)

The sum over spin indices gives ∑
αβ

Nα(Nβ − δαβ) = N(N − 1), (424)

where N = Nα +Nβ .

The pair correlation functions, gαβ(r, r′), are related to the diagonal elements of the two-particle
density matrix by

γ
(2)
αβ (r, r′; r, r′) = nα(r)nβ(r′) gαβ(r, r′). (425)

The pair correlation functions are given by

gαβ(r, r′) =
1

nα(r)nβ(r′)

∫
|Ψ|2

∑Nα
i=1 δ(r

Nα
i=1 − r)

∑Nβ
j=1 (j 6=i if α=β) δ(rjβ − r′) dR∫
|Ψ|2 dR

(426)

=
Nα(Nβ − δαβ)

nα(r)nβ(r′)

∫
|Ψ|2δ(riα − r) δ(rjβ − r′) dR∫

|Ψ|2 dR
. (427)

34.3.1 The total or spin-averaged pair correlation function

g(r, r′) =
∑
α,β

nα(r)nβ(r′)

n(r)n(r′)
gαβ(r, r′). (428)

34.3.2 Properties of the pair correlation functions

The pair correlation functions satisfy the following properties:

gαβ(r, r′) ≥ 0 (429)

gαβ(r, r′) = gβα(r′, r) (430)

gαβ(r, r′) = 0 for α = β, r = r′ (431)∫
nβ(r′) [gαβ(r, r′)− 1] dr′ = −δαβ . (432)

34.3.3 Homogeneous and isotropic systems

Suppose we specialize to a homogeneous and isotropic system where gαβ(r, r′) = gαβ(|r−r′|) = gαβ(r),
and nα(r) = Nα/Ω, where Ω is the volume of the simulation cell. Performing a translational average
of gαβ we obtain

gαβ(r) =
1

Ω

∫
gαβ(r′′, r′′′) δ(r′′ − r′′′ − r) dr′′dr′′′ (433)

=
Ω

NαNβ

∫
|Ψ|2

∑Nα
i=1

∑
j=1 (j 6=i if α=β) δ(riα − rjβ − r) dR∫

|Ψ|2 dR
. (434)

238

Performing a rotational average we obtain

gαβ(r) =
1

4πr2

∫
gαβ(r′) δ(|r′| − r) dr′ (435)

=
Ω

4πr2NαNβ

∫
|Ψ|2

∑Nα
i=1

∑Nβ
j=1 (j 6=i if α=β) δ(|riα − rjβ | − r) dR∫

|Ψ|2 dR
. (436)

The rotationally and translationally averaged pair correlation functions can be evaluated by collecting
in bins; see Sec. 34.3.5.

The sum rule of Eq. (432) gives

Nβ
Ω

∫
[gαβ(r)− 1] 4πr2 dr = −δαβ . (437)

34.3.4 Translational and rotational averaging of gαβ(r, r′)

The translational average of gαβ(r, r′) is

gαβ(r) =
1

Ω

∫
gαβ(r′′, r′′′) δ(r′′ − r′′′ − r) dr′′ dr′′′ (438)

=
1

Ω

∫ |Ψ|2∑Nα
i=1 δ(riα − r′′)

∑Nβ
j=1 (j 6=i if α=β) δ(rjβ − r′′′) δ(r′′ − r′′′ − r) dr′′ dr′′′∫

|Ψ|2 dR nα(r′′)nβ(r′′′)
dR(439)

=
1

Ω

∫ |Ψ|2∑Nα
i=1

∑Nβ
j=1 (j 6=i if α=β) δ(riα − rjβ − r)∫

|Ψ|2 dR nα(riα)nβ(rjβ)
dR. (440)

The rotational average of gαβ(r) is

gαβ(r) =
1

4πr2Ω

∫
gαβ(r′) δ(|r′| − r) dr′ (441)

=
1

4πr2Ω

∫ |Ψ|2∑Nα
i=1

∑Nβ
j=1 (j 6=i if α=β) δ(|riα − rjβ | − r)∫

|Ψ|2 dR nα(riα)nβ(rjβ)
dR. (442)

As well as the above averages one can calculate the pair correlation gαβ(r, r′) where an electron of
spin α is fixed at a particular position r. Suppose we write gαβ(r′, r′) as

gαβ(r, r′) =

∫
|Ψ|2

∑Nα
i=1 δ(riα − r)

∑Nβ
j=1 (j 6=i if α=β) δ(rjβ − r′) dR∫

|Ψ|2
∑Nα
i=1 δ(riα − r) dRnβ(r′)

(443)

=
Nα(Nβ − δαβ)

Nα

∫
|Ψ|2δ(r1α − r)δ(r2β − r′) dR∫
|Ψ|2δ(r1α − r) dR nβ(r′)

. (444)

We now define the probability distribution |ΨF|2 as

|ΨF|2 =

∫
|Ψ|2δ(r1α − r) dr1α. (445)

Writing Eq. (443) in terms of |ΨF|2 we obtain

gαβ(r, r′) = (Nβ − δαβ)

∫
|ΨF|2δ(r2β − r′) dr2 . . . drN∫
|ΨF|2 dr2 . . . drN nβ(r′)

(446)

=
nαβ(r, r′)

nβ(r′)
, (447)

where nαβ(r, r′) is the charge density of the Nβ−δαβ electrons of spin β calculated with an electron of
spin α held fixed at r. We can now average gαβ(r, r′) over the surface of a sphere of radius ρ centred
on r. The vector r′ − r can be written in spherical polar coordinates as (ρ, θ, φ). The required pair
correlation function is then

gF
αβ(r, ρ) =

1

4πρ2

∫
gαβ(r, r′) δ(|r′ − r| − ρ) dΩ, (448)

239

where dΩ = sin θ dθ dφ. This gives

gF
αβ(r, ρ) =

1

4πρ2

∫
gαβ(r, r′) δ(|r′ − r| − ρ) dΩ (449)

=
1

4πρ2

∫
|ΨF|2

∑Nβ−δαβ
j=1 δ(|rjβ − r′| − ρ) dr2 . . . drN∫

|ΨF|2 dr2 . . . drN nβ(r′)
dΩ. (450)

This type of averaging was used by Maezono et al. [97]. The pair correlation functions can be evaluated
in ρ bins for each r of interest. Equations (440), (442) and (450) contain one or two charge densities
in the denominator. When one or both of these charge densities is very small there will be a large
amount of noise in the quantity evaluated. We expect gαβ(r, r′) to tend to 1 − δαβ/Nβ as r − r′

becomes large, while for small values of r− r′ we expect it be less than one. One strategy for coping
with the noise would be to set a lower limit on the charge density nβ(r′) below which the contribution
to Eq. (450) is not accumulated.

34.3.5 Collecting in bins

Assume the system is homogeneous and isotropic. The pair correlation function gαβ(r) can be collected
in bins of width ∆, giving

gαβ(rn) =
Ω

Ωn

〈
Nn
αβ

NαNβ

〉
, (451)

where Nn
αβ is the number of α, β-spin pairs whose separation falls within the nth bin (the pairs iα, jα

and jα, iα should be counted separately, and similarly for the parallel β-spins), and Ωn is the volume
of the nth bin. Note that if we consider a single bin, so that Ω = Ωn, then Nn

αβ = Nα(Nβ − δαβ).
This confirms that the normalization of Eq. (451) is correct, but note that our formulae disagree with
Eq. (35) of Ortiz and Ballone [98].

The volume of the nth bin, Ωn, is given by

Ωn =
4

3
π
[
n3 − (n− 1)

3
]

∆3 = 4π
(
n2 − n+ 1/3

)
∆3. (452)

One could define rn to be the centre of the nth bin, but a better choice is [99]

rn =
3∆

4

[n4 − (n− 1)
4
]

[n3 − (n− 1)
3
]

=
3∆

4

[4n3 − 6n2 + 4n− 1]

[3n2 − 3n+ 1]
. (453)

If g were to be linear across each bin and if g were sampled exactly without statistical error then Eqs.
(451) and (452) would reproduce the exact value at each point rn.

In two dimensions one requires the area of the nth circular strip,

An = π
[
n2 − (n− 1)

2
]

∆2 = π∆2(2n− 1). (454)

We want to average f(r) = ar + b over a strip, and find the corresponding radius rn. Therefore

f(rn) =

∫ n∆

(n−1)∆
f(r) 2πr dr∫ n∆

(n−1)∆
2πr dr

=
[1
3ar

3 + 1
2br

2]
n∆

(n−1)∆

[1
2r

2]
n∆

(n−1)∆

= a
2[(n∆)

3 − ((n− 1)∆)
3
]

3[(n∆)
2 − ((n− 1)∆)

2
]

+ b

= arn + b.

Hence

rn =
2∆

3

[n3 − (n− 1)
3
]

[n2 − (n− 1)
2
]

=
2∆

3

[3n2 − 3n+ 1]

[2n− 1]
. (455)

240

34.4 Structure factor and spherically averaged structure factor

K eywords: structure factor, struc factor sph

One may define the following correlation function,

S′αβ(r, t; r′, t′) = 〈Ψ|ρα(r, t)H ρβ(r′, t′)H |Ψ〉, (456)

where ρ is the density operator, and the subscript H denotes that we are using the Heisenberg picture.
In fact one normally considers a modified correlation function

Sαβ(r, t; r′, t′) = 〈Ψ|ρα(r, t)H ρβ(r′, t′)H |Ψ〉 − nα(r)nβ(r′), (457)

because S tends to zero as |t− t′| → ∞, so that the Fourier transform of S exists in the time domain.
S is known as the structure factor. We are mostly interested in the static structure factor, which is
Eq. (457) evaluated at equal times,

Sαβ(r, r′) = 〈Ψ|ρα(r)H ρβ(r′)H |Ψ〉 − nα(r)nβ(r′), (458)

which has the form of a covariance. The covariance might show a lower variance than the individual
terms in Eq. (458), so it might be better to evaluate them together. Note that as |r − r′| → ∞ we
expect the electrons to be uncorrelated, so that in this limit Sαβ(r, r′) → 0. The static structure
factor can be written as

Sαβ(r, r′) =

∫
|Ψ|2

∑Nα
i=1 δ(riα − r)

∑Nβ
j=1 δ(rjβ − r′) dR∫

|Ψ|2 dR
− nα(r)nβ(r′). (459)

34.4.1 Relationship between Sαβ and gαβ

The static structure factor is related to the pair correlation function by

Sαβ(r, r′) = nα(r)nβ(r′) [gαβ(r, r′)− 1] + nα(r)δαβ δ(r− r′), (460)

see Dreizler and Gross, page 276. Using Eq. (432) we find that Sαβ(r, r′) satisfies∫
Sαβ(r, r′) dr dr′ = 0. (461)

The Fourier transform of Sαβ is

S̃αβ(k,k′) =
1

Ω2

∫
Sαβ(r, r′) eik·reik

′·r′ dr dr′ (462)

= 〈ρ̃α(k)ρ̃β(k′)〉 − ñα(k)ñβ(k′). (463)

The translational average of Sαβ(r, r′) is

Sαβ(r) =
1

Ω

∫
Sαβ(r′′, r′′′) δ(r′′ − r′′′ − r) dr′′dr′′′ (464)

=
1

Ω

∫
|Ψ|2

∑Nα
i=1

∑Nβ
j=1 δ(riα − rjβ − r) dR∫
|Ψ|2 dR

− 1

Ω

∫
nα(r′)nβ(r′ − r) dr′. (465)

The first term in Eq. (465) is the translational average of nα(r)nβ(r′)gαβ(r, r′) + nα(r)δαβ δ(r − r′),
while the second is the translational average of −nα(r)nβ(r′). Sαβ(r) satisfies∫

Sαβ(r) dr = 0. (466)

The Fourier transform of Sαβ(r) is

S̃αβ(k) =
1

Ω

∫
Sαβ(r) eik·r dr (467)

=
1

Ω2
〈ρ̃α(k)ρ̃β(−k)〉 − 1

Ω2
ñα(k)ñβ(−k) (468)

=
1

Ω2
S̃αβ(k,−k), (469)

241

as expected from Eq. (384). Using Eqs. (463) and (469) one can show that S̃αβ(k = 0,k′ = 0) = 0

and S̃αβ(k = 0) = 0.

The rotational average of Sαβ(r) is

Sαβ(r) =
1

4πr2Ω

∫
Sαβ(r′) δ(|r′| − r) dr′ (470)

=
1

4πr2Ω

∫
|Ψ|2

∑Nα
i=1

∑Nβ
j=1 δ(|riα − rjβ | − r) dR∫
|Ψ|2 dR

(471)

− 1

4πr2Ω

∫
nα(r′′)nβ(r′′ − r′) δ(|r′| − r) dr′dr′′. (472)

The Fourier transform of Sαβ(r) is

Sαβ(k) =
1

Ω2

∫
|Ψ|2

∑Nα
i=1

∑Nβ
j=1

sin(k|riα−rjβ |)
k|riα−rjβ | dR∫

|Ψ|2 dR
(473)

−4π

Ω

∑
G

1

kG
ñα(G) ñβ(−G)

∫ ∞
0

sin(kr) sin(Gr) dr. (474)

Unfortunately the integral in the second term is undefined. However, we can use the argument that,
for large enough r, Sαβ(r)→ 0 because the effects of exchange and correlation will tend to zero. The
Fourier transforms of Sαβ(r) and Sαβ(r) are therefore well defined. The contributions from the first
and second terms in Eq. (472) must therefore cancel at large distances. In practise we will include
only pairs of particles whose separation is within the radius of the sphere inscribed in the WS cell
of the simulation cell, LWS. We can therefore include only pairs of particles whose separation is less
than LWS and set the upper limit on the integral to LWS, in which case it can be evaluated,∫ LWS

0

sin(kr) sin(Gr) dr =
1

2

[
sin(k −G)LWS

k −G
− sin(k +G)LWS

k +G

]
. (475)

For k − G small or k + G small the relevant sin function should be expanded, as described by Rene
Gaudoin. In this method pairs of electrons in the ‘corners’ of the WS cell whose separation is larger
than LWS are not included so that Sαβ(k = 0) 6= 0. This would need to be corrected afterwards. The
structure factor Sαβ(k) should satisfy

Sαβ(k →∞)→ δαβ . (476)

34.4.2 Homogeneous and isotropic systems

For a homogeneous and isotropic system, we have from Eq. (460),

SH
αβ(r) =

Nα
Ω

Nβ
Ω

[gαβ(r)− 1] + δαβ δ(r)
Nα
Ω
. (477)

The Fourier transform of SH
αβ(r) is

SH
αβ(k) =

1

Ω

∫ [
Nα
Ω

Nβ
Ω

[gαβ(r)− 1] + δαβ δ(r)
Nα
Ω

]
eik·r dr (478)

=
1

Ω

∫
Nα
Ω

Nβ
Ω

[gαβ(r)− 1] eik·r dr + δαβ
Nα
Ω2

. (479)

As the system is homogeneous and isotropic SH
αβ(k) is a function of k only, and we have

SH
αβ(k) =

1

Ω

∫
Nα
Ω

Nβ
Ω

[gαβ(r)− 1] 4πr2 sin(kr)

kr
dr + δαβ

Nα
Ω2

. (480)

Using the sum rules of Eq. (437) we find that

SH
αβ(k = 0) = 0 (481)

SH
αβ(k →∞) → δαβ

Nα
Ω2

. (482)

242

34.5 One-body density matrix, two-body density matrix and condensate
fraction

K eywords: onep density mat, twop density mat, cond fraction

Density matrices are important tools to determine properties of systems, such as the phase of an
electron–hole system.

34.5.1 Definition of the density matrices

The one-body density matrix (OBDM) is defined as

ρ(1)
α (r1; r′1) = Nα

∫
|Ψ(R)|2 Ψ(r′1)

Ψ(r1)dr2 . . . drN∫
|Ψ(R)|2 dR

, (483)

and the two-body density matrix (TBDM) is

ρ
(2)
αβ(r1, r2; r′1, r

′
2) = Nα(Nβ − δαβ)

∫
|Ψ(R)|2 Ψ(r′1,r

′
2)

Ψ(r1,r2)dr3 . . . drN∫
|Ψ(R)|2 dR

, (484)

where α and β are the spin indices (or particle indices, in general) corresponding to r1 and r2,
respectively, and the irrelevant dependencies of the wave function have been omitted (i.e., Ψ(r′1, r

′
2) ≡

Ψ(r′1, r
′
2, r3, . . . , rN)). Normalization is such that∑

α

∫
ρ(1)
α (r1; r′1)δ(r1 − r′1)dr1dr

′
1 = N , (485)

and ∑
αβ

∫
ρ

(2)
αβ(r1, r2; r′1, r

′
2)δ(r1 − r′1)δ(r2 − r′2)dr1dr2dr

′
1dr
′
2 = N(N − 1) . (486)

We are interested in the QMC accumulation of the density matrices for the case of an isotropic,
homogeneous system. Hence we require the translational and rotational average of Eqs. (483) and
484. The translational average is

ρ(1)
α (r′) =

Nα
Ω

∫
|Ψ(R)|2 Ψ(r1+r′)

Ψ(r1) dR∫
|Ψ(R)|2 dR

, (487)

and

ρ
(2)
αβ(r′) =

Nα(Nβ − δαβ)

Ω2

∫
|Ψ(R)|2 Ψ(r1+r′,r2+r′)

Ψ(r1,r2) dR∫
|Ψ(R)|2 dR

, (488)

where Ω is the volume of the simulation cell. The rotational average of Eqs. (487) and (488) is

ρ(1)
α (r) =

Nα
ΩS(r)

∫
|Ψ(R)|2 Ψ(r1+r′)

Ψ(r1) δ(|r′| − r)dRdr′∫
|Ψ(R)|2 dR

, (489)

and

ρ
(2)
αβ(r) =

Nα(Nβ − δαβ)

Ω2S(r)

∫
|Ψ(R)|2 Ψ(r1+r′,r2+r′)

Ψ(r1,r2) δ(|r′| − r)dRdr′∫
|Ψ(R)|2 dR

, (490)

where S(r) is 4πr2 in 3D, 2πr in 2D and 1 in 1D.

34.5.2 QMC accumulation

The integral over R in Eqs. (487) and 488 can be approximated by a Monte Carlo average, using∫
|Ψ(R)|2 f(R)dR∫
|Ψ(R)|2 dR

=
1

M

M∑
i=1

f(Ri) , (491)

243

where {Ri}i=Mi=1 is a set of configurations distributed according to |Ψ(R)|2.

The estimate of the value of the rotational average of a function f(r) in the bth bin Ωb, is

fb =

∫ rb
rb−1

[∫
f(r′)δ(|r′| − r)dr′

]
dr∫ rb

rb−1
S(r)dr

=

∫
Ωb
f(r′)dr′∫
Ωb
dr′

=
1

mb

mb∑
i=1

f(r′i) , (492)

where {r′i} is a set of points uniformly distributed in the simulation cell, and mb is the number of
such points falling into the bth bin.

Hence the estimate of the translational-rotational average of the OBDM is

ρ(1)
α (rb) ≈

Nα
ΩMmb

M∑
i=1

mb∑
j=1

Ψ(ri1 + r′j)

Ψ(ri1)
, (493)

and for the TBDM we have

ρ
(2)
αβ(rb) ≈

Nα(Nβ − δαβ)

Ω2Mmb

M∑
i=1

mb∑
j=1

Ψ(ri1 + r′j , r
i
2 + r′j)

Ψ(ri1, r
i
2)

. (494)

In order to improve the statistics, one can take advantage of the antisymmetry of the wave function.

34.5.3 Condensate fraction

A well-known limit of the fermionic TBDM for α 6= β and Nα = Nβ is [100, 101]

lim
|r|→∞

ρ
(2)
αβ(r1, r2; r1 + r, r2 + r) = cNα|ϕ(|r2 − r1|)|2 , (495)

where c is the condensate fraction and ϕ(r) is a function such that
∫
|ϕ(r)|2dr = 1/Ω. The OBDM is

zero in this limit.

Applying the limit to Eq. (490) and substituting, we can estimate c as

c =
Ω2

Nα
lim
r→∞

ρ
(2)
αβ(r) . (496)

34.5.4 Improved estimators

Consider a system of two distinguishable particles with wave function Ψ(r1, r2) = φ(r1)φ(r2). The
two particles are independent from one another. Equations (483) and 484 can combined, giving

ρ
(2)
αβ(r1, r2; r1 + r′, r2 + r′) = ρ(1)

α (r1; r1 + r′)ρ
(1)
β (r2, r2 + r′) , (497)

from which we can see that in the independent-particle case the TBDM does nothing but reflect the
one-body properties of the system.

An opposite example is a system of two completely paired particles with wave function Ψ(r1, r2) =
δε(r1 − r2), where δε(r) is a localized function of range ε that tends to the Dirac delta as ε → 0. In
this case, the OBDM is zero for all |r′| > ε, whereas the TBDM is

ρ
(2)
αβ(r1, r2; r1 + r′, r2 + r′) =

|Ψ(r1, r2)|2∫
|Ψ(r1, r2)|2 dr1dr2

. (498)

In this case the value of the TBDM is completely due to two-body effects.

To improve the estimation of the condensate fraction c it is necessary to eliminate the one-body
effects of the form of Eq. (497), while keeping the pure two-body effects of Eq. (498) intact. One such

approach [102] is to subtract ρ
(1)
α (r1; r1 + r′)ρ

(1)
β (r2, r2 + r′) from ρ

(2)
αβ(r1, r2; r1 + r′, r2 + r′). It is

clear from Eq. (497) that this removes one-body effects, and does not bias the value of c because the
OBDM is zero when Eq. (495) holds. The condensate fraction could then be estimated as

c =
Ω2

Nα
lim
r→∞

{
ρ

(2)
αβ(r)−

[
ρ(1)
α (r)ρ

(1)
β (r)

]}
, (499)

244

where the approximation
[
ρ

(1)
α (r)ρ

(1)
β (r)

]R
≈ ρ(1)

α (r)ρ
(1)
β (r) has been used.

Another method, proposed here, is to define a modified TBDM,

ρ̃
(2)
αβ(r1, r2; r′1, r

′
2) = Nα(Nβ − δαβ)

∫
|Ψ(r1, r2)|2

[
Ψ(r′1,r

′
2)

Ψ(r1,r2) −
Ψ(r′1,r2)
Ψ(r1,r2)

Ψ(r1,r
′
2)

Ψ(r1,r2)

]
dr3 . . . drN∫

|Ψ(R)|2 dR
, (500)

and compute the condensate fraction as

c =
Ω2

Nα
lim
r→∞

ρ̃
(2)
αβ(r) , (501)

which also achieves the same purposes, but benefits from correlated sampling and is somewhat cheaper
to evaluate, as the wave function updates required for the OBDM can be re-used in the evaluation of
the TBDM.

The three condensate fraction estimators have been computed for a two-dimensional electron–hole
bilayer (rs = 5, d = 1, Ne = Nh = 58), and are represented in the figure below. From top to bottom,
the TBDM estimator [Eq. (496)], the TBDM-OBDM estimator [Eq. (499)], and the modified-TBDM
estimator [Eq. (501)]. The advantages of Eq. (501) are evident in the short-range region, while the
long-range region seems to display a slightly noisier behaviour than the other two.

0 1 2 3 4 5 6 7
r/r

s

0

0.5

(Ω2
/Nα) ρ’αβ

(2)TR
(r)

0

0.5

C
on

de
ns

at
e

fr
ac

tio
n

es
tim

at
or

s

(Ω2
/Nα) [ραβ

(2)TR
(r)-ρα

(1)TR
(r)ρβ

(1)TR
(r)]

0

0.5

(Ω2
/Nα) ραβ

(2)TR
(r)

34.5.5 Speed issues

The condensate fraction is very expensive to calculate. The accumulation parameters can be tuned
to reduce the cost of the run. Unfortunately due to the design of the expval.data file format the
process is somewhat fiddly.

You will need to:

• Starting from an existing expval.data file, delete the CONDENSATE FRACTION block and
replace it with:

START CONDENSATE FRACTION

Accumulation carried out using

DMC

Number of sets

1

245

Number of bins

100

Number of random points to sample

20

Fraction of particle pairs to sample at random

0.0500

START SET 1

Number of particle-pair types in set

4

Particle-pair types

1 3 2 3 1 4 2 4

Weight(r),CF(r)**2,CF(r)

END SET 1

END CONDENSATE FRACTION

This will only accumulate the electron-hole expectation value and ignore the electron-electron
and hole-hole components which are computed by default.

• In the above we have modified the ‘Fraction of particle pairs’ parameter. By default, the
code goes over all 582 (=3364) electron-hole pairs, but it can go over a random sample of them
instead. With the above ‘Fraction of particle pairs’ value of 0.05, the code will sample a
random 5% of the 582 electron-hole pairs (=168) at each step, reducing the cost of the evaluation
per DMC step by a factor of 20. This will also affect the statistics of the result, of course, but
overall it is advantageous to use a value much less than 1.0 here.

• If you want, modify the ‘Number of random points’ parameter. This controls the number of
random electron-hole pair displacements sampled for each electron-hole pair at each step. In
our opinion the default value of 20 is generally sensible.

• If you want more or less resolution in the final plot, change the ‘Number of bins’ from 100
to whichever value you’d like. The finer the grid, the poorer the statistics. In my opinion the
default value of 100 is generally sensible.

• If you are accumulating any other expectation values in the expval.data file, make sure you
delete the data lines in all sets, as above, to start the accumulation afresh.

• Make a copy of expval.data in case you need to start over, since expval.data is overwritten
when casino is run.

• Now run your calculation.

Note that this assumes that you are accumulating the cond fraction estimator, which is a non-
standard estimator with clear statistical advantages near the origin, but tends to exhibit outliers
in the tail (the important bit to compute the condensate fraction) and has never been used in the
literature. It is also possible to accumulate the standard estimator by toggling the onep density mat
and twop density mat input keywords. If you choose to plot the two-body density matrix in the
plot expval utility, it will offer to subtract the one-particle density matrix, giving the standard
estimator of the condensate fraction. You may want to modify the default accumulation parameters
for these expectation values as above, giving:

START ONE-PARTICLE DENSITY MATRIX

Accumulation carried out using

DMC

Number of sets

2

Number of bins

100

Number of random points to sample

20

START SET 1

Number of particle types in set

2

Particle types

1 2

246

Weight(r),OBDM(r)**2,OBDM(r)

END SET 1

START SET 2

Number of particle types in set

2

Particle types

3 4

Weight(r),OBDM(r)**2,OBDM(r)

END SET 2

END ONE-PARTICLE DENSITY MATRIX

START TWO-PARTICLE DENSITY MATRIX

Accumulation carried out using

DMC

Number of sets

1

Number of bins

100

Number of random points to sample

20

Fraction of particle pairs to sample at random

0.0500

START SET 1

Number of particle-pair types in set

4

Particle-pair types

1 3 2 3 1 4 2 4

Weight(r),TBDM(r)**2,TBDM(r)

END SET 1

END TWO-PARTICLE DENSITY MATRIX

34.6 One- and two-body momentum densities

K eywords: mom den, twop dm mom, cond fraction mom

The one-body and two-body momentum densities are the Fourier transforms of the one- and two-body
density matrices, respectively, and are explicitly calculated as such. Note that it is not a good idea to
Fourier-transform the spherical real-space version of these expectation values described above, because
they ignore the “corners” of the simulation cell, biasing the small-k limit of the Fourier transforms.
The momentum-space version of these expectation values does not have this problem.

The k-vectors of the transformation are the reciprocal-lattice vectors of the simulation cell. Notice
that for a homogeneous system these vectors are affected by keyword k offset, hence running different
accumulations with different k offset values allows evaluating the momentum density on an arbitrarily
fine grid.

34.7 Localization tensor

K eyword: loc tensor

An early success of quantum mechanics was to explain the distinction between metal and non-metal
using band theory. The system is metallic if the conduction and valence band overlap and more than
one band is partly filled, while in non-metallic systems all the bands are fully occupied or empty.
Exceptions arise in some systems in which the band is partially filled but the Coulomb interaction
between the electrons is sufficiently strong that the electrons are localized. An alternative view to
band theory would help to distinguish the character of the system. It is argued by Kohn [103] that
the system is insulating as a result of wave function localization in the configuration space. The
development of the Berry-phase theory of polarization [104, 105, 106, 107, 108] further advanced
Kohn’s idea and provided tools to measure the localization of the electrons and the polarization. This
Berry-phase approach solves the problem that the polarization is ill-defined in an extended system by
computing the quantity directly from the many-body wave function instead of the electron positions.
Souza and Martin [107] provided the expressions for the localization tensor and the polarization in
terms of a many-body Wannier wave function. This wave function is linked to Kohn’s wave function:

247

for an insulating system it is localized in configuration space in the thermodynamic limit. Souza
and Martin [107] also showed that the localization tensor is related to a frequency integral of the
conductivity. The conductivity formula implies that for a system with non-vanishing conductivity the
localization tensor is infinite, otherwise it has a finite value. In [109], the off-diagonal elements of the
localization tensor are used to calculate the DC conductivity in the transverse direction for a quantum
hall fluid.

The localization tensor and polarization are written in terms of a many-body operator

Z
(α)
N =

〈
Ψ|eiGα·X(Rm)|Ψ

〉
, (502)

where Gα is a simulation cell reciprocal lattice vector and X is the sum of electron positions
∑n
i=1ri

of a configuration Rm.

The Berry-phase polarization is given by

Pα =
N

V
〈rα〉c , (503)

where 〈rα〉c is the expectation value of the electron distribution given by

〈rα〉c =
1

NGα
=logZ

(α)
N . (504)

Equation (503) measures the polarization current of the system in response to an adiabatic change of
the Hamiltonian by approximating the Coulomb interaction as a first-order perturbation.

The localization tensor can be interpreted as a measure of the quadratic spread of a charge distribution.
This gives an indication of how well the electrons are localized in the simulation cell according to the
wave function. This is written as 〈

r2
α

〉
c

=
−1

NG2
α

log |Z(α)
N |

2 , (505)

where N is the number of electrons in the simulation cell.

The off-diagonal elements of the localization tensor are defined by

〈rαrβ〉c =
−1

NGαGβ
log
|Z(α)
N ||Z

(β)
N |

|Z(αβ)
N |

, (506)

where Z
(αβ)
N is defined as

〈
Ψ|e−i(Gα−Gβ)·X(Rm)|Ψ

〉
.

In QMC, the localization tensor and polarization are calculated from ZN with the periodic boundary
conditions imposed. This is done by summing the electron positions of each configuration Rm to
calculate e−iGα·X(Rm). This is then averaged over configurations generated by VMC or DMC to give
mean

z̄N =
1

M

M∑
m=1

ZN (Rm) , (507)

to ensure (507) tends to (502) and the statistical error is small, a large number of steps must be
taken to sample the configuration. The localization tensor diverges when ZN is zero. Numerically,
ZN would never be zero, but could become small so that the localization tensor becomes very large
when approaching metal-insulator transition from the insulating side [110]. As the difference between
z̄ and ZN (Rm) becomes large when approaching the divergence, it is often useful to examine the error
bar in ZN to determine when the localization tensor diverges.

The figure shows the localization length of a linear chain of antiferromagnetic hydrogen atoms as a
function of lattice spacing. The localization length has a maximum at 1.4 Å, indicating that the chain
becomes metallic at around this lattice spacing.

248

0 1 2 3 4 5
Lattice spacing (Å)

0

2

4

6

8

10
Lo

ca
liz

at
io

n
le

ng
th

 (B
oh

r^
2)

34.8 Dipole moment (molecules only)

K eyword: dipole moment

The electric dipole moment of a finite set of point charges of charge qi and position vector ri is defined
to be

p =
∑
i

qiri. (508)

It is easy to show that the value of p is independent of the origin if the overall system is electrically
neutral.

We may use QMC to estimate the mean dipole moment of a molecule by averaging p over the set of
configurations generated by the VMC or DMC algorithms. The mean value of |p|2 may be determined
in a similar fashion. This will be done if the dipole moment keyword is set to T in the input file.
The raw data will be written to the vmc.hist or dmc.hist file (not the expval.data file!) and the
error bars on components of the dipole moment should be evaluated using the reblock utility.

Note that the casino reblock utility reports only the components and not the magnitude of the dipole
moment in order to allow the user to decide how to deal with the symmetry. Suppose that symmetry
dictates the dipole moment will point in the x direction. The y and z components should be zero, but
there will be some noise when they are evaluated in QMC. If you work out |p| =

√
|px|2 + |py|2 + |pz|2

then you will get something larger than |px|, tending to |px| in the limit of perfect sampling (i.e., a
biased estimate with finite sampling). You will also get larger error bars on |p| than |p|x.

For an example application to the water molecule see J. Chem. Phys. 127, 124306 (2007).

34.9 Population

K eyword: population

The electronic charge within Voronoi polyhedra about the ions in a system with atoms can be calcu-
lated. This can be used to give an idea of the number of electrons associated with each ion.

For each electronic configuration sampled, for each ion I, casino will count the number nIα of electrons
of spin α for which I is the closest ion. The mean of nIα and n2

Iα are reported in the ‘population’
block in expval.data.

249

Health warning: population analysis is at best qualitative. Simple Voronoi partitioning of the charge
density does not necessarily lead to chemically sensible partial charges. A more accurate approach is
to use Voronoi deformation density analysis. For example, for an HCl molecule, one could calculate
the mean numbers of electrons in Voronoi polyhedra using casino for (i) HCl and (ii) HX, where
X is a null pseudopotential placed where the Cl nucleus used to be. The partial charge on H is the
difference of the two.

35 Atomic forces

The total atomic force is defined as the negative energy gradient with respect to the atomic position
within the Born-Oppenheimer approximation, where the atomic positions are treated as parameters
rather than dynamical variables. Section 35.1 states the force expression in VMC. Section 35.2 reports
the exact and approximate expressions for the forces in DMC under two different localization schemes.
Section 35.5 describes the implementation in casino and gives some practical advice.

35.1 Forces in the VMC method

We write the valence Hamiltonian for a many-electron system as

Ĥ = Ĥloc + Ŵ , (509)

where Ĥloc consists of the kinetic energy, the Coulomb interaction between the electrons and the
local pseudopotential, and Ŵ is the nonlocal pseudopotential operator. We now consider a general
parameter λ, e.g., a nuclear coordinate, which is used to vary the Hamiltonian, and upon which the
trial wave function ΨT depends. Taking the derivative of the VMC energy EVMC with respect to λ
gives

FVMC = −

∫
ΨTΨT

(
Ĥ′ΨT

ΨT

)
dV∫

ΨTΨT dV
− 2

∫
ΨTΨT(EL − EVMC)

Ψ′T
ΨT

dV∫
ΨTΨT dV

. (510)

We use the notation α′ = dα/dλ where α can be a function or an operator. The first term in Eq.
(510) is the Hellmann–Feynman theorem (HFT) force [111, 112] and the others are the Pulay terms
[113].

35.2 Forces in the DMC method

In the DMC method, we may use two different pseudopotential localization approximation (PLA)
schemes to evaluate the nonlocal action of Ŵ on the DMC wave function Φ. In these schemes Ĥ is
replaced by an effective Hamiltonian [114, 24],

ĤA = Ĥloc +
ŴΨT

ΨT
, ĤB = Ĥloc +

Ŵ+ΨT

ΨT
+ Ŵ−. (511)

The nonlocal pseudopotential operator Ŵ+ corresponds to all positive matrix elements 〈r′| Ŵ+ |r′〉,
and Ŵ− corresponds to all negative matrix elements [24], where r is the 3N -dimensional position
vector for the N -electron system and N is the total number of electrons. Following Ref. [115], these
two approximations are referred to as the full-PLA (FPLA) and semi-PLA (SPLA) when using ĤA

and ĤB , respectively. The corresponding fixed-node DMC ground-state wave functions are denoted
by ΦA and ΦB .

The DMC energy can be written in the form

ED =

∫
ΦĤΨ dV∫
ΦΨ dV

, (512)

which includes the mixed DMC (Ψ = ΨT) and pure DMC (Ψ = Φ) estimates of the energy. In all
later expressions, Φ stands for either ΦA or ΦB , and Ĥ for either ĤA or ĤB . Taking the derivative
of the DMC energy with respect to λ gives

dED

dλ
=

∫
ΦĤ ′Ψ dV∫

ΦΨ dV
+

∫ [
Φ′
(
Ĥ − ED

)
Ψ + Φ

(
Ĥ − ED

)
Ψ′
]
dV∫

ΦΨ dV
, (513)

250

for both the mixed and pure DMC methods. The first term in Eq. (513) is the HFT force [111, 112]
and the other terms are Pulay terms [113].

35.3 The mixed DMC forces

The total force in the mixed DMC method, F tot
mix, is obtained by setting Ψ = ΨT in Eq. (513). After

some rearrangements, we arrive at

F tot
mix = FHFT

mix + FP
mix + FV

mix + FN
mix, (514)

with

FHFT
mix = −

∫
ΦΨT

(
Ŵ ′ΨT

ΨT

)
dV∫

ΦΨT dV
−
∫

ΦΨTV
′
loc dV∫

ΦΨT dV
+ Zα

∑
β (β 6=α)

Zβ
Rα −Rβ

|Rα −Rβ |3
(515)

FP
mix = −

∫
ΦΨT

[
ŴΨ′T
ΨT
−
(
ŴΨT

ΨT

)
Ψ′T
ΨT

]
dV∫

ΦΨT dV
(516)

FV
mix = −

∫
ΦΨT

[
Φ′

Φ

(Ĥ−ED)ΨT

ΨT

]
dV∫

ΦΨT dV
(517)

FN
mix = −

∫
ΦΨT

[
(Ĥ−ED)Ψ′T

ΨT

]
dV∫

ΦΨT dV
. (518)

FHFT
mix is the mixed DMC HFT force and the other expressions are Pulay terms. The HFT force in Eq.

(515) contains two contributions from the pseudopotential, one from its local part Vloc and one from
its nonlocal part Ŵ , and a third contribution from the nucleus–nucleus interaction. In this nucleus–
nucleus interaction term, Rα represents the 3-dimensional position vector of the αth nucleus, and Zα
is the associated charge. The three Pulay terms in Eqs. (516)–(518) are identified as follows: FP

mix

results from the PLA and is therefore called the pseudopotential Pulay term, FV
mix is the volume term,

and FN
mix is called the mixed DMC nodal term since it can be written as an integral over the nodal

surface [116]. Note that all terms in Eqs. (515)–(518) take the same form under both localization
schemes; the only difference is the distribution (ΨTΦA or ΨTΦB) used to evaluate the expectation
values. A simple way to understand this is to note that Ĥ always acts on the trial wave function ΨT

and ĤAΨT = ĤBΨT.

In mixed DMC simulations, it is straightforward to evaluate the contributions to the force, except for
the volume term FV

mix, because it depends on the derivative of the DMC wave function, Φ′. Since
it is unclear how to evaluate Φ′ in mixed DMC calculations, we use the Reynolds’ approximation
[117, 118],

Φ′

Φ
' Ψ′T

ΨT
, (519)

which is exact on the nodal surface [see Eqs. (4) and (16) of Ref. [116]] but introduces an error of first
order in (ΨT − Φ) away from the nodal surface.

35.4 The pure DMC forces

The total force in the pure DMC method, F tot
pure, is obtained by setting Ψ = Φ in Eq. (513). After

some manipulations, we obtain

F tot
pure = FHFT

pure + FP
pure + FN

pure, (520)

with

FHFT
pure =

−

∫
ΦAΦA

(
Ŵ ′ΨT

ΨT

)
dV∫

ΦAΦA dV

−

∫
ΦBΦB

(
(Ŵ+)′ΨT

ΨT
+

(Ŵ−)′ΦB
ΦB

)
dV∫

ΦBΦB dV

 (521)

251

−
∫

ΦΦV ′loc dV∫
ΦΦ dV

+ Zα
∑

β (α6=β)

Zβ
Rα −Rβ

|Rα −Rβ |3

FP
pure =

−

∫
ΦAΦA

[
ŴΨ′

T
ΨT
−
(
ŴΨT
ΨT

)
Ψ′

T
ΨT

]
dV∫

ΦAΦA dV

−

∫
ΦBΦB

[
Ŵ+Ψ′

T
ΨT

−
(
Ŵ+ΨT

ΨT

)
Ψ′

T
ΨT

]
dV∫

ΦBΦB dV

(522)

FN
pure = −1

2

∫
Γ
|∇rΦ|Φ′ dS∫

ΦΦ dV
. (523)

FHFT
pure is the pure DMC HFT force, FP

pure is the pure DMC pseudopotential Pulay term, and the pure

DMC nodal term FN
pure is an integral over the nodal surface Γ (defined by ΨT = 0). Where terms

appear in braces, the upper one refers to the FPLA and the lower to the SPLA. The form of the nodal
term in Eq. (523) is independent of the localization scheme. The nodal term involves the gradient
∇rΦ evaluated at the nodal surface Γ. Reference [116] shows that this gradient is defined as its limit
when approaching the nodal surface from within a nodal pocket (where Φ is nonzero). The derivation
of the nodal term from Eq. (513) can be found in Refs. [119, 116].

Although the HFT force FHFT
pure under the FPLA can be calculated in the pure DMC method, it is not

straightforward to evaluate the action of the nonlocal operator (Ŵ+)′ on the unknown DMC wave
function ΦB in FHFT

pure under the SPLA scheme. Therefore, the following localization approximation,

(Ŵ−)′ΦB
ΦB

' (Ŵ−)′ΨT

ΨT
, (524)

is used in the evaluation of FHFT
pure under the SPLA scheme which introduces an error of first order in

(ΨT − Φ).

Another complication arises in the pure DMC nodal term FN
pure in Eq. (523) because it involves the

evaluation of an integral over the nodal surface. It is unclear how to evaluate such an integral in a
standard DMC simulation. The following relationship suggested in Ref. [116],

FN
pure = 2FN

mix +O[(ΨT − Φ)2], (525)

allows the approximate evaluation of FN
pure as twice its mixed DMC counterpart while introducing an

error of second order in (ΨT − Φ). Since FN
pure is defined as a volume integral in Eq. (518), the pure

DMC nodal term FN
pure can then be calculated as a volume integral in a standard DMC simulation.

Equation (525) is an application of the standard extrapolation technique [11], as in this case the
variational estimate of the nodal term is zero [116].

35.5 Implementation of forces in CASINO

It is well-known that the HFT estimator has an infinite variance when the bare Coulomb potential is
used to describe the electron–nucleus interaction. Different routes have been proposed to address this
problem. Assaraf et al. [120, 121] added a term to the HFT force which has a zero mean value but
greatly reduces the variance of the estimator. Chiesa et al. [122] developed a method to filter out the
part of the electron density that gives rise to the infinite variance. Using soft pseudopotentials also
eliminates the infinite variance problem [115], and this method is used in the casino code.

Since the atomic force equals the negative total derivative of the DMC energy with respect to a nuclear
position λ, all previous force expressions involve total derivatives, in particular Ψ′T. Unfortunately,
it is not straightforward to calculate total derivatives in VMC and DMC. A different route is to
approximate all total derivatives by their partial derivatives, which introduces an error of first order
in (ΨT − Φ). We expect, however, this approximation to be rather accurate for the following reason:
taking the total derivative of the VMC or DMC energy with respect to λ gives

dE

dλ
=
∂E

∂λ
+
∑
i

∂E

∂ci

dci
dλ

, (526)

where the ci are the parameters in ΨT and the Hamiltonian. The sum on the right-hand side of Eq.
(526) is neglected when all total derivatives are replaced with partial derivatives in all previous force

252

expressions. This is exact in VMC when the wave function is optimized using energy minimization. In
DMC, we can assume that the energy is approximately minimized with respect to the ci. Therefore,
we expect that the parameters ci have little effect on both the VMC and DMC energy, i.e., ∂E/∂ci is
small. Therefore, neglecting the sum in Eq. (526) or, equivalently, replacing all total derivatives with
partial derivatives in the expressions above, is expected to be a good approximation.

We use the analytic expressions derived in Ref. [115] for evaluating the HFT force. The Pulay terms
may also be evaluated using analytic expressions, but to make the code more easily adaptable to other
forms of trial wave function we use a finite-difference approach. This introduces an error which is
linear in the infinitesimal nuclear displacement, ∆. We find that ∆ ≈ 10−7 Å minimizes the resulting
error in the Pulay terms, which is about seven orders of magnitude smaller than the estimated values
of the total forces. See Ref. [123] for more information.

The input keyword to activate the calculation of forces in VMC and DMC is forces. The keyword
forces info may be used to generate different levels of output. The default value is 2, which is
recommended for speed. When 5 is chosen, two additional estimates of the Hellmann–Feynman force
are calculated, which are only useful for debugging. These two additional estimates pick either the
s-component or the p-component of the pseudopotential as the local one (the default is to pick the
d-component as the local one). When calculating forces in DMC, the keyword future walking must
be chosen. See also Sec. 36.

Forces are only implemented for the Gaussian basis set and are only properly tested for molecules.
When the molecule is linear (planar), the force algorithm in casino is optimized for geometries along
the x-axis (x, y plane). See also the casino output. The forces are only implemented and tested
for pseudopotentials. The implementation of forces in casino should in principle also work for all-
electron calculations when the zero-variance estimators are chosen. These are the estimators ‘Total
Forces+ZV’ in VMC and ‘Total Forces (mixed)’ in DMC. Also, since the SPLA scheme in DMC
calculations requires an additional approximation in Eq. (524), we may expect that the FPLA scheme
may give better results. For some small molecules and using large Gaussian basis sets, however, we
find that the two localization schemes give very similar total forces. See also Refs. [124, 123].

35.6 Explanation of the force estimators printed by CASINO

In VMC: ‘Total Force(dloc)’ corresponds to Eq. (510) and the d-channel of the pseudopotential com-
ponents is chosen local (default in casino); ‘HFT Force(dloc)’ is the first term in Eq. (510); ‘Wave
function Pulay term’ is the second term in Eq. (510); ‘Pseudopotential Pulay term’ corresponds to
Eq. (516) calculated in VMC, should have a zero average value, and is evaluated to check whether this
condition is satisfied; ‘Total Force+ZV(dloc)’ is the same as ‘Total Force(dloc)’ with the zero-variance
term added to reduce the statistical error; ‘Zero-variance term’ is the zero-variance term evaluated
separately and should always have a zero average value; ‘VMC NT’ is a part of a total force estimator
and should be added to the DMC estimator ‘Total Force(purHFT,purNT,dloc)’; see Ref. [125].

In DMC: ‘Total Force(purHFT, mixNT,dloc)’ corresponds to Eq. (520); ‘Total Force(purHFT,
purNT,dloc)’ is a total force estimator when the VMC estimator ‘VMC NT’ is added, see Ref.
[125]; ‘HFT Force(pur,dloc)’ is the first term in Eq. (520); ‘Nodal Term(mix)’ is the third term
in Eq. (520) calculated as twice times the mixed nodal term, as stated in Eq. (525); ‘Nodal
Term(pur)’ equals the third term in Eq. (520) calculated as a pure estimator and is part of ‘To-
tal Force(purHFT,purNT,dloc)’; ‘Pseudopotential Pulay Term(pur)’ is the second term in Eq. (520);
‘Total Force(mix,dloc)’ corresponds to Eq. (514); ‘HFT Force(mix,dloc)’ is the first term in Eq. (514).

36 The future-walking method

The standard DMC algorithm generates the ‘mixed’ probability distribution ΨTΦ which can be used
to calculate unbiased estimates of an operator A that commutes with the Hamiltonian, Ĥ. If, however,
the operator A does not commute with Ĥ, the ‘pure’ probability distribution ΦΦ is required to obtain
unbiased estimates. The simplest method to calculate pure estimates is to use the extrapolation
estimator (2 time the mixed estimate minus the variational estimate) which introduces an error in the
pure estimate that is of second order in (ΨT−Φ). Exact pure estimates can be obtained, for example,
by using the future-walking (FW) method which can straightforwardly be implemented in a standard
DMC algorithm and will be discussed here, or by the reptation quantum Monte Carlo method. The
FW method is used in casino with the keyword future walking.

253

The basic idea of FW is to rewrite the pure estimate of a local operator A as

〈Φ|A|Φ〉
〈Φ|Φ〉

=
〈Φ| A Φ

ΨT
|ΨT〉

〈Φ0| Φ0

ΨT
|ΨT〉

'
∑
j A(rj)ωj(rj)∑

j ωj(rj)
, (527)

with weights

ωj(rj) =
Φ(rj)

ΨT(rj)
. (528)

For the Eq. (527) to be satisfied, A must be a local operator. Once the weights are known, the pure
estimate can be calculated as an average over the local quantity Ajωj with samples drawn from the
mixed distribution generated by a standard DMC simulation. We will show in the next section, that
these weights can be obtained from the asymptotic number of descendants of a walker rj . We then
give a description of the FW algorithm that is now implemented in casino.

36.1 Derivation of the FW method

We show that the weight ωj in Eq. (528) can be interpreted as the asymptotic number of descendents
from the walker rj . We write the importance-sampled Schrödinger equation as

f(r, τ) =

∫
G(r← r′, τ)f(r′, 0)dr′, (529)

where G is the importance-sampled Green’s function. When the initial walker rj is represented by a
δ-function, f(r′, 0) = δ(r′ − rj), Eq. (529) reduces to

f(r, τ) = G(r← rj , τ). (530)

This can be interpreted as the transition probability of the walker to move from rj to r in time τ . We
write the importance-sampled Green’s function in its spectral expansion [10],

f(r, τ) = G(r← rj , τ) =
ΨT(r)

ΨT(rj)

∞∑
n=0

exp[−τ(En − ERef)]Φn(r)Φn(rj), (531)

where Φn and En are eigenfunctions and eigenvalues of Ĥ, respectively, and ERef is a constant. When
considering the limit of τ →∞ and integrating over the final position r, we obtain∫

lim
τ→∞

f(r, τ) dr = 〈ΨT|Φ0〉 exp[−τ(E0 − ERef)]
Φ0(rj)

ΨT(rj)
(532)

= 〈ΨT|Φ〉
Φ0(rj)

ΨT(rj)
. (533)

When ERef = E0, all contributions from the excited-states decay away in the penultimate equation
in the limit τ →∞. The left-hand side of the penultimate equation can be interpreted as the number
of descendents from walker rj for asymptotic τ ,

N(τ →∞) =

∫
lim
τ→∞

f(r, τ) dr. (534)

Combining the last two equations, we find

N(τ →∞) = 〈ΨT|Φ〉
Φ(rj)

ΨT(rj)
, (535)

where 〈ΨT|Φ〉 is a constant. This is the important relationship between the ratio Φ/ΨT and the
asymptotic number of walkers descended from the initial walker rj . When this relationship is inserted
in the pure estimator of Eq. (527), the constants cancel in the numerator and denominator. Hence,
the weights ωj can be calculated in a DMC simulation from the asymptotic number of walkers. Since
this technique involves taking information from a later time in the simulation to evaluate quantities
at an earlier time, this method is called future-walking or forward-walking method. We introduce the
future-walking time τFW (or NFW when given in time steps) that is necessary to project out the ratio
of wave functions in Eq. (535). See Sec. 36.3 for a discussion of τFW.

254

36.2 The FW algorithm

Different implementations exist to calculate the asymptotic number of descendents in FW. The
tagging algorithm introduced by Barnett et al. [126], for example, assigns a label to each walker which
uniquely identifies all its ancestors. The asymptotic number of descendents of a walker rj at time t is
then determined by searching through all labels of the walkers at time t+τfw and counting the walkers
that descend from rj . A more elegant algorithm was proposed by Casulleras and Boronat (CB) [127]
which evaluates the product Ajωj and the sum

∑
j ωj in Eq. (527) instead of calculating the weight

ωj and quantity Aj for each walker individually. We use this idea for the FW implementation in
casino but chose a slightly improved version to the one originally proposed by CB.

To each walker rj , we assign a linked list Lj (or an order set) of NFW elements, where NFW is the total
number of FW time steps. Each element in the list is a scalar or vector. At each time step, the local
quantities (forces, energies, etc.) evaluated at rj are written into one element, which is then added to
the linked list on one side. Simultaneously, one element is deleted on the other side. Following this
updating method, the nth element in the linked list always contains quantities that were evaluated n
time steps ago so that the last element in the linked list was calculated NFW time steps ago. When
the walker drifts, diffuses and branches in a standard DMC simulation, the linked list is copied when
the walker is copied, and the linked list is deleted when the walker is deleted. The result of this
procedure is crucial: all walkers that have a common ancestor from NFW time steps ago also have the
same NFWth element in the linked list. Therefore, the numerator of the pure estimator in Eq. (527)
at each time step can be written as∑

j

A(rj)ω(rj) =
∑
j

Lj(NFW), (536)

where Lj(NFW) is the NFWth element of the linked list associated with walker rj . Hence, the sum
of the product Ajωj can be calculated as the sum over the NFWth elements of all linked lists for a
given time step. Similarly, the sum over all weights in the denominator of Eq. (527) reduces to the
population number Npop at a given time step,∑

j

ω(rj) = Npop. (537)

So far, we assumed a DMC simulation without reweighting. Since casino uses by default the reweight-
ing scheme (ibran=T), the additional weights pj from the branching factor need to be included in the
pure estimate, ∑

j pjωjA(rj)∑
j pj

=

∑
j pjLj(NFW)∑

j pj
. (538)

The difference between the original algorithm by CB and the one implemented in casino and presented
above is that the former averages over all NFW elements in one linked list and only stores the averages
for each linked list. In particular, after NFW initial time steps, all elements of the linked lists are
averaged, and additionalNFW time steps are required before these averaged values are used to calculate
the pure estimate. The advantage of this CB algorithm is that it does not require the storage of the
linked lists. The disadvantage is that the contribution to the pure estimate is only evaluated as an
average over one block, which makes it impossible to reblock the data and to properly determine the
statistical error bar. The FW implementation chosen in casino, in contrast, keeps and writes out the
contributions to the pure estimate for each time step, which can be used to properly decorrelate the
statistical data. The additional required storage of the linked lists is negligible for the systems tested
so far.

36.3 Some practical advice

In principle, the FW estimator of Eq. (527) is only exact when the FW time is infinite. In practice,
however, this is not possible: if the FW time is too long, it is very likely that most asymptotic walkers
are descendents from only a few (possibly just one) walkers, since the total population is kept around
a target population. Therefore, most wave-function ratios will be zero and the FW estimate is only
calculated from a few (possibly just one) independent samples, and the FW estimate is inaccurate. In
contrast, if the FW time is too short, higher-states in Eq. (535) may not have decayed away. Therefore,
an optimal FW time must be chosen. For parallel computing, a larger target population is possible
than on a single computer, resulting in a larger optimal FW time.

255

For calculations with a target population of around 10,000, a FW time of 10 a.u. was found to be
sufficient in calculations for some small molecules [115, 116, 124] and no significant changes in the
pure FW estimates were found for longer FW times. Therefore, the FW time is currently hardwired
to 10 a.u. in casino.

37 Noncollinear-spin systems

37.1 Wave functions for noncollinear-spin systems

In a noncollinear-spin system, the particles of interest can have spin directions that are not parallel to
the global quantization axis and/or the spin direction can vary with position in space. To treat such
a system, it is not possible to assign a definite spin to each particle. Instead, the full four-dimensional
position–spin coordinates of the particles must be considered.

Casino can perform VMC calculations on noncollinear-spin systems by evaluating the energy expec-
tation value

E =

〈
Ψ(X)|Ĥ|Ψ(X)

〉
〈Ψ(X)|Ψ(X)〉

=

∑
S

∫
|Ψ(R,S)|2EL(R,S) dR∑
S

∫
|Ψ(R,S)|2 dR

, (539)

where X is the 4N -dimensional vector of position and spin coordinates for all the particles in the
system, R is their real-space positions and S is their spin coordinates. This is achieved by extending the
standard Metropolis algorithm, so that there is a spin-flip step which may change the spin coordinate
s in addition to the real-space position r of each particle. This extension is supported for VMC
methods 1 and 3.

casino supports noncollinear calculations for Slater–Jastrow(–backflow) wave functions of the form

Ψ(X) = exp[J(R)]

∣∣∣∣∣∣∣
ψ1(x1) · · · ψ1(xN)

...
...

ψN (x1) · · · ψN (xN)

∣∣∣∣∣∣∣ . (540)

The Jastrow factor and backflow function can only depend on the real-space positions of the particles,
but the single-particle orbitals depend on both position- and spin-coordinates. Equivalently, we can
say that the single-particle orbitals in the determinant can be arbitrary two-component spinors.

There are no specific keywords in the input files that control whether casino performs a noncollinear
calculation or not. If noncollinear mode is supported for the selected system type and the input data
about the wave function indicates noncollinear orbitals, casino automatically performs a noncollinear
VMC calculation.

DMC does not support noncollinear spins.

37.2 Spiral spin-density waves in the HEG

Currently the only noncollinear-spin system type that can be studied using casino is a spiral spin-
density wave state in the HEG. In such a system, the single-particle orbitals are of the spinor form

ψ
k
(r) =

1√
Ω
eik·r

(
cos (1

2θk)e−i
1
2q·r

sin (1
2θk)e+i 1

2q·r

)
, (541)

where k is the familiar plane-wave-vector, q is a constant vector (magnetization wave-vector) which
is the same for all orbitals, and the values θk are independent parameters for each orbital. For each
orbital ψ

k
, an electron can also occupy the orbital orthogonal to it, obtained by the replacement

θk → θk + π. A determinant of orbitals of the above form gives rise to a static, spiral spin density,
with wave-vector q.

Setting up a calculation of this form is very similar to a standard electron fluid calculation. In addi-
tion to the usual parameters, the input file must contain a definition of the magnetization wavevec-
tor in the free particles block and the correlation.data file must contain a block specific to
the SDW system, giving a definition of the occupied single-particle orbitals. For an example, see
~/CASINO/examples/electron phases/3D fluid sdw.

The calculation of the spin-density matrix and hence magnetization density in a spiral spin density
wave is described in Sec. 34.2.4.

256

38 Magnetic fields and the fixed-phase approximation

38.1 Hamiltonian when an external magnetic field is present

Consider a many-particle system in the presence of an external magnetic field B(r) = ∇×A(r). The
Hamiltonian is

Ĥ =

N∑
i=1

1

2mi
(p̂i − qiAi)

2
+ V, (542)

where p̂i = −i∇i, the {mi} and the {qi} are the masses and charges of the particles, V (R) is the
usual electrostatic potential energy and Ai ≡ A(ri) is the magnetic vector potential for particle i.
The Hamiltonian does not have time-reversal symmetry in general, so that the eigenfunctions are
complex.

38.2 VMC in the presence of an external magnetic field

Let Ψ be a complex trial many-body wave function. The expectation value of Ĥ with respect to Ψ is

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=

∫
|Ψ|2EL dR∫
|Ψ|2 dR

, (543)

where the complex local energy is

EL =
ĤΨ

Ψ
=

N∑
i=1

1

2mi

(
−∇

2
iΨ

Ψ
+ q2

i |Ai|2 + 2iqiAi ·
∇iΨ

Ψ
+ iqi∇i ·Ai

)
+ V. (544)

Ĥ is Hermitian, so its expectation value is real.29 Hence only the real part of the local energy should
be averaged when computing the VMC energy. On the other hand, the full complex local energy is
needed when evaluating the variance of the local energy.

σ2 =
1

NC − 1

∑
R

|EL(R)− ĒL|2, (545)

where NC is the number of configurations sampled, because Ψ is eigenfunction of Ĥ if and only if the
complex local energy is constant (in which case the imaginary part of the local energy is zero). It is
possible for the real part of the local energy to be constant, but the imaginary part to vary, in which
case Ψ is not an eigenstate of the Hamiltonian. Therefore the variance of the real part of the local
energy is not a good objective function for wave-function optimization.

It is not currently possible to use magnetic fields or complex wave functions in conjunction with
linear-least-squares energy minimization in casino.

38.3 DMC in the presence of an external magnetic field

38.3.1 Fixed-phase Schrödinger equation

Let Φ = |Φ| exp(iψ) be a complex many-Fermion wave function. The phase ψ must change by π
whenever two particles are exchanged. Then

exp(−iψ)ĤΦ =

[
N∑
i=1

1

2mi

(
−∇2

i + (qiAi −∇iψ)2
)

+ V

]
|Φ|

+ i

[
N∑
i=1

1

2mi
(2[qiAi −∇iψ] · ∇i +∇i · [qiAi −∇iψ])

]
|Φ| (546)

≡
[
Ĥψ + iK̂ψ

]
|Φ|. (547)

29Averaging the complex local energy over a finite number of configurations distributed as |Ψ|2 gives a small imaginary
component in the mean energy, which vanishes in the limit of a large number of samples.

257

Noting that |Φ|K̂ψ|Φ| =
∑N
i=1∇i · [|Φ|2(qiAi−∇iψ)]/(2mi), it is easy to show that

〈
|Φ|
∣∣∣K̂ψ∣∣∣ |Φ|〉 = 0.

Hence 〈
Φ
∣∣∣Ĥ∣∣∣Φ〉 =

〈
|Φ|
∣∣∣Ĥψ∣∣∣ |Φ|〉 . (548)

So the ground-state eigenvalue of the fixed-phase Schrödinger equation Ĥψ|φ0| = E0|φ0| is equal to

the expectation value of the Hamiltonian Ĥ with respect to φ0 = |φ0| exp(iψ), which is greater than
or equal to the Fermionic ground-state energy of Ĥ by the variational principle, becoming equal in
the limit that the fixed phase ψ is exactly equal to that of the Fermionic ground state [91].

38.4 Importance sampling

The fixed-phase imaginary-time Schrödinger equation is(
Ĥψ − ET

)
|Φ| = −∂|Φ|

∂t
, (549)

where ET is the reference energy. In the large-time limit the ground-state eigenfunction |φ0| of the
fixed-phase Hamiltonian is projected out.

Let the DMC wave function Φ have the same phase exp(iψ) as the trial wave function Ψ. Then
f ≡ Φ∗Ψ = |Φ||Ψ| is real. Substitute |Φ| = |Ψ|−1f into Eq. (549) and rearrange to obtain the
importance-sampled fixed-phase imaginary-time Schrödinger equation,

N∑
i=1

1

2mi

[
−∇2

i f + 2∇i · (Re(Vi)f)
]

+ [Re(EL)− ET]f = −∂f
∂t
, (550)

where Vi = Ψ−1∇iΨ = |Ψ|−1∇i|Ψ| + i∇iψ is the complex drift velocity. This is a straightforward
generalization of the usual fixed-node importance-sampled imaginary-time Schrödinger equation, with
the real part of the drift velocity appearing in the drift–diffusion term and the real part of the local
energy appearing in the branching term. After equilibration the algorithm produces configurations
distributed as φ∗0Ψ = |φ0||Ψ|. Noting that Re(EL) = |Ψ|−1Ĥψ|Ψ|, the mixed estimate of the energy
is equal to the pure estimate:∫

φ∗0ΨRe(EL) dR∫
φ∗0Ψ dR

=

∫
|φ0||Ψ|Re(EL) dR∫
|φ0||Ψ| dR

=

〈
|φ0|

∣∣∣Ĥψ∣∣∣ |Ψ|〉
〈|φ0| | |Ψ|〉

= E0 =

〈
|φ0|

∣∣∣Ĥψ∣∣∣ |φ0|
〉

〈|φ0| | |φ0|〉
=
〈φ0|Ĥ|φ0〉
〈φ0|φ0〉

. (551)

For operators that do not commute with the Hamiltonian the mixed estimate is not equal to the pure
estimate. Extrapolated estimation can be used in the same fashion as for real wave functions.

38.5 Applying magnetic fields in CASINO

At present it is only possible to apply uniform magnetic fields in casino, although it would be
straightforward to generalize this. The vector potential is written as A(r) = A0 +A1r, where A1 is a
3× 3 matrix. Clearly it is possible to satisfy the Coulomb gauge condition ∇ ·A = 0 with this form.
To apply an external magnetic field, the complex wf keyword must be set to T in the input file and
the magnetic vector potential must be given in a UNIFORM MAGNETIC FIELD block in the
expot.data file. The format is:

START UNIFORM MAGNETIC FIELD

Vector A0

1.0 0.0 0.0

Matrix A1

0.0 0.0 0.0

1.0 0.0 0.0

0.0 0.0 0.0

END UNIFORM MAGNETIC FIELD

Please note that it is crucial to use a trial wave function with the correct phase behaviour corresponding
to the vector potential; otherwise the calculated energies will be nonsense.

258

39 CASINO on parallel computers

Diffusion Monte Carlo codes are parallelized, at the most basic level, by dividing the set of walkers/-
configurations as evenly as possibly amongst the MPI processes, with each process then propagating
its own walkers independently. In writing a code like casino from scratch, one might choose to do this
using one of three language-independent APIs (applications programming interfaces), namely MPI,
or OpenMP or OpenACC. There are pros and cons to either method. MPI involves explicit message
passing, where the programmer might do things like ‘call mpi send’ to send some data between
particular parallel processes, or ‘call mpi reduce’ to sum a quantity over the processes. OpenMP
involves marking likely looking loops with compiler directives and using an appropriate compiler that
supports OpenMP; on reaching this loop a ‘master thread’ will fork the appropriate number of ‘slave
threads’ and the task is divided among them. OpenACC, which is focussed on the use of accelerators
such as GPUs, involved compiler directives in a similar manner to OpenMP.

That said, casino was originally written so long ago (it was parallelized in the mid 1990s) that
OpenMP had not yet been published and thus the choice of MPI was made for us. More recently-
developed—and, of course, just not as good ;-)—codes such as qmcpack have chosen OpenMP for
their basic parallelization operations, but this is not necessarily an advantage (particularly since it
can be difficult to get OpenMP to scale beyond 8 threads, see, e.g., here: http://www.cs.uiuc.

edu/~snir/PDF/CCGrid13.pdf). In more recent years, a second level of parallelization was added to
casino, where it uses OpenMP to parallelize over stuff like electrons and/or orbitals. One can thus
in principle choose to run in ‘hybrid mode’ where one might fork N OpenMP threads in a multicore
node with N cores, using MPI to communicate between nodes. In practice, it is usually better to
use multiple MPI processes even within the multicore node and not to use openMP at all; the use of
OpenMP would only be considered in large systems with many electrons where it makes sense to ‘split
a configuration’ over multiple cores, perhaps to extend the number of usable processors that may be
used if you insist on some definite minimum number of moves with no less than some fixed error bar.
Even where you do use OpenMP, we find that in practice using more than 4 OpenMP threads per
MPI process doesn’t really buy you very much (this issue will be discussed in more detail in what
follows).

One must carefully consider the use of memory in parallel calculations; in particular if some large
array - such as the orbital coefficients - does not change during the calculation and has the same set
of values on every processor, then it is hugely wasteful for each process to have its own copy of that
array. Nevertheless, that is what casino will do when running in basic MPI mode. On a machine
that is physically capable of it (and this is what shared-memory multicore nodes are basically for, so
that’s most machines nowadays) one would usually prefer to allocate the array in shared memory and,
e.g., have only one copy of the array which all processes can access. Machines are available currently
where running sixty-four MPI processes per node is reasonable; in such a case for a 2Gb blip file, the
use of shared memory reduces the memory requirement from more than 128 Gb down to 2Gb. Clearly
shared memory is practically obligatory on such a machine. Note that OpenMP multithreads use
shared memory natively, but MPI programs require some additional magic, and this requires the code
to be compiled with System V or Posix shared memory support (note this is not done by default).
Further practical details are given later in this section.

The biggest machines in the world now have more than a million processors. Some techniques (such
as DFT) have difficulty exploiting more than a thousand processors because of the large amount of
interprocessor communication required, so an appropriate question is: how do the various different
tasks done by a QMC code (VMC, DMC, optimization, . . .) scale with the number of processors, and
consequently, how many processors can we successfully exploit? We begin with a theoretical analysis
of precisely that point.

39.1 VMC in parallel

The VMC algorithm is perfectly parallel: no interprocessor communication is required during simu-
lations. Each MPI process carries out an independent random walk using a different random-number
sequence, and the results are averaged at the end of each block, so that running for a length of time T
on P MPI processors generates the same amount of data as running for time PT on a single processor
(assuming the equilibration time to be negligible). VMC should therefore scale to an arbitrarily large
number of processors.

Note that, although the energy obtained by running for time T on P MPI processes should be in

259

http://www.cs.uiuc.edu/~snir/PDF/CCGrid13.pdf
http://www.cs.uiuc.edu/~snir/PDF/CCGrid13.pdf

statistical agreement with that obtained by running for time PT on a single processor, the results will
not be exactly equal, because the random walks are different in the two cases.

39.2 Optimization in parallel

39.2.1 Standard variance minimization

The VMC stages of a variance-minimization calculation are perfectly parallel, as described above. In
the optimization stages, the configuration set is distributed evenly between the MPI processes. The
master process broadcasts the current set of optimizable parameters, then each MPI process calculates
the local energy of each of its configurations and reports the energies (and weights, if required) to
the master. The CPU time required to evaluate the local energies of the configuration set usually far
exceeds the time spent communicating (reporting one or two numbers per configuration to the master
and receiving a handful of parameter values at each iteration). In particular the time spent evaluating
the local energies increases with system size, whereas the time spent on interprocessor communication
is independent of system size. So the standard variance minimization method is essentially perfectly
parallel.

Note that the number of processor communications could easily be reduced further if each MPI process
were simply to report the sum of its local energies and the sum of the squares of the local energies to
the master.

39.2.2 Variance minimization for linear Jastrow parameters

The VMC stage of the optimization (including the construction and accumulation of the quartic
coefficients) is perfectly parallel. The optimization itself is carried out in serial on the master process.
However, this stage typically takes a fraction of a second, and is independent of system size. So the
varmin-linjas scheme is essentially perfectly parallel.

39.2.3 Energy minimization

The VMC stages of an energy minimization are perfectly parallel, as described above. For the matrix
algebra stages, the configurations are divided evenly between the MPI processes, each of which sepa-
rately generates one section of the full matrices. The full matrices are then gathered on the master
process, where the matrix algebra is done. The time taken to do the matrix algebra is usually insignifi-
cant in comparison to the time taken in VMC and matrix generation. The time taken in interprocessor
communication is recorded and written out during energy minimization, and is typically at maximum
a few percent of the total time spent in an iteration (and often much less than one percent). Overall,
energy minimization is very nearly perfectly parallel.

39.3 DMC in parallel

39.3.1 Parallelization strategy

When performing DMC on a parallel machine using the standard algorithm, the population of con-
figurations is usually distributed evenly over the set of MPI processes. DMC is not perfectly parallel
because the populations on different MPI processes interact via the population-control mechanism.
The population of configurations on each process fluctuates, and the cost of each time step is deter-
mined by the process with the largest population. It is therefore necessary to even up the distribution
of configurations between MPI processes from time to time (‘load balancing’). Unfortunately, trans-
ferring configurations between processes is costly, and this is normally stated to be the principal
limitation on the scaling of the DMC method with the number of processors. (There is also a small
cost associated with the communication required to decide on a reference energy after each time step,
and to average the energy over the MPI processes, but we assume this to be negligible henceforth.)

Note that with the release of casino 2.8 in Feb 2011, it was shown that the effective cost of con-
figuration transfers can be reduced to essentially zero by using fancy tricks such as asynchronous
communication (on machines that support it) and the use of subgroups of cores for redistribution.
The discussion that follows ignores the possibility of doing these tricks, but we retain it for complete-
ness as a discussion of the theoretical scaling.

260

39.3.2 Behaviour of the population on each MPI process

Let Tredistτ be the redistribution period, i.e., we redistribute the configuration population after every
Tredist time steps τ . At any given time the population on an MPI process p must be increasing or
decreasing exponentially, because the mean energy ep of the configuration population on that process
is unlikely to be exactly equal to the reference energy ET. We assume that ep − ET remains roughly
constant over the redistribution period, i.e., that the autocorrelation period is much longer than the
redistribution period. At the start of the redistribution period the population Cp(1) on each process
is the same. At the end of the redistribution period, the expected population on MPI process p
is Cp(Tredist) = Cp(1) exp[−(ep − ET)Tredistτ]. Hence C̄(Tredist) ≈ C̄(1) exp[−(Ē − ET)Tredistτ] +
O(T 2

redistτ
2), where the bar denotes an average over the MPI processes, and so the average growth or

decay of the population is the same as that of the entire population (which should be small, because
ET is chosen so as to ensure this).

39.3.3 Optimal redistribution period

Let A be the cost of propagating a single configuration over one time step. Let B be the cost of
transferring a single configuration between MPI processes.

Let q be the process with the largest number of configurations, i.e., with the lowest energy eq ≡
min{ep}. Both the cost of propagating configurations and the cost of transferring configurations
are determined by process q. The expected number of configurations on process q at the end of
the redistribution period (i.e., after Tredist time steps) is max{Cp(Tredist)} ≈ C̄(Tredist) + cTredist +
O(T 2

redist), where c = C̄(1)(Ē −min{ep})τ . NB, 〈C̄(1)〉 = NC/P , where NC is the target population
and P is the number of MPI processes, and 〈c〉 is a positive constant.

At the end of the redistribution period, cTredist configurations are to be transferred from process q.
Hence the average cost of transferring configurations per time step is B〈c〉, which is independent of
Tredist.

The average cost per time step of waiting for the process q with the greatest number of configurations
to finish propagating all its excess configurations is

A〈c〉 [0 + 1 + · · ·+ (Tredist − 1)]

Tredist
=
A〈c〉(Tredist − 1)

2
. (552)

So the total average cost per time step in DMC is

T =
ANC

P
+
A〈c〉(Tredist − 1)

2
+B〈c〉. (553)

Clearly the redistribution period should be chosen to be as small as possible to minimize T . Numerical
tests confirm that increasing the redistribution period only acts to slow down calculations. One should
therefore choose Tredist = 1, i.e., redistribution should take place after every time step. We assume
this to be the case henceforth (the previously existing keyword redist period which allowed the user
to do otherwise has now anyway been deleted).

39.3.4 Scaling of the DMC algorithm with the number of processors

The cost A of propagating each configuration scales as Nα. For typical systems, where extended
orbitals represented in a localized basis are used and the CPU time is dominated by the evaluation of
the orbitals, α = 2 [11]. The use of localized orbitals can improve this to α = 1 [86]. For very large
systems, or systems in which the orbitals are trivial to evaluate, the cost of updating the determinants
will start to dominate: this gives α = 3 with extended orbitals and α = 2 with localized orbitals.
Hence the average cost of propagating all the configurations over one time step, which is approximately
the same on each MPI process, is

TCPU ≈ a
NαNC

P
, (554)

where a is a constant which depends on both the system being studied and the computer being used.

Let σep be the standard deviation of the set of energies on the different MPI processes. We assume

that 〈ep〉−〈min{ep}〉 ∝ σep ∝
√
NP/NC. Hence 〈c〉 ∝

√
NNC/P . The cost B of transferring a single

configuration is proportional to the system size N . Hence the cost of load-balancing is

Tcomm ≈ b
√
NCN3

P
, (555)

261

where the constant b depends on the system being studied, the wave-function quality and the computer
architecture. Note that good trial wave functions will lead to smaller population fluctuations and
therefore less time spent load-balancing.

Clearly one would like to have TCPU � Tcomm, as the DMC algorithm would be perfectly parallel in
this limit. The ratio of the cost of load-balancing to the cost of propagating the configurations is

Tcomm

TCPU
=
b

a

(
NC

P

)−1/2

N3/2−α. (556)

It is immediately clear that by increasing the number of configurations per MPI process NC/P the
fraction of time spent on interprocessor communication can be made arbitrarily small. In practice the
number of configurations per MPI process is limited by the available memory, and by the fact that
carrying out DMC equilibration takes longer if more configurations are used. Increasing the number
of configurations does not affect the efficiency of DMC statistics accumulation, so, assuming that
equilibration remains a small fraction of the total CPU time, the configuration population should be
made as large as memory constraints will allow.

For α > 3/2 (which is always the case except in the regime where the cost of evaluating localized
orbitals dominates), the fraction of time spent on interprocessor communication falls off with system
size. Hence processor-scaling tests on small systems may significantly underestimate the maximum
usable number of processors for larger problems.

In summary, if a user wishes to assess the parallel performance of the DMC algorithm then it is best
to perform tests using the system for which production calculations are to be performed. The number
of configurations should be made as large as possible.

Other tricks which serve to reduce communication are the use of weighted DMC (lwdmc keyword)
to reduce branching (with the default weight limits of 0.5 and 2.0) and the disabling of the transfer
of large arrays (such as inverse Slater matrices) between MPI processes by using the small transfer
keyword.

That was the formal discussion; the additional practical points in the following section should be
noted.

39.3.5 Parallel DMC in practice

The new redistribution algorithm introduced in casino 2.8 reduces the cost of configuration transfers
to practically zero. This means that, when doing statistics accumulation under the right conditions,
the casino DMC algorithm now has essentially perfect scaling out to at least a hundred thousand
cores and beyond, as shown in the following diagram obtained from calculations on 120000+ cores of
a Cray XT5 and discussed in Ref. [128].

262

0 20000 40000 60000 80000 1e+05 1.2e+05
Number N of processor cores (JaguarPF)

0

20000

40000

60000

80000

1e+05

1.2e+05

[C
PU

 ti
m

e
(2

59
2

co
re

s)
 /

C
PU

 ti
m

e
(N

 c
or

es
)]

 *
 2

59
2

Ideal linear scaling
CASINO 2.6
CASINO 2.8

FIXED TARGET POPULATION

PER CORE

The largest calculations of which we are aware (Feb 2014) have been done by MDT on up to 524288
cores of Japan’s K computer where a similar scaling was achieved.

Note, however, that perfect linear scaling may require that the combination of your hardware and
MPI implementation is capable of genuinely asynchronous non-blocking MPI, i.e., that commands like
MPI ISEND actually do what they are supposed to (in some MPI implementations this functionality
is ‘faked’) and also that the machine is genuinely capable of doing communications at the same time as
computing stuff. Understanding the extent to which this is true on particular machines with particular
implementations of MPI requires further study.

It’s also important to write to disk as little as possible; use longer blocks (dmc stats nblock) and
turn off checkpointing (using the checkpoint input keyword) to stop config.out files being written at
the end of the block. Before you object that this is cheating, it’s actually perfectly reasonable and
safe even in practical calculations. If your machine has a batch queue system with fixed time limits
you can use the --auto-continue/--continue flags to the runqmc script, in combination with, e.g.,
the max cpu time keyword in input, and the calculation will emergency stop if it approaches the
time limit, then resubmit itself and restart.

How to achieve the linear scaling in practice? Let’s say that one requires 500 million samples of the
configuration space to compute the answer with the required error bar. Using 10 configurations/core
on 10000 cores will thus require 5000 DMC statistics accumulation moves per core to get the required
number of samples. What happens if I double the number of cores to 20000 and want to double
the speed of the calculation? I can either halve the number of configurations per core to 5 or I can
halve the number of moves to 2500 in order to get my 100 million samples. To achieve the best
scaling with processor number it is important that you do the latter; this (a) makes sure that each
process continues to have enough ‘work to do’ compared to the time spent doing communication by
maintaining a constant number of configurations per core, and (b) reduces the required number of
instances of load-balancing.

Note that are some caveats here: this halving of the number of moves cannot continue indefinitely
since, e.g., we need a minimum number of moves in order to reblock the data, so as you increase the
processor number at a certain point you will have to start choosing the less efficient option of reducing

263

the number of configurations per core. Note also that if you insist your answer has no less than some
required error bar, and a minimum number of moves are performed, then for any given system there
is a maximum number of cores that you can usefully exploit. Using more cores than that will merely
serve to make the error bar smaller than you need, and is thus pointless. (Note that to some extent
you can use OpenMP to exploit more processors than the maximum by having 1 config per MPI
process, and getting this moved by multiple OpenMP threads each running on separate cores).

A particularly important caveat which we have ignored so far is the following: DMC equilibration
time cannot be reduced towards zero by using more cores. And when the equilibration time becomes
comparable to the statistics accumulation time (which is reduced by using more cores) our scaling
analysis will be affected. This problem, and what you can do about it, is discussed in more detail in
the following section.

Casino’s support for GPUs using OpenACC is still experimental. Please contact Neil Drummond for
more information.

39.3.6 Reducing the computational expense of DMC equilibration

It is always necessary to discard the results of propagating the configuration population over the first
few correlation periods (the equilibration phase) of a DMC simulation. Suppose the target population
is large. Because the number of statistics-accumulation steps required to achieve a given error bar
is relatively small in this case, equilibration can be a large fraction of the total computational effort.
Indeed, for some calculations, DMC equilibration accounts for as much as half of the total CPU time.
By contrast, if one uses a small population and runs for a large number of correlation periods until
one has generated the required amount of data, equilibration is a small fraction of the total run time.
Unfortunately, when running on a large number of cores, the configuration population is necessarily
large, since (unless you use OpenMP to split them between cores) each core must have at least one
configuration on average.

casino is capable of using an alternative approach for equilibrating a DMC calculation with a large
target population P . Instead of using VMC to generate P initial configurations, VMC can be used to
generate a small number of configurations q, which are then used in a preliminary DMC calculation to
generate P configurations. In this preliminary DMC calculation with q configurations, equilibration
is followed by (P/q)Tcorr time steps of statistics accumulation, where Tcorr is the correlation period
in terms of time steps, during which a total of P configurations are written out. Following this, a P -
configuration DMC statistics-accumulation calculation is performed. Note that q must be sufficiently
large that population-control bias is negligible in the preliminary DMC calculation.

For example, if one wanted to use a population of 10,000 configurations in a DMC calculation, one could
carry out a preliminary DMC calculation with 1,000 configurations, until 10,000 independent config-
urations were generated, then use these as the initial population for the main 10,000-configuration
run (which would not need to be equilibrated). The computational effort of equilibration would be
reduced nearly tenfold.

If the data generated in the preliminary DMC calculation were discarded altogether, this approach
would still lead to a substantial reduction in the computational effort, because the DMC equilibration
would be performed with a small population. However, one can further reduce the waste of com-
putational effort: the data generated in the statistics accumulation phase of the preliminary DMC
calculation can be averaged with the data generated in the main DMC calculation. Since some of
the configurations generated in the preliminary calculation are reused in the initial population of the
main DMC calculation, some care must be taken to ensure that the error bar is not underestimated.
The most effective way of combining the data from the preliminary and main calculations is still being
investigated, and it is left up to the user to combine the data ‘by hand’ for the time being.

The drawbacks of this method are (i) having an extra stage to the calculation; (ii) the fact that
the preliminary DMC calculation would probably have to be run on a relatively small number of
processors compared with the main calculation; and (iii) the fact that population-control bias might
be a problem if the population q in the preliminary calculation is very small.

In order to perform a preliminary DMC calculation (i.e., to write out configurations during DMC
statistics accumulation), the dmc nconf prelim keyword should be set to the total number of con-
figurations to be written out (summed over all MPI processes). The configurations are written out
once every dmc decorr period iterations, which should therefore be given a suitably large value.
The total number of statistics-accumulation steps carried out should be sufficiently large that the

264

required number of configurations can be written out; however, the statistics-accumulation run will in
fact keep going until all the configurations have been written out, going beyond the specified number
of steps if necessary. Note that the statistics-accumulation phase of a preliminary DMC run cannot
be continued.

Whilst on the subject of reducing the expense of DMC equilibration, we point out that the length
of the equilibration period can be reduced if the initial configuration population is already partially
equilibrated. For example, if performing DMC calculations at a few different time steps, the initial
configuration population can be generated at one particular time step, then reused in the others. The
number of equilibration steps needed to re-equilibrate the population when the time step is changed
is small compared with the number of steps required to equilibrate the population from scratch.

39.4 Shared memory support

Shared memory is required to avoid redundant copies of large arrays on multicore nodes (which form
the basic computing unit of most modern computers). Not using it can multiply the memory required
per node by up to 64 on current architectures, so its use is basically obligatory.

Shared memory is implicit when parallelizing using OpenMP. For programs parallelized using MPI
such as casino, one needs to explicitly compile the code with support for shared memory (the new
MPI3 standard will support it natively, but casino doesn’t yet support MPI3). A future version of
casino will do this by default when the hardware allows it (i.e., almost always).

To compile with shared memory support, you proceed as follows. If compiling from the command
line, type ‘make Shm’ (or ‘make -j N Shm’, where N is a suitable number of cores, to compile faster
in parallel)—the capital S is not obligatory. If you’re compiling the code using the install script, then
it will present you with a list of possible CASINO ARCHs and ask which of them you want to compile. If
you want to compile—for some strange reason—CASINO ARCHs number 1 and 2 in the list with shared
memory support, and number 3 without, then you would respond ‘1:Shm 2:Shm 3’.

How to run with the shared memory executable? You include -s, --shm, or --shmem as an argument to
the runqmc script. This by default sets the number of processes among which to share memory to be all
cores on the same node. If you wish to share memory among a non-default number of processes, then
you need to set the CASINO NUMABLK environment variable to that number. This is done automatically
by runqmc if you invoke it as either ‘runqmc --shm=<numablk>’ or ‘runqmc --shmem=<numablk>’ (the
-s form always uses the default number).

This can be useful on ‘NUMA nodes’ (i.e., nodes with Non-Uniform Memory Access). Simplifying
somewhat, let’s say that a 32-core node consists of 4 physical 8-core processors plugged into a board,
and each 8-core processor can access its own local memory faster than the memory local to the other
3 processors. Then—if you have enough memory available—it would be faster to run with 4 copies
of your shared memory arrays, and each one will be shared by all cores on a processor. In practice
most people don’t bother reading the documentation deeply enough to realize that this is likely to
benefit them, and end up not doing it. (Probably not enough practical timing tests have been done
to determine how much this kind of thing matters with casino).

How does all this work? There are two shared memory APIs in common use: System V and Posix—and
casino is able to use either. On most machines casino uses System V.

In casino this functionality is implemented using (1) a low level C routine (alloc shm.c) which
contains the actual Posix or System V commands that do the allocating and deallocating of shared
memory, (2) A Fortran module shalloc smp.f90 defining a ‘shallocate’ function entirely analogous
to the normal Fortran allocate function; this determines the type of the array to be allocated in shared
memory (integer, double precision, single precision, complex, etc.) and at how many dimensions it has,
then calls the stuff in alloc shm appropriately. (3) A ‘fake’ Fortran module shalloc nonsmp.f90 for
when you don’t want to use shared memory mode (some machines, such as the Japanese K computer,
physically won’t allow it). This simply allocates the array using a normal Fortran allocate statement
for each MPI process. Then a non-Shm computer without System V/Posix won’t get confused by
trying to ‘call shallocate’.

A programmer can in principle just replace all required allocations with ‘shallocations’ and work as
normal. In practice you also need to worry about synchronization, e.g., if the master process on a
node is responsible for filling the shared memory array with numbers, make sure that no other process
on that node tries to read it before the array has been filled. This may require the use of node level
barrier calls (‘call shallocate_barrier’ in casino).

265

To add support for shared memory to a casino arch file, you need to set SUPPORT SHM =

yes and CFLAGS SHM to reference the appropriate API, i.e., one of -DSHM SYSV, -DSH POSIX, or
-DSHM POSIX BGQ.

The reason for the existence of the POSIX BGQ option is discussed in the next section.

One final point about Shm for developers: note that in general a shared memory segment is not
automatically released by the OS when the program that created it terminates. This is a result of the
OS only knowing about the existence of processes, not about what the process is doing. If one process
dies the OS does not know whether another process is accessing a given segment or not. Thus the
program itself must specifically delete the segments at the end, otherwise they will hang around and
more and more of the system memory will be occupied by unused shared memory segments. Of course
this ceases to be a problem on machines where the used partition is rebooted after every calculation
(e.g., Blue Gene machines). However. . .

39.4.1 The Blue Gene problem

IBM Blue Gene machines (currently, Blue Gene/Qs) really, really think they’re special, and they
love doing everything just a little bit differently to every other machine out there; they are, in short,
specially designed to make life hard for you—especially when you try to do shared memory. Here are
some lovely features of these machines that you will enjoy:

(1) You have to ‘guess’ in advance how much of the memory on a node will be required for shared
memory. Even we don’t know that, and we wrote the program—a regular user probably wouldn’t
have a clue (though see below and the FAQ, question B8).

(2) It takes the total memory on a node, subtracts the required shared memory, then (approximately!)
divides the remainder by the number of MPI processes on the node, giving a maximum amount of
non-shared memory that may be used by any individual MPI process. On a Blue Gene/Q with 16Gb
per node, running with the recommended 64 processes per node (runqmc --ppn=64’), this is somewhat
less than 250Mb per process, which is not good—especially if, as with casino—the master process
can sometimes require considerably more memory than the slaves. If you run out of available memory
per process, you would hope—in the second decade of the twenty-first century—that there would be a
soft pinging noise, a little blue light would come on, and a gentle error message ‘Out of memory, I’m
afraid’ would appear. Instead the BG/Q will effectively vomit all over your shoes, spew a vast number
of error messages to standard error—none of which, of course, have anything to do with running out
of memory—and essentially casino will just appear to crash in a massively inelegant way. If this
happens, try running with the --ppn flag set to a smaller value, which will reduce the number of MPI
processes per core.

(3) However, to make efficient use of a processor core on a BG/Q, you are supposed to run more than
1 thread/process per core (see the casino FAQ, question B9). Running only 1 MPI process per core
means very sloooow code compared to a modern Cray XK7 or something.

(4) There is no System V (at least not on the BG/Qs I’ve used), and the Blue Gene/Q implementation
of Posix Shm appears to be full of bugs, to the extent that we had to completely reimplement the
Posix part of alloc shm.c using an alternative algorithm where the memory allocation is controlled
by a linked list of pointers to block of memory (this may be accessed by setting CFLAGS SHM in the
machine’s casino arch file to be -DSHM POSIX BGQ). Just for the record, Blue Gene Posix does not
remove unlinked files, ftruncate produces unexpected results, mmap does not use the offset argument,
etc., etc. Note that casino’s original implementation of shared memory required only the shallocation
of a single vector (the array of blip coefficients) at the start of a calculation, which then remained
throughout. Blue Gene/Q Posix can cope with this. It was only when we began to try to repeatedly
allocate and deallocate things in late 2013 that the deficiencies became apparent.

To help you with the above, we have implemented a few things. OK, so on Blue Gene/Qs one
needs to know in advance the number of MB of shared memory required, so that one may set the
BG SHAREDMEMSIZE environment variable (this is/was called BG SHAREDMEMPOOLSIZE on
Blue Gene/Ps). If the required amount of shared memory is, say, 100Mb then this can be set ap-
propriately and passed to the compute nodes simply by using a --user.shemsize=100 argument to
runqmc. (Never attempt to run on a Blue Gene without the runqmc script, trust me.) Note that if you
include --user.shmemsize as a command-line argument, you may omit the usual -s which toggles
shared memory.

How do you know what value to use for user.shmemsize? For small systems on not too many proces-

266

sors where you’re not likely to run out of memory, try using 1.2 times the size of the bwfn.data.bin

(or bwfn.data.b1) file for blip calculations, and 2.2 times the size of the gwfn.data file in Gaussian
calculations. To set the value exactly without guessing, note that casino will calculate this number
and print it to output at the end of the setup process (within the scope of testrun=T). This means
you can do a quick preliminary calculation to find it out (search for, e.g., ‘shared memory’ in the
output file). However, the amount of shared memory required depends on the number of cores per
shared memory node (or the number of MPI processes per node if running more or less than one
process per core). If one ultimately wishes to run on, say, half a million cores, it may be desirable to
execute the test run on just a few cores on your personal machine, rather than waiting a week for the
full job to sit in a queue of a national supercomputer. For the purposes of computing the size of the
shared memory partition, one may therefore set the number of desired processes per node by setting
the keyword shm size nproc in the casino input file, and this value will be used in the computation
of the shared memory size rather than the actual number of processes per node being used in the test
run (unless shm size nproc =0—which is the default). Note that the casino test run must be done
in Shm mode, i.e., with runqmc -s.

If you’re setting up the code on a new Blue Gene, feel free to follow the hideously complicated template
in, e.g., CASINO/arch/data/bluegene-xlf-cobalt-parallel.mira.arch.

39.5 Using CASINO on the Knights Landing manycore processor

The Intel Knights Landing (KNL) processor is the second generation of Intel’s Xeon Phi range. The
KNL has up to 72 physical cores per processor. These cores each support up to four hyperthreads,
and have two vector processing units. The memory on each node is divided into a relatively large
conventional memory and a high-bandwidth on-chip multichannel dynamic RAM (MCDRAM), which
is often configured to act as a large cache. It is straightforward to use casino on the KNL processor.

Our experience with running casino on the ARCHER KNL cluster (http://www.archer.ac.uk/
documentation/knl-guide/) suggests the following:

• The Cray Fortran compiler appears to give slightly better performance on the KNL than either
ifort or gfortran.

• The use of four hyperthreads per physical core improves the per-node performance of casino.
To use multiple hyperthreads, use e.g. ‘--ppn=256’ as an argument of runqmc to request 256
processes per node (if there are 64 physical cores per node).

• The per-node performance of the ARCHER KNL cluster (with 64 physical cores per node) is
about the same as the per-node performance of ARCHER itself (Cray XC-30 with 24 cores per
node), provided the Cray compiler and hyperthreading are used on the KNL.

• For blip calculations, shared memory should be used. There does not seem to be a significant
speedup from squeezing all the data onto the MCDRAM as opposed to using the MCDRAM as
a cache. Use the ‘--user.memmode’ flag to runqmc to specify how the MCDRAM is to be used
(on the ARCHER KNL cluster this can take values ‘quad 100’ or ‘quad 0’; see the ARCHER
documentation for more information on the memory modes available).

39.6 OpenMP support

39.6.1 Introduction

In addition to MPI, casino also has a secondary level of parallelization using OpenMP.

Current and near-future processors have a hierarchical architecture due to limitations in the amount
of power that can be reasonably delivered to and dissipated from each processing unit [129]. One
approach to the different levels in the hierarchy is to use multiple simultaneous approaches to paral-
lelism, with an OpenMP-like level parallelizing across the cores in one or a few CPUs and an MPI-like
level parallelizing across the entire system.

For a pure-MPI QMC calculation with P processors, the total computation time t is roughly given by
t ≈ MCtc/P , where M is number of steps, C is number of configurations and tc is the average time
to move one configuration at each step. However on very large computers one can be in a situation

267

http://www.archer.ac.uk/documentation/knl-guide/
http://www.archer.ac.uk/documentation/knl-guide/

where the desired C and P are such that P > C, which means that there will be MPI processes with
no configurations in them (and thus idle), which is a waste of resources.

The second level of parallelism becomes useful when P > C. Running multiple OpenMP threads on
multiple cores allows keeping C small, effectively reducing tc in the cost formula above.

39.6.2 Implementation basics and performance

The general strategy of this implementation is to use OpenMP parallelism for the loops whose trip
counts scale with the number of electrons or atoms. In the QMC algorithm the basic logical units
that need to be parallelized are routines like

• orbital evaluation routines (only for blips, currently)

• Jastrow factor evaluation routines,

• inverse Slater matrix updating routine,

• potential energy evaluation routine,

• electron–electron and electron–nucleus distance evaluation routines,

• etc.

Extensive performance tests were done on pseudopotential systems that use the blip3d and
blip3dgamma. The best performance obtained on an AMD quadcore CPU was for a system of 1024
electrons. The speedup factor was close to 1.5 for 2 OpenMP threads and close to 2 for 4 OpenMP
threads. Larger systems had update dbar as an OpenMP bottleneck.

Note that performance benefits using OpenMP are basis-set dependent, since the orbital evaluation
is only parallelized when using blips. If using Gaussians or whatever, then one should still see some
benefit from speedup of the Jastrow and other routines.

39.6.3 Using OpenMP

To use the OpenMP feature, compile the code with make Openmp on a supported architecture (or
respond, e.g., ‘1:OpenMP when using the compilation option of the install script). Then use the option
--tpp threads-per-process in the runqmc command line to specify the number of OpenMP threads
per process.

E.g. to run two processes with two threads each you would type runqmc --nproc=2 --tpp=2, ideally
on a 4-core machine. By default on batch-queueing systems the number of cores reserved for the job
will be nproc * tpp.

Note finally that when analysing timing data from Openmp runs you need to look at the ‘Real Time’
data, rather than the ‘CPU time’ data, since the CPU time is summed over all OMP threads.

39.6.4 Using OpenMP with Shm

To use the OpenMP feature in combination with System V or Posix shared memory, compile the
code with make OpenmpShm (or make openmpshm) on a supported architecture (or respond, e.g.,
‘1:OpenmpShm when using the compilation option of the install script). Then use the option --tpp

threads-per-process in the runqmc command line to specify the number of OpenMP threads per
process, in conjunction with the usual ‘�-s’ flags.

You may need to think about the required MPI process-binding flags if using shared memory together
with OpenMP (see Sec. 39.6.5).

39.6.5 MPI process binding

It is not usually necessary to supply MPI process-binding flags to mpirun (i.e., the default behaviour
is fine), but occasionally it is necessary to specify how MPI processes are to be bound. As an example,
suppose your compute node has two CPU sockets, with each CPU having eight cores (so there are
16 cores on the compute node). Usually the NUMA nodes (see Sec. 39.4) correspond to the CPU

268

sockets. Hence if you want to run eight MPI processes per compute node with two threads each using
shared memory then you want to assign and bind four MPI processes to the first socket and four to
the second socket, and you want to make sure that the MPI ranks of the four bound to the first socket
are 0, 1, 2 and 3, and that the ranks assigned to the second socket are 4, 5, 6 and 7. This can be
achieved in OpenMPI by adding the flags “--map-by socket --rank-by core --bind-to socket”
to mpirun. On the other hand, if you want to run one MPI process with 16 threads then you cannot
bind the process to a socket, otherwise it will only be able to spawn eight threads. In this case you
should not attempt to bind the process, i.e., you should include the mpirun flag “--bind-to none”.

Binding flags are not currently set by default, except on the Lancaster high-end-computing cluster
(see CASINO/arch/data/machine/lancaster.arch). Please edit your .arch files to include binding
flags as and when you need them.

39.7 OpenACC support

Casino’s support for GPUs via OpenACC is still experimental. Please contact Neil Drummond for
more information.

A Appendix 1: Programming guide for CASINO

A.1 Making changes to the CASINO source code

Many people from around the world have contributed to casino, and we are very grateful for this.
However, we request that users should obtain the agreement of the developers before making alter-
ations to either the main source code or the utilities supplied in the casino distribution, as per the
user agreement / download form. Furthermore, we cannot guarantee that your changes will subse-
quently be included in the casino distribution, or that they will remain there. Any contributions
made to the casino code may be edited by the developers or indeed by other contributors.

The following comments apply to any changes that you make to the existing source code of casino,
and to any utilities that you wish to add to the casino distribution.

A.2 Languages

The main casino source code and many of the utilities are written in Fortran, which must con-
form to the Fortran 2003 standard; later standards are not necessarily supported by all compil-
ers. There are also a couple of simple C routines in the main code, for shared memory etc.
Utilities not in Fortran should generally be written as bash shell scripts (or possibly tcsh or csh,
though this is deprecated). To test the validity of bash scripts, please consider using shellcheck
(https://github.com/koalaman/shellcheck). We have one C++ pseudopotential conversion util-
ity. The ADF converter in utils/wfn converters/adf and a couple of other utilities are written in
Python. Please understand that casino is meant to compile and run out of the box on any computer
in the world, and the fewer languages we are dependent on the easier this is to achieve.

If you would like to add utilities written in Python then please try to ensure that the code is as
portable as possible; ideally it should run under both Python 2 and Python 3 (certainly under the
latter), and it should not rely on any nonstandard libraries. Please be aware that even common
libraries such as numpy may not be available on some of the machines on which casino is used. At
the very least it is best to trap for whether libraries such as numpy are available. If you are adding a
critically important utility that will be required everywhere that casino is used then it is probably
safest to stick to Fortran and bash.

A.3 Style

casino has a Fortran 2003 ‘style’ which should be adhered to when writing code, both for the main
source and for the Fortran utilities. This is because it is desirable that the package has a homogeneous
look and feel (and because searching for text strings then works consistently). Everybody has their
own style. Yours is different and may even be better, but we’ve decided on one for casino and there
it is. If you don’t write your code like this, the likelihood is that MDT or someone else will reformat it

269

https://github.com/koalaman/shellcheck

for you, and they will probably accidentally delete a crucial minus sign while correcting your routine,
an error which may take two weeks of your life to track down (and this could be much better spent
doing other things). You can get the idea just by looking at the developer version source code in
CASINO/src (the standard version is ‘obfuscated’ and practically unreadable) but let’s emphasize the
main points:

• Don’t use more than one module per physical file, as Hitachi compilers won’t (or didn’t used
to) allow this!

• Capitalization outside of character context: use upper-case letters for keywords whose use is
primarily at compile time (statements that delimit program and subprogram boundaries, dec-
laration statements of variables). Use lower-case letters for everything else, including the bulk
of run-time code. Description of routines is to be enclosed in a little box with a description of
what it does and an author. Later changes are to be documented at the bottom of this box. For
example:

SUBROUTINE rubbish

!---!

! Routine to write words to the screen.

!

!

!

! MDT 8.2000

!

!

!

! Changes:

!

! --------

!

! 3/2001 MDT - added capability to write ‘Hello ’

!

! 5/2001 MDT - added additional capability to write ‘Donkey!’

!

!---!

USE dsp

USE parallel

IMPLICIT NONE

INTEGER i,j,k,some_integer

REAL(dp) a

CHARACTER(llength)my_name

i=0

do j=1,10

write (6,*)’Hello’

do k=1 ,1000000

i=i+1

write (6,*)’Donkey!’

enddo

enddo

! etc.

END SUBROUTINE rubbish

• Contents of if, do and case blocks should be indented by one space.

• In general don’t put spaces between words, e.g.,

if(something_is_true)a=b+c

not

if (something_is_true) a = b + c

270

• Do not use ‘.eq.’, ‘.ne.’, ‘.lt.’, ‘.le.’, etc.; use the Fortran 90 versions instead, i.e., ‘==’, ‘/=’, ‘<’,
‘<=’, etc.

• Use a maximum of 80 characters per line. If you go over this, use ‘&’ continuation characters
at the end of the line and at the beginning of the next one (don’t include spaces between the
ampersand and the text).

• There should be two blank lines between subroutines in a given physical file.

• Error conditions are to be handled using the errstop and errwarn routines (in the
utilities.f90 module).

• Use ‘endif’ and ‘enddo’, not ‘end if’ and ‘end do’.

• No double colons should be used in simple variable declarations, e.g.,

INTEGER ialloc

except where required, e.g.,

INTEGER ,INTENT(in) :: n

• In lists of declared variables, adhere to the following order:

– INTENTed dummy arguments first, order: in/out/inout

INTEGER ,INTENT(in)

(INTEGER ,INTENT(out) etc.)

(INTEGER ,INTENT(inout) etc.)

REAL(sp),INTENT(in)

REAL(dp),INTENT(in)

COMPLEX(sp),INTENT(in)

COMPLEX(dp),INTENT(in)

LOGICAL ,INTENT(in)

CHARACTER (12), INTENT(in)

TYPE(xx),INTENT(in)

– followed by things which are not arguments

INTEGER

REAL(sp)

REAL(dp)

COMPLEX(sp)

COMPLEX(dp)

LOGICAL

CHARACTER (12)

TYPE

Within each class, put standard variables on the first line, followed by things with attributes
like ALLOCATABLE, PARAMETER, etc., on subsequent lines, in whatever order seems aes-
thetically pleasing.

Note also the CHARACTER(12), not CHARACTER*12, which is not in the Fortran 90 stan-
dard.

• Don’t use tab characters anywhere in the code.

• All units for reading and writing are to be allocated unit numbers using the standard open units

procedure, of which you can several examples throughout the source.

• Initial letters of comments are to be in capitals. Comments are to be spelt correctly and end
with a full stop/period (if they form a complete sentence). Comments must be useful.

! This is a legitimate comment.

! this is an illegitimate comment X

! tihs one is evn more illetigimate as i cant spell XX

! allocate a

XXX (useless !)

allocate(a(1))

271

• If you add a module USE statement anywhere, don’t forget to change the dependency list
in the Makefile. This can be done automatically by running update-makefile-tool in the
CASINO/src directory.

• Module ‘USE’ statements should be in alphabetical order, followed by ‘USE ONLY’s in alpha-
betical order:

USE a

USE b

USE c

USE a1 , ONLY : x

USE b1 , ONLY : x

USE c1 , ONLY : x

• Don’t use ‘return’ at the end of each routine (unless necessary); just use END SUBROUTINE
or END FUNCTION etc.

• Don’t use GOTO statements if you can avoid them (which you can).

Note that the casinostyle checker utility exists to help you ensure that your program or modifica-
tions to casino source files conforms to the style guidelines above. Simply supply the .f90 files that
you wish to check as command-line arguments.

A.3.1 C routines

The casino source contains two C routines etime.c and alloc shm.c. Please make reference to these
to get some idea of how to format new C routines. The only important point is not to use new-style
C comments designated by //—there are still C compilers that we supposedly support which do not
allow this. Use the old-style /* */ form instead.

A.4 Content

casino uses the git revision control system (see http://git-scm.com). There is an official casino
document written by PLR which explains the most important features of this system, including how to
submit content for inclusion into the main distribution. It can be found in the CASINO/doc directory
(git guide.pdf) and probably online somewhere.

Access to the developer git repository may be granted by sending a request to Mike Towler
(mdt26 at cantab.net) and then following the instructions at https://vallico.net/casinoqmc/

git-repository/.

Note that modifications to casino will not be accepted unless the patches are done on the most recent
development version of the code via the standard git mechanism.

Even if modifications are made in the correct manner, you may find that they are still not incorporated
into the public release. If you want this to happen, there are a variety of ways to lower the energy
barrier for the inclusion of your routines. The general theme here is to try to reduce the amount of
effort that MDT has to perform to validate and check your code. If your submission includes lots
of things from the ‘Good things’ list, and none at all from the ‘Bad things’ list, then inclusion is
semi-automatic and will normally take place within days. We are aware that it requires a lot of work
to do the things on the Good list but of course we will have to do it if you don’t!

A.4.1 Good things

• Well-written, absolutely standard Fortran 90/95/2003 in the standard casino format. Do not
use features from later releases of the Fortran standard, or non-standard extensions.

• The results of extensive testing of your routine with a range of examples, with before and after
numbers (including timings). This should be done with the autotest suite (see the README file
in examples/TEST and the discussion below).

• A detailed description of whatever your code is supposed to do. (I shouldn’t have to go through
each line of your code at the same detailed level you did, or I might as well have written it
myself.)

272

http://git-scm.com
https://vallico.net/casinoqmc/git-repository/
https://vallico.net/casinoqmc/git-repository/

• A bit of TeX for inclusion in the manual (if the code requires the user to know something over
and above what the current manual describes). This should be well-written, comprehensive, and
helpful.

• Some example input/output demonstrating the new capabilities, which MDT can just run and
look at and perhaps incorporate into the CASINO/examples directory, without having to invent
his own.

• Evidence of testing on serial and parallel machines. Remember that in general only the master
processor should write to the output file. Also, casino is supposed to compile and work on
single-processor machines without an installed MPI (Message Passing Interface) library. Use the
fake comms serial.f90 module supplied both in the utils directory and with the main code
(in general you only need worry about this if you introduce a call to an MPI routine which is
not already used in casino and which has not been ‘faked’).

• If you use MPI calls when doing the parallel bits, try to ensure they are included in the MPI-1
standard since, somewhat unbelievably, there are some computers in the world which claim not
to be able to support the 14-year-old MPI-2 standard. Currently, the only MPI-2 routine used
in casino is MPI GATHER IN PLACE, and PLR has implemented a fake version of this in the
comms parallel mpi1.f90 routine which can automatically be used on machines which do not
have an MPI-2 installation (if their CASINO ARCH file tells them so).

• Your routine uses the standard casino facilities for handling errors (errstop/errwarn etc.).
These can be found in the run control.f90 module.

• Your routine implements something that we desperately want or is in the TODO list.

A.4.2 Bad things

• We do not sacrifice speed for additional functionality. Think of another way to write it if it
slows the code down.

• We do not like to include things unless they are completely general. The development of general,
complex electronic structure codes can be set back years by people choosing to implement
functionality which works only for their current project. Nongeneral algorithms tend to get
completely thrown away and re-implemented, which wastes the time of both parties. It is not
usually much harder to write a general program than it is to write a specific one (we understand
this is not always true!).

• Casino has to be able to compile out of the box on any machine, and we cannot assume that
every user has the ability to install particular libraries. You should not use any calls to external
libraries that are not included in the casino distribution apart from MPI, BLAS and LAPACK.
If you want to use any other library or third-party code in your addition to casino then you
must ensure that there are absolutely no licence restrictions on including the library or
third-party code in the casino distribution; you can then place the source code for the library
in CASINO/lib.

• When writing to the output file, the new routines should not write out lots of weird arrays
(whose meaning is understood only by the author) in an incredibly scruffy format full of spelling
mistakes. In general, be as beautiful and informative as you can when writing to output, or
MDT will just have to make it so (which takes ages). If there are all sorts of special cases
which require different output, then so be it—select case and if blocks are very useful in this
regard.

• Prior agreement for modification of the code should have been obtained. Unsolicited submissions
are not accepted and can lead to moody lack of cooperation on our part.

A.5 Testing and debugging CASINO

Here is some advice on how to go about testing and debugging casino after you have made some
modifications.

273

• Type make debug in ~/CASINO/src/ in order to compile the code with debugging options set.
The resulting binary can be run by the runscript using runqmc --debug or runqmc -d.

• Remember to check that casino still works with OpenMP and OpenACC when you modify the
code.

• The best compiler for debugging on PCs is NAG. MDT has recently discovered that the Cray
compiler is pretty good too.

• Running GCC with Valgrind is also very effective for debugging, and can find memory issues
missed even by the NAG compiler. Run casino using runqmc --debug --valgrind. If you
wish to debug using Valgrind in parallel then you should first compile your own version of the
OpenMPI library supplying the “–with-valgrind” option to the configure script; even then you
should expect to see lots of (hopefully unimportant!) memory leaks that occur in OpenMPI, not
in casino.

• It is a good idea to try running the code using several different compilers on several different
architectures: this maximizes the chance of finding problems. There are bugs which require
a combination of compilers to locate successfully. Note that you should always test that your
modifications work on parallel computers, if possible.

• If you encounter a problem, try changing options in the input file before looking in the code.
For example, does the problem only occur when a Jastrow factor is used? Does it only occur
when the cusp correction is used? Try to obtain the simplest set of circumstances capable of
reproducing the problem.

• Track down bugs either by (i) inserting write statements in the code and recompiling or (ii)
using a debugger (such as gdb) in conjunction with binaries that have been compiled with the
debugging flags set, which you can use by passing the --debugger=debugger-binary option to
runqmc.

• Any utilities you write should also be tested by compiling and running with full debugging flags.
Use, e.g., man f90 to find out about the available debugging flags for your compiler.

• If you get stumped and have to send a bug report to us in Cambridge, then please make sure that
everything we need to reproduce the problem is attached or otherwise available. Our record so
far is an exchange of 24 emails—beginning with one stating ‘casino doesn’t work!’—before we
discovered precisely what it was the user was complaining about (that is, what the problem was,
rather than the solution). We shall leave it to you to guess which distinguished London-based
professor we are referring to.

A.6 Performance

A.6.1 Internal timers

casino can print a detailed timing analysis at the end of the output file when it has finished a
calculation. This information can be useful to the programmer in deciding what optimizations to do
to make the program run faster. It is generally disabled by default since, annoyingly, the process
of calculating the timings slows down the code significantly. To activate the detailed analysis, set
timing info=T in the input file.

The total time is printed as ‘CPU’ time, and the ratio between ‘System’ and ‘User’ time is displayed
as well. These timings are broken down according to specific tasks, although by no means all activities
are timed—only those thought likely to contribute significantly. For very small systems such as atoms
a significant amount of CPU time will remain unaccounted for since the traditional heavyweight
tasks are very fast. For medium and large systems, often the calculation of the orbitals and their
derivatives will dominate, closely followed by Jastrow factors and Ewald interactions. In systems with
pseudopotentials, the nonlocal integration is very expensive indeed (since it calls the orbital evaluation
routine a lot) and this expense will increase the larger the nonlocal cutoff radius (lower nlcutofftol
in the input file to see the effect of this).

The ‘User’ time is the time spent executing the instructions that make up the user code, including,
e.g., calls to subroutine libraries linked to the code.

274

The ‘System’ time is the time spent in kernel mode, processing I/O requests, for example, or other
situations which require the intervention of the operating system.

Together these comprise the total CPU time. Note that the User time is usually significantly greater
than the System time. Indeed, a high ratio of system to user CPU time may indicate a problem.
Exceptions such as page faults, misaligned memory references, and floating-point exceptions consume
a large amount of system time. Note that time spent doing things like waiting for input from the
terminal, seeking on a disk, or rewinding a tape does not appear in the CPU time; these situations
do not require the CPU and thus it can (and generally does) work on something else while waiting.

The elapsed (‘wallclock’ or ‘real’) time is simply the total real time that passed during the execution
of the program. This will typically be greater than the total CPU time due primarily to sharing the
CPU with other programs. In addition, programs that perform a large number of I/O operations
requiring more memory bandwidth than is available on the machine (i.e., the CPU spends significant
time waiting for data to arrive from memory, or is paged or swapped) will show a relatively low ratio
of CPU time used to elapsed time.

A.6.2 Profiling tools

To optimize the code it can be helpful to use tools such as gprof to investigate bottlenecks. Compile
casino using make prof and run it using runqmc --prof, then use gprof to examine the resulting
.gmon file. If you want to check that casino is making good use of your machine’s memory cache
then you can investigate using Cachegrind (a Valgrind tool).

Lots of other performance and optimization tools are available. If you find a tool that demonstrably
allows you to improve casino then please let us know!

A.7 Bug reports

We cannot of course guarantee that casino is free of bugs, and if you find one, please tell us. If
you don’t know what the problem is yourself, than please include as much detailed information you
can about the nature of the error in order to ensure a quick fix. In particular, please send us all the
relevant input files to enable us to reproduce your problem.

A.8 Requests for new features

We are of course always happy to discuss such requests.

B Appendix 2: Automatic testing of CASINO

B.1 Overview

A facility for automatically testing casino can be found in CASINO/examples/TEST. This directory
contains another directory called Input, which holds a large number of examples designed to test most
aspects of casino, and a script called autotest, which will run casino for each of those examples
in turn. This facility is intended to help developers ensure that they do not inadvertently break the
code when adding new features.

B.2 Running the set of examples

The first time that autotest is run, a stable, trusted version of casino should be used to create a
library of standard output files, with which subsequent results can be compared. Type ./autotest

--library to achieve this. (Note that the casino binary compiled with debugging flags will be used
by default.)

Subsequently, just type ./autotest to run the examples and compare the output with that in the library.
The script will warn you if casino fails or halts unexpectedly, or if the output differs from that in
the library (don’t worry if it scrolls off the screen too fast; all output is saved in the autotest.log

file). Note that rounding errors often affect the last couple of digits in the results of optimization

275

calculations. Moreover, there are often trivial differences between the results produced with different
compilers, so, when testing the code, it is best to use the same compiler as was used to generate the
library.

The autotest script uses runqmc to run casino, and one may pass options to runqmc directly using
the syntax ‘--〈extra-runqmc-options〉 (i.e., use a double hyphen to separate autotest options from
the ones to be passed to runqmc, as in ‘runqmc --nproc=100’). This allows, for example, running
Shm and OpenMP autotests, controlling the number of cores used on of parallel autotests, running the
debug, opt, or dev versions of the code, and so on.

To skip a particular example use, e.g., ‘--not carbon atom’. To run the test for a particular example
only, use e.g. ‘--only neon atom’. Use --missing to only run tests which have not been run already,
or were interrupted; use --error to only run tests which have not been run already, or were inter-
rupted, or resulted in an error; use --mismatch to only run tests which have not been run already,
or were interrupted, or did not match the library output. If you want to get rid of all the results
(including the library results), either remove the Library and Output directories by hand, or type
./autotest --clean. Type ./autotest --help to get a full list of options.

The facility is good at picking up minor bugs when used in conjunction with the NAG compiler with
debugging flags. The facility should be run after any substantial modification of casino.

B.3 Adding a new example

If a new feature is added to casino then an appropriate example should be added to the automatic
testing facility. Create a new directory in Input with name describing the system, and create one
or more subdirectories in it with names indicative of the run type; see other examples for guidance.
Let’s refer to these directories as system and system/run, respectively. Place common files (e.g.,
xwfn.data files, pseudopotentials, etc) under system, and files which change from run to run (e.g.,
input) in the individual system/run subdirectories.

Note that the examples should run very quickly; it doesn’t matter whether good results will be
produced. The great majority of bugs will show up when the results of the modified version of
casino are compared with the ‘standard’ version.

The random seed keyword should be set to a definite value (usually ‘standard’) in input files for
autotest. Otherwise, it default to ‘timer’ and a different random-number sequence will be used every
time autotest is run.

B.4 Using git-bisect with autotest

Bisecting is a very simple, yet powerful, feature of git which aids locating the commit at which a
regression was introduced, and thus (hopefully) determine how to fix it.

Suppose you have a clean working directory (no modifications over the last commit), and when you
run the autotest you find a crash, an output mismatch, a large increase in CPU time or any other
undesirable circumstance for a particular example, system/run. You know that this did not happen
a few hundred commits ago when you last ran the autotest at commit 123456, say.

In that case you may want to use git-bisect. Open a new terminal and change into ~/CASINO, so
that you have one terminal to run the autotest (the ‘autotest terminal’) and another to do version
switching and compiling (the ‘git terminal’). In the ‘git terminal’ type

git bisect start

git bisect bad # the current commit has the bug

git bisect good 123456 # an old commit (123456) does not have the bug

git will then jump to an intermediate commit. Type make to recompile casino at that point, then
switch to the ‘autotest terminal’ and type, for example,

./autotest --only system/run

Then switch to the ‘git terminal’ and, if the problem is not present in this run, type

git bisect good

276

else type

git bisect bad

and type make again to rebuild the code at the next commit git decides to test, and so
on. If at any point you land on a commit which you would rather skip (it won’t compile, or it
has a known problem which won’t let you see whether the bug you are looking for is there or not), type

git bisect skip

and git will pretend the commit is not there.

After a few bisects git should be able to tell you which commit introduced the regression. To return
to the initial state (and this can be done at any point during the bisect operation), type

git bisect reset

For more information see the git-bisect manpage.

C Appendix 3: Converting CASINO v1.x input files to
CASINO v2.x format

There is a utility called update input included with casino which should be capable of updating
most input files from version prior to 2.0 into ones suitable for the current code. As the changeover
took place ages ago (2003?) hardly anyone will want to do this, and this appendix is in serious danger
of being deleted. However, if you really do want to do such conversions, and have any problems using
this script, then here are some useful tips.

• The formats of the Jastrow and backflow sets in the correlation.data file are exactly the same
as the formats of the old jastrow.data and backflow.data files: therefore you simply need
to copy the contents of the old files into a file called correlation.data. If you don’t have a
backflow.data file then you can simply rename jastrow.data as correlation.data.

• If your calculation uses the archaic jasfun.data file of casino’s old Jastrow factor or the
swfn.data file used to store ‘spline’ orbitals then it is not possible to continue your calculation
using version 2, as both the old Jastrow factor and the spline representation of orbitals have
been dropped from casino. You must therefore use an archived version of casino version 1.

• Any blwfn.data files should be regenerated. The file format can also be updated by hand—ask
Neil to do this.

• Delete any eepot.data and density.data files and regenerate them as a mpc.data file using
the runtype = ‘gen mpc’ option. Alternatively there is a make new mpc utility which will do a
direct conversion.

• The hist update utility should be used to convert old-format vmc.hist, dmc.hist and
dmc.hist2 files to the new-format vmc.hist and dmc.hist files.

• The following changes should be made to the input file (it is probably best to copy an input file
from the new examples and just change the few parameters in the new ‘system-specific’ section
at the top):

1. irun = 1 should be replaced by runtype = ‘vmc’ and use jastrow = F; irun = 2 should
be replaced by runtype = ‘vmc’ and use jastrow = T; irun = 3 should be replaced by
runtype = ‘dmc’; irun = 4 should be replaced by runtype = ‘opt’; irun = 5 or 6 should
be replaced by runtype = ‘gen mpc’.

2. The number of variance-minimization cycles is specified by the opt cycles keyword. A
post-fit VMC calculation will be performed if the postfit vmc keyword is set to T. This
only has effect if the runtype = ‘vmc opt’ or ‘opt vmc’.

3. The keyword opt pairing has been renamed to opt orbitals. Its meaning is unchanged.

277

4. btype = 7 should be replaced by btype = 4 (and in version 2.1 btype was marked
redundant and replaced by the atom basis tye keyword).

5. The wavefunction block in the input file is no longer used. If you used it to specify
multideterminant or excited-state wave functions then you should move the data to an
‘MDET’ block in correlation.data. The format of the latter is the same as that of the
former except that (i) the ‘MDET’ block has a title (and comment lines introducing the
title and multideterminant data) and (ii) the multideterminant expansion coefficients must
be followed by an integer label and an ‘optimizable’ flag. See Sec. 7.4.5.

6. The keyword energy cutoff has been replaced with separate mpc cutoff and exp-
val cutoff keywords specifying the cutoff values for the G vector sets used in mpc.data

generation and expectation value accumulation.

7. The keywords denft threshold, dbar tolerance, vm mode, use newjas,
use coeff file and all keywords previously flagged as redundant have been deleted.

8. The keyword use newopt should be removed; to use the ‘newopt’ method (now varmin-
linjas), set the keyword opt method to varmin-linjas.

D Appendix 4: Specification of the format of the
correlation.data file

1. The correlation.data file contains: (i) the data specifying the Jastrow factor (the old
jastrow.data); (ii) the data specifying the backflow function (the old backflow.data); (iii) the
data specifying the orbitals occupied in each determinant together with determinant expansion-
coefficient data; (iv) the data specifying the geometry and wave function of electron-gas and
electron–hole-gas systems (these data may be considered to be optimizable parameters). Any
new optimizable parameters, even ones relating to the orbitals specified in xwfn.data, should
be placed in correlation.data.

2. The precise definitions of the Jastrow and backflow data sets are given in Secs. 7.4.2 and 7.4.4,
respectively.

3. If excitation data or determinant expansion-coefficient data are given in correlation.data then
this overrides the ground-state definition given in the xwfn.data file.

4. The correlation.data file uses the following format:

(a) The data should be broken up into ‘sets’. For example, there should be separate sets of
data specifying the Jastrow factor and the backflow function.

(b) Each distinct set of data XXX should begin with a line ‘START XXX’ and end with a line
‘END XXX’.

(c) Sets of data may be nested.

(d) Any blank lines immediately before a line ‘START XXX’ or after ‘END XXX’ should be
ignored. No other blank lines are allowed in the file.

(e) Parameter values should be specified by (i) a line of text defining the parameter(s); (ii) the
unformatted parameter value(s) (it is possible to have more than one parameter per line
and there may be several lines of parameters). The precise format that is required should
be clearly specified by the line of text.

(f) Each major set of data (that is, one that is not nested within another) should have a title
as the first input parameter.

(g) The order in which major sets are supplied should not matter. Major data sets that are
not required by casino may be omitted.

(h) All lines with optimizable parameters are to contain a flag specifying whether the param-
eters in that line are free to be varied (1) or not (0). This flag should be given after the
parameter value(s) on that line.

(i) Any comments after the desired parameter value (and optimizable flag) should be ignored.

278

(j) If a set of parameters is the last item in data set XXX (that is, immediately before ‘END
XXX’) then it may be acceptable for the user to omit some or any of the parameters.
Any parameters that are not specified are assumed to take value 0, and, if relevant, the
corresponding ‘optimizable’ flag is assumed to be 1 (‘true’).

(k) When casino produces a correlation.out file, all optimizable parameters should be
written out, followed by their optimizable flag (as given in correlation.data, or ‘1’ by
default if not specified in correlation.data), optionally followed by a ‘!’ and then a brief
definition of the parameter.

(l) It is acceptable to have input parameter values in correlation.data which specify that
default values are to be substituted. However, the actual parameter values should always
be written out to correlation.out.

5. If correlated sampling is introduced into casino, it may be necessary to define several
correlation.data files. These should be named correlation.data.1, correlation.data.2,
correlation.data.3, . . .

6. correlation.out is of the same format as correlation.data. It is produced by casino during
the optimization of the wave function, and contains the optimized parameter values.

7. Optionally, a header may be given. Comments may be provided over several lines between
‘START HEADER’ and ‘END HEADER’. The header should not be nested within any other
data sets.

8. Optionally, a version number can be given. This is a whole number placed between the lines
‘START VERSION’ and ‘END VERSION’. The version number will be increased each time the
format of the correlation.data file is changed. The version-number set should not be nested
within any other data sets.

E Appendix 5: CASINO system-specific data files

The arch/data subdirectory contains architecture data files which define system-specific parameters
for compiling and running casino. Include files in this directory are named $CASINO ARCH.arch,
where CASINO ARCH is an environment variable which should be defined in your shell session and
determines which set of parameters to use, including compiler name, flags, library locations, how to
submit jobs, etc.

This system is documented here, and in CASINO/arch/README (of which the following is a copy).

I. Types of CASINO_ARCHs

========================

While there is no fundamental difference between CASINO_ARCHs, we define two

conceptual types for convenience, which simply differ in purpose and naming

convention:

* "Generic" CASINO_ARCHs are intended to represent a class of systems. Their

name is typically of one of these forms:

- Single-processor workstations:

<system>-<compiler>

- Multi-processor workstations:

<system>-<compiler>-parallel

- Clusters with queueing systems:

<system>-<compiler>-<queueing-system>-parallel

* "Extended" CASINO_ARCHs are intended to represent specific systems, and are

usually modifications to existing generic CASINO_ARCHs. Their name is of the

form:

279

<generic-name>.<specific-system-name>

The corresponding .arch file is typically intended to "include" its generic

counterpart, if it exists, but again this is just a guideline.

See the files in the CASINO/arch/data directory for examples of both generic

and extended CASINO_ARCH names.

II. Data file format

====================

The architecture data file is structured in three sections:

* The first section contains architecture parameters ("tags", see below).

* The second section contains any optional ’include’ statements, always

of the form:

include $(INCBASE)/<file-name>.arch

* The third section contains Makefile definitions (see below).

The file is designed to be ’include’d by the Makefiles in the distribution,

hence the lines in the first section start with the hash character ’#’ so that

they are ignored by ’make’. The first section is read by the ’runqmc’ script

and by the CASINO/arch/arch_info.sh assessment tool.

When editing .arch files, you are encouraged to use the syntax highlighting

file provided with CASINO, see CASINO/data/syntax for more info.

II.1. Data file tags

====================

The beginning of architecture data files contain tags which can be used to

identify the machine it is designed for, and to specify how to run CASINO on

that machine. Tag contents can be single- or multi-line.

Single-line tags are specified this way:

#-! TAG-NAME: tag-value

#-! tag-value-continue

#-! ...

#-! ANOTHER-TAG_NAME: ...

(no indentation before ’#-!’, *one* space between ’#-!’ and TAG-NAME, no space

between TAG-NAME and the colon; one or more spaces between the colon and

tag-value; two or more spaces between ’#-!’ and tag-value-continue). Leading

and trailing blanks are removed from tag-value and continuation lines, and

lines are concatenated with a single blank between them to form the final

value.

Multiline tags are specified this way:

#-! TAG-NAME:

#-! tag-value-line-1

#-! tag-value-line-2

#-! ...

#-! ANOTHER-TAG-NAME: ...

(same format restrictions as above, and two or more spaces between ’#-!’ and

tag-value-line-i). Leading and trailing blanks are removed from each line

read.

Note that tags are inherited via "include" statements, read in the order in

which the include statements are written, with the tags in a file overriding

those in the included files regardless of the relative placement of tags

280

and include statements.

Below are tables containing the full list of tags, classified according to

their purpose. The values under the ’L’ heading specify if the tag’s value is

supposed to be a single line (’S’) or multiple lines (’M’).

II.1.i. Tags for manual CASINO_ARCH detection

===

TAG NAME L Description & examples

DESCRIPTION S human-readable description of target system(s)

MAINTAINER S name and email of maintainer. E.g.,

Mike Towler <mdt26 @ cantab.net>

DATE S date written

COMMENT S any other relevant comments

QUEUEING_SYSTEM S (TYPE=cluster only) queuing system. E.g.,

PBS

II.1.ii. Tags for automatic CASINO_ARCH detection

===

TAG NAME L Description & examples

ARCH S comma-separated list of allowed architecture

patterns as obtained from ‘uname -m‘. E.g.,

i?86, x86_64

KERNEL S comma-separated list of allowed kernel name

patterns as obtained from ‘uname -s‘. E.g.,

Linux, GNU/kFreeBSD

OS S comma-separated list of allowed operating system

names as obtained from ‘uname -o‘. E.g.,

GNU/*

DISTRIBUTION S comma-separated list of allowed Linux

distribution strings, as obtained from (in order

of decreasing preference):

- ‘lsb_release -ds‘

- ‘head -n 1 /etc/redhat-release‘

- ‘head -n 1 /etc/SuSE-release‘

- Debian GNU-Linux ‘head -n 1 /etc/debian_version‘

E.g.,

*buntu *, *SUSE 11.3*

HOSTNAME S comma-separated list of allowed host name

patterns of the target computer. E.g.,

pc*.tcm.phy.cam.ac.uk, cluster.tcm.*

An empty value means that the hostname should not

be checked against anything.

DOMAIN S comma-separated list of allowed domain name

patterns of the target computer. An empty value

means that the domain should not be checked

against anything. This is provided since some

distinct machines have the same hostname but

different domains.

281

F90_VERSION S comma-separated list of allowed compiler version

patterns that should be matched. E.g.,

<= 2.1, 3.2.*, 4.0.*, > 4.1

COMMAND_CHECK_F90_VERSION M bash code block that outputs the compiler

version, which will be matched against

F90_VERSION. E.g.,

set -- $(&F90& --version | head -n 1)

echo ${*:$#}

The code may make use of the &F90& variable,

which is replaced by the value of the Makefile

variable F90.

COMMAND_CHECK_F90 M bash code block that checks if the compiler

is indeed the desired compiler (e.g., to avoid

false positives with the usual ’f90’, ’mpif90’,

etc). The code should print ’1’ if the check

succeeds, anything else otherwise. E.g.,

set -- $(&F90& --version | head -n 1)

["${*:1:2}" = "GNU Fortran"] && echo 1

The code may make use of the &F90& variable,

which is replaced by the value of the Makefile

variable F90.

CC_VERSION S | like their *F90* counterparts, but for the C

COMMAND_CHECK_CC_VERSION M > compiler

COMMAND_CHECK_CC M |

CXX_VERSION S | like their *F90* counterparts, but for the C++

COMMAND_CHECK_CXX_VERSION M > compiler

COMMAND_CHECK_CXX M |

II.1.iii. Run-time tags

=======================

If a run-time tag’s name is preceded by an asterisk (e.g., ’*RUN_SINGLE’),

the contents are interepreted as multi-line bash code whose standard output

provides the value of the tag -- in the case of single-line tags, multiple

output lines are appended a blank and concatenated, and in the case of

multi-line tags, each output line becomes an individual line in the tag’s

value.

See ’variable substitution’ section below for a list of allowed

run-time variables.

TAG NAME L Description & examples

--

FORCE_PATH S comma-separated list of path patterns under one of

which calculations must be run. E.g.,

/work, /scratch*

would allow calculations under /work/john/heg,

/scratch/mdt/h2o, or /scratch_large/benzene but not

under /work1/dna, for example.

RUN_SINGLE S command to run direct single-processor CASINO

calculations. This is ’&BINARY&’ by default.

RUN_PARALLEL S (TYPE=parallel|cluster only) command to run direct

multi-processor CASINO calculations. This is

’mpirun -np &NPROC& &BINARY&’ by default.

CLUSTER_RUN_MODE S (TYPE=cluster only) determines if the cluster requires a

batch script to submit a job (’batch’, default, triggers

use of SCRIPT_HEAD, SCRIPT_RUN and SUBMIT_SCRIPT), or

282

if a command for submitting a job to the queue is

available (’direct’, triggers use of RUN_CLUSTER).

RUN_CLUSTER S (TYPE=cluster only) only used if CLUSTER_RUN_MODE is

’direct’; command to submit a CASINO job to the cluster

queue directly. Undefined by default. E.g., ’bgrun

-mode VN -np &NPROC& -exe &BINARY&’

CORES_PER_NODE S (TYPE=parallel|cluster only) number of cores on the

workstation, or on the login node of the cluster; ’1’

by default (but note that gnulinux.arch contains code

that counts the number of cores on the current node).

CORES_PER_NODE_CLUSTER S (TYPE=cluster only) number of cores per node in

the cluster compute nodes, if it differs from the

number of cores in the login node - if defined, its

value overrides that of CORES_PER_NODE in clusters.

SCRIPT_HEAD M (TYPE=cluster only) only used if CLUSTER_RUN_MODE is

’batch’; header of submission script.

SCRIPT_RUN M (TYPE=cluster only) only used if CLUSTER_RUN_MODE is

’batch’; line (or set of lines) in the submission script

where CASINO is run, optionally surrounded by extra

bash code as required by the machine.

SUBMIT_SCRIPT S (TYPE=cluster only) only used if CLUSTER_RUN_MODE is

’batch’; command to submit the submission script. This

is ’qsub &SCRIPT&’ by default.

ALLOWED_NCORE S (TYPE=cluster only) blank-separated list of allowed

number of CPU cores to reserve or %<number> to specify

"any integer multiple of <number>". E.g.,

1 2 4 8 16 32 %3

ALLOWED_NNODE S (TYPE=cluster only) blank-separated list of allowed

number of physical nodes to reserve or %<number> to

specify "any integer multiple of <number>". E.g.,

1 2 4 8 16 32 %3

MIN_NCORE S (TYPE=cluster only) minimum/maximum number of CPU cores

MAX_NCORE that can be reserved.

MIN_NNODE S (TYPE=cluster only) minimum/maximum number of physical

MAX_NNODE nodes that can be reserved.

MIN_NNODE_ENSEMBLE S (TYPE=cluster only) minimum number of physical nodes

for a single job in an ensemble of multiple jobs (e.g.

certain Blue-Gene Qs cannot run jobs of less than 128

nodes because of the hardware).

TIME_FORMAT S (TYPE=cluster only) a string determining how the

&WALLTIME& variable is to be constructed when specifying

the requested job time in the submission script. In

this variable, D, H, M, and S are evaluated to days,

hours, minutes and seconds, respectively; if the letters

are repeated, the respective number is padded with

zeroes on the left to fill the number of digits given by

the number of repetitions. E.g., for a CASINO-formatted

walltime of 5h43m31s,

H:MM:SS

would make &WALLTIME& expand to "5:43:31", while

DD:HH:M:SSSS

would make &WALLTIME& expand to "00:05:43:0031", and

MMMM minutes SS seconds

would make &WALLTIME& expand to "0343 minutes 31

283

seconds".

MIN_WALLTIME S (TYPE=cluster only) minimum/maximum wall time that can

MAX_WALLTIME be requested, in CASINO format. E.g.,

1d4h51m

WALLTIME_CODES S (TYPE=cluster only) blank-separated list of associations

between strings and associated wall times in CASINO

format. The strings will be used as the &WALLTIME&

variable on machines which force discrete job times and

uses custom codes to identify them. E.g.,

u=24h t=12h s=6h

ALLOWED_WALLTIME S (TYPE=cluster only) blank-separated list of wall times

that can be requested on a machine which forces discrete

job times. One need not supply this if WALLTIME_CODES

is specified. If both are, the intersection of both

lists will take effect. If MAX_*TIME is specified,

both the limits and the discrete list constrain the

available runlengths.

MIN_CORETIME S (TYPE=cluster only) minimum/maximum sum of time on all

MAX_CORETIME requested cores, in CASINO format. If both MIN_WALLTIME

and MIN_CORETIME, or MAX_WALLTIME and MAX_CORETIME, are

specified, the most restrictive value takes effect. This

is particularly useful if there is an accounting credit

system in place on the machine, so one can provide a

*MAX_CORETIME tag which returns the time remaining in

the user’s account.

MAX_NJOBS S (TYPE=cluster only) On some machines there is a maximum

number of jobs that may be flagged by a single runqmc

command (e.g. on Titan only 100 aprun processes are

permitted per job submission script). The maximum may

be specified using this tag, so that runqmc can complain

about this problem.

RELPATHNAMES S (TYPE=cluster only) If set to ’yes’, this flags the

existence of a machine with completely different

filesystems on the login nodes and the compute nodes

(and which therefore requires ’staging’ of the CASINO

input and output files). This necessitates the use of

relative pathnames rather than absolute pathnames and

a more elaborate clean-up procedure.

SCRIPTCSH S (TYPE=cluster only) This should be set to ’yes’ on

extremely unusual machines which insist that batch

scripts be written in csh, instead of the standard

bash. The resulting batch scripts may have reduced

functionality; in particular they do not yet support

twist-averaging calcs.

MAKE_EXECUTABLE S Non-standard versions of ’make’ available on some

machines may not be able to compile CASINO. If this

is the case, the need to use an alternative version

of make (such as GNU ’gmake’, which definitely works) can

be specified by setting the value of the MAKE_EXECUTABLE

tag. Merely setting a shell alias make=’gmake’ will not

work as the alias is not available to the install script

(though the alias might be necessary if you want to

compile CASINO by hand, rather than via the install

script).

--

II.2. Variable substitution

284

===========================

The variable substitution system in the .arch files is very flexible.

In the runtime section, any tag is allowed to depend on any variable, and

an appropriate evaluation order will be computed. Together with the use

of INTERNAL and USER variables (see below), this enables the .arch system

to cater for very complex set-up requirements.

II.2.i. List of variables available to automatic-detection tags

===

- &F90& : value of the F90 makefile tag

- &CC& : value of the CC makefile tag

- &CXX& : value of the CXX makefile tag

II.2.ii. List of variables available to run-time tags

===

- &TYPE& : TYPE of the machine (not necessarily as defined in the

Makefile section of the .arch file (see below); clusters

can be used as workstations, and multi-processor

workstations can run in non-MPI mode)

- &F90& : value of the F90 makefile tag

- &CC& : value of the CC makefile tag

- &CXX& : value of the CXX makefile tag

- &OUT& : output file name (used for stdout and stderr)

- &NPROC& : (TYPE=parallel|cluster only) number of processes to run

(per job)

- &NNODE& : (TYPE=cluster only) number of physical nodes to use (per

job)

- &NCORE& : (TYPE=parallel|cluster only) number of CPU cores to

reserve (per job) -- this is exactly NNODE*CORES_PER_NODE,

and is provided as a (redundant) convenience

- &NJOB& : number of simultaneous jobs being run

- &NPROC_TOTAL& : number of processes/nodes/cores used in total for all

&NNODE_TOTAL& simultaneous jobs

&NCORE_TOTAL&

- &PPN& : (TYPE=parallel|cluster only) number of processes to run

per physical node (per job)

- &TPP& : (TYPE=parallel|cluster only) number of threads to run per

process

- &TPN& : (TYPE=parallel|cluster only) number of threads to run per

physical node (per job); this is TPP*PPN

- &WALLTIME& : (TYPE=cluster only) wall time limit

- &SCRIPT& : (TYPE=cluster only) submission script

- &BINARY& : full binary pathname

- &BINARY_ARGS& : list of command line arguments to be used with the

binary executable. CASINO does not require such

arguments, but other codes which make use of the

CASINO architecture system do (e.g., to run PWSCF, one

might write ’pw.x -pw2casino -npool 4 < in.pwscf >>

out.pwscf’) where everything after the pw.x counts as

a command line argument.

II.2.iii. Environment variables

===============================

&ENV.<variable>& will expand to the value of environment variable <variable>

(under the directory under which the runscript is invoked, so be careful with

the usage of, e.g., ENV.PWD, etc).

Example:

#PBS -M &ENV.USER&

II.2.iv. Internal variables

===========================

285

These are only available to run-time tags.

Internal variables are defined and set within the .arch file. Its value

is defined via the runtime tag INTERNAL.<variable>, and &INTERNAL.<variable>&

is the variable which expands to its value. These are useful for defining

often-used intermediate values from a single block of code.

See example in section II.4.

II.2.v. User variables

======================

These are only available to run-time tags.

User variables are custom variables which can be set from the command line,

or take their values from the defaults defined in the .arch file:

- The tag USER.DESCRIPTION.<variable> gives a description of the purpose of

this variable which is displayed to the user when --help is requested.

- The tag USER.DEFAULT.<variable> defines the default value of the variable.

- The tag USER.ALLOWED.<variable> defines a set of blank-separated allowed

values that the variable can take -- if USER.DEFAULT.<variable> is not

specified, the first value in this list becomes the default value.

- The tag USER.MIN.<variable> defines the minimum value that integer variable

<variable> can take.

- The tag USER.MAX.<variable> defines the maximum value that integer variable

<variable> can take.

- The variable &USER.<variable>& expands to the value of variable.

II.3. Makefile section

======================

There are many variables that can be defined in the .arch files to modify

the build process, although only a few of them are absolutely necessary to

get CASINO to compile.

* Required variables:

- TYPE : omit or set to ’single’ for single-processor machines, set to

’parallel’ for multi-processor workstations and set to

’cluster’ for clusters with batch-queueing systems

- F90 : name of the Fortran compiler binary

- CC : name of the C compiler binary

- NEED_ETIME: omit or set to ’no’ if the Fortran compiler supports the ETIME

extension, set to ’yes’ otherwise

* Recommended variables:

- CXX : name of the C++ compiler binary (used by a single converter

utility at present, which will be skipped from compilation

if no C++ compiler is available)

- FFLAGS_opt : flags for the Fortran compiler with full optimization

- FFLAGS_debug : flags for the Fortran compiler with full debugging

- CFLAGS_opt : flags for the C compiler with full optimization

- CXXFLAGS_opt : flags for the C++ compiler with full optimization

* Optional variables controlling features:

- HAVE_BLAS : omit HAVE_BLAS/HAVE_LAPACK or set them to ’no’ if you

HAVE_LAPACK would like to use the BLAS/LAPACK libraries provided with

LDBLAS_yes the CASINO distribution. Otherwise, set the HAVE_

LDLAPACK_yes variables to ’yes’ and the LDBLAS_yes/LDLAPACK_yes

variables to the ’-l’ flags required to link the

optimized BLAS/LAPACK libraries in your system.

- SUPPORT_OPENMP : omit SUPPORT_OPENMP or set it to ’no’ if your compiler

FFLAGS_OPENMP_yes does not support OpenMP or you wish to disable the

ability to compile it, else set SUPPORT_OPENMP to ’yes’

and set FFLAGS_OPENMP_yes to the flags required by your

compiler to enable OpenMP extensions, e.g., ’-openmp’

- SUPPORT_OPENACC : omit SUPPORT_OPENACC or set it to ’no’ if your compiler

286

FFLAGS_OPENACC_yes does not support OpenACC or you wish to disable the

ability to compile it, else set SUPPORT_OPENACC to ’yes’

and set FFLAGS_OPENACC_yes to the flags required by your

compiler to enable OpenACC extensions, e.g., ’-openacc’

- SUPPORT_SHM : omit SUPPORT_SHM or set it to ’yes’ if your machine

CFLAGS_SHM supports either SysV or POSIX SHM. Set CFLAGS_SHM to

the C compiler flags to compile SHM support - these are

expected to be either -DSHM_SYSV or -DSHM_POSIX, which

select which version of SHM to use.

* Optional variables controlling the compile/run environment:

- ENVIRONMENT_COMMAND: single-line command to run before compiling and

running. This is useful where environment variables

need to be set (e.g., ’export MPI=OpenMPI’) or in

clusters where the ’module’ environment

handling system is used (e.g., ’module load

default-infinipath’). Multiple commands separated

by semicolons can be given. The only variables

that may be referenced are pre-existing environment

variables, and should be referenced using the syntax

’${variable}’ rather than ’$variable’; e.g.:

export PATH=${PATH}:/path/to/f90

is valid, while

export PATH=$PATH:/path/to/f90

and

export PATH1=/path/to/f90 ;\

export PATH=${PATH}:${PATH1}

are not valid. (The reason for this restriction is

the peculiarities of how ’make’ and ’sh’ interact.)

* Variables controlling Fortran and MPI libraries:

- MPI_VERSION : major version of the MPI library. Allowed values are 1

and 2 (default).

- ISOVAR_VERSION : version of iso_varying_string[1-2].f90. Allowed values

are 1 (default) and 2. The option 2 should only be used with

compilers which refused to compile iso_varying_string1.f90

(such as the Hitachi ofort90 compiler).

- LIB_PATH : ’-L’ options to add library search paths, e.g.,

’-L/usr/opt/mpi/lib’ (add one ’-L’ option for each path to

be added)

- INCLUDE_DIR : ’-I’ options to add include search paths, e.g.,

’-I/usr/opt/mpi/include’ (add one ’-I’ option for each path

to be added)

- LDLIBS_all : ’-l’ options to link libraries, e.g., ’-lmpi’ (add one ’-l’

option for each library to be linked)

* Variables defining a different compilation parameters for the utilities.

This is useful when one needs to cross-compile the sources to run on the

compute nodes of a cluster, but still requires a native compiler to be

able to build the utilities. The main keyword is:

- UTILS_MODE : set to ’native’ if the utilities require a compiler

different from the one used for main binary, leave empty

otherwise.

The following tags are of the form <X>_NATIVE, and have the same meaning

as their <X> counterparts, but only used for the utilities if UTILS_MODE

is set to ’native’:

- F90_NATIVE FFLAGS_opt_NATIVE FFLAGS_all_NATIVE

LDF90_NATIVE LDFLAGS_opt_NATIVE LDFLAGS_all_NATIVE

CC_NATIVE CFLAGS_opt_NATIVE CFLAGS_all_NATIVE

LDC_NATIVE LDCFLAGS_opt_NATIVE LDCFLAGS_all_NATIVE

CXX_NATIVE CXXFLAGS_opt_NATIVE CXXFLAGS_all_NATIVE

LDCXX_NATIVE LDCXXFLAGS_opt_NATIVE LDCXXFLAGS_all_NATIVE

HAVE_BLAS_NATIVE LDBLAS_yes_NATIVE LDBLAS_no_NATIVE

HAVE_LAPACK_NATIVE LDLAPACK_yes_NATIVE LDLAPACK_no_NATIVE

LDLIBS_opt_NATIVE LDLIBS_all_NATIVE

287

ENVIRONMENT_COMMAND_NATIVE

* Rarely needed variables:

- CFLAGS_F90_INTERFACE : flags required by the C compiler to correctly

interface with the Fortran compiler. The value will

depend on the requirements of the Fortran compiler,

not on the C compiler. Possible values are:

<empty>

-DF90_CAPITALS

-DF90_DOUBLE_UNDERSCORE

-DF90_DOUBLE_UNDERSCORE -DF90_CAPITALS

-DF90_NO_UNDERSCORE

-DF90_NO_UNDERSCORE -DF90_CAPITALS

- FFLAGS_libs : flags to compile the provided BLAS/LAPACK, if

different from FFLAGS_opt

- FFLAGS0_libs : non-optimized flags to compile sensitive functions

in the provided BLAS/LAPACK, if different from ’-O0’

- MODNAME_BUG : omit or set to ’0’ if your compiler does *not*

suffer from the ’modname’ bug, else set to ’1’

- FFLAGS_dev : flags for the Fortran compiler for the dev and prof

FFLAGS_prof versions

- FFLAGS_all : flags for the Fortran compiler for all versions;

these are appended to those for the individual

versions

- LDFLAGS_opt : flags for the linker (if different from those for

LDFLAGS_debug the compiler) for the individual versions

LDFLAGS_dev

LDFLAGS_prof

- FFLAGS_OPENMP_no : flags required by your compiler to *disable* OpenMP

support, in compilers where it is enabled by default

- CFLAGS_OPENMP_no : flags required by your C compiler to *disable*

OpenMP support, in compilers where it is enabled by

default

- LDFLAGS_OPENMP_yes : flags required by your linker to enable OpenMP

support, if different from those for the compiler

- LDFLAGS_OPENMP_no : flags required by your linker to *disable* OpenMP

support, if different from those for the compiler

- FFLAGS_OPENACC_no : flags required by your compiler to *disable* OpenACC

support, in compilers where it is enabled by default

- LDFLAGS_OPENACC_yes : flags required by your linker to enable OpenACC

support, if different from those for the compiler

- LDFLAGS_OPENACC_no : flags required by your linker to *disable* OpenACC

support, if different from those for the compiler

- LDLIBS_opt : ’-l’ options for the individual versions; LDLIBS_all

LDLIBS_debug will be appended to these

LDLIBS_dev

LDLIBS_prof

- CFLAGS_opt : flags for the C compiler for the individual versions

CFLAGS_debug

CFLAGS_dev

CFLAGS_prof

- CFLAGS_all : flags for the C compiler for all versions; these are

appended to those for the individual versions

- CXXFLAGS_opt : flags for the C++ compiler for the individual

CXXFLAGS_debug versions

CXXFLAGS_dev

CXXFLAGS_prof

- CXXFLAGS_all : flags for the C++ compiler for all versions; these

are appended to those for the individual versions

- LDC : linker, linker flags and linker ’-l’ options for

LDCFLAGS_opt compiling pure C applications. LDC defaults to CC

LDCFLAGS_all and LDCFLAGS_* default to CFLAGS_*.

LDCLIBS_opt

LDCLIBS_all

- LDCXX : linker, linker flags and linker ’-l’ options for

LDCXXFLAGS_opt compiling pure C++ applications. LDCXX defaults to

288

LDCXXFLAGS_all CXX and LDCXXFLAGS_* defaults to CXXFLAGS_*.

LDCXXLIBS_opt

LDCXXLIBS_all

- AR : archiver command to create a static library for

BLAS/LAPACK.

- NATIVE_WINDOWS : flags the intention to compile Native Windows

executables under Cygwin (and hence the use of the

CASINO/build-tools/winwrap script which converts

Linux filenames to Unix ones and eliminates

symbolic links. [equivalent to the old ’IS_CYGWIN’]

II.4. Example

=============

The following exemplifies the use of command substitution of internal

variables and of user variables:

#-! *INTERNAL.NICE_BE_NICE:

#-! (($(nice)<=15)) && echo 15 || nice

#-! *INTERNAL.NICE_BE_UNNICE:

#-! nice

#-! *INTERNAL.CPUFREQ_IGNORES_NICE:

#-! ["$(head -n 1\

#-! /sys/devices/system/cpu/cpu0/cpufreq/ondemand/ignore_nice_load\

#-! 2> /dev/null)" = 0] && echo no || echo yes

#-! USER.DESCRIPTION.NICE: Nice-value for the job on workstations.

#-! *USER.DEFAULT.NICE:

#-! case "&INTERNAL.CPUFREQ_IGNORES_NICE&" in

#-! no) echo "&INTERNAL.NICE_BE_NICE&" ;;

#-! *) echo "&INTERNAL.NICE_BE_UNNICE&" ;;

#-! esac

#-! *USER.MIN.NICE:

#-! nice

#-! USER.MAX.NICE: 19

#-! RUN_SINGLE: nice -n &USER.NICE& &BINARY&

#-! RUN_PARALLEL: nice -n &USER.NICE& mpirun -np &NPROC& &BINARY&

III. Concepts

=============

It is important to define the following concepts which are implicit in the

descriptions above.

- CORE: each processing unit in a machine is a CORE. Single-processor

workstations only have one core.

- NODE: each computational unit which runs its own instance of the operating

system in the machine is a node. Nodes may have one or multiple cores.

Workstations may have multiple *cores*, but by definition only have one node.

It is assumed that a node has an amount of memory that is available to all

of its cores, and that shared-memory mode and OpenMP will always run within

a node (i.e., memory is shared among cores in a node, and OpenMP threads

for a given process will spawn within the node that process runs on).

F Appendix 6: Switching between double- and single-
precision arithmetic in CASINO

By default, casino uses double-precision arithmetic everywhere. Almost the only exception that
users are likely to encounter is the optional use of single-precision arrays for blip coefficients when the
sp blips keyword is set to T.

However, if you wish, it is possible to use single-precision arithmetic throughout.

289

If you would like to try doing this, sit in the casino distribution and run the
CASINO/build-tools/switch casino precision script. You will then need to completely re-
compile casino.

There are a number of known issues with running casino using single-precision arithmetic:

• Single-precision BLAS and LAPACK routines are not currently included in
the casino distribution, so you must use an external BLAS/LAPACK li-
brary. E.g., use CASINO ARCH=linuxpc-gcc-parallel.openblas rather than
CASINO ARCH=linuxpc-gcc-parallel.

• The main issue: throughout the casino source there are many places in which tolerance parame-
ters for various numerical tasks are given fixed values; these tolerances are generally appropriate
for double-precision arithmetic, not single-precision arithmetic. Known cases in which autotest

fails as a result:

– Numerical Hankel transforms for multilayer Keldysh interactions fail.

• The ‘general-purpose cusp correction’ scheme fails.

Use of single-precision arithmetic in casino is still highly experimental. If you are running
casino using single-precision arithmetic then please check everything very carefully! Prelimi-
nary tests indicate that single-precision arithmetic results in speedups of 11% and 50% for a
186-electron HEG and a 922-electron HEG, respectively, with Slater-Jastrow wave functions and
CASINO ARCH=linuxpc-gcc-parallel.openblas.

References

[1] V.R. Saunders, R. Dovesi, C. Roetti, M. Causà, N.M. Harrison, R. Orlando and C.M. Zicovich-
Wilson, crystal98 User’s Manual (University of Torino, Torino, 1998).

[2] V.R. Saunders, R. Dovesi, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, N.M. Harrison, K.
Doll, B. Civalleri, I. Bush, P. D’Arco and M. Llunell, crystal2003 User’s Manual (University
of Torino, Torino, 2003).

[3] gaussian 98 (Revision A.7), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich,
J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y.
Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.
Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres,
M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

[4] gaussian 03, Revision B.03, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C.
Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg,
V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck,
K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski,
B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W.
Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

[5] P. Giannozzi et al., J. Phys. Cond. Mat. 21, 395502 (2009); http://www.quantum-espresso.
org

290

http://www.quantum-espresso.org
http://www.quantum-espresso.org

[6] First-principles computation of material properties: the abinit software project, X. Gonze, J.-
M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G.
Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty and D.C. Allan, Comp.
Mat. Science 25, 478 (2002).

[7] M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark and M.C. Payne,
J. Phys.: Cond. Matt. 14 2717 (2002).

[8] The Amsterdam Density Functional package (http://www.scm.com).

[9] J.C. Grossman and L. Mitas, Phys. Rev. Lett. 94, 056403 (2005).

[10] B.L. Hammond, W.A. Lester, Jr. and P.J. Reynolds, Monte Carlo methods in ab initio quantum
Chemistry, (World Scientific, Singapore, 1994).

[11] W.M.C. Foulkes, L. Mitas, R.J. Needs and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).

[12] R.J. Needs, M.D. Towler, N.D. Drummond and P. López Ŕıos, J. Phys.: Condens. Matter 22,
023201 (2010).

[13] R.J. Needs, M.D. Towler, N.D. Drummond, P. López Ŕıos and J.R. Trail, J. Chem. Phys. 152,
154106 (2020).

[14] Quantum Monte Carlo, or, how to solve the many-particle Schrödinger equation accurately whilst
retaining favourable scaling with system size, M.D. Towler, in Computational Methods for Large
Systems (Wiley, 2011). Also available on the casino website.

[15] N.D. Drummond, R.J. Needs, A. Sorouri and W.M.C. Foulkes, Phys. Rev. B 78, 125106 (2008).

[16] S. Fahy, X.W. Wang and S.G. Louie, Phys. Rev. B 42, 3503 (1990).

[17] A. Jones, A. Thompson, J. Crain, M.H. Müser and G.J. Martyna, Phys. Rev. B 79, 144119
(2009).

[18] S. Chiesa, D.M. Ceperley, R.M. Martin and M. Holzmann, Phys. Rev. Lett. 97, 076404 (2006).

[19] J. H. Lloyd-Williams, R. J. Needs, and G. J. Conduit, Phys. Rev. B 92, 075106 (2015).

[20] M.F. Depasquale, S.M. Rothstein and J. Vrbik, J. Chem. Phys. 89, 3629 (1988).

[21] C.J. Umrigar, M.P. Nightingale and K.J. Runge, J. Chem. Phys. 99, 2865 (1993).

[22] P. Langfelder, S.M. Rothstein, and J. Vrbik, J. Chem. Phys. 107, 8525 (1997).

[23] A. Zen, S. Sorella, M.J. Gillan, A. Michaelides and D. Alfè, Phys. Rev. B 93, 241118(R) (2016).

[24] M. Casula, Phys. Rev. B 74, 161102 (2006).

[25] M. Casula, S. Moroni, S. Sorella and C. Filippi, J. Chem. Phys. 132, 154113 (2010).

[26] A. Zen, J.G. Brandenburg, A. Michaelides, and D. Alfè, J. Chem. Phys. 151, 134105 (2019).

[27] M.Y.J. Tan, N.D. Drummond and R.J. Needs, Phys. Rev. B 71, 033303 (2005).

[28] R.M. Lee, N.D. Drummond and R.J. Needs, Phys. Rev. B 79, 125308 (2009).

[29] P. López Ŕıos, P. Seth, N.D. Drummond and R.J. Needs, Phys. Rev. E 86, 036703 (2012).

[30] T.M. Whitehead, M.H. Michael, and G.J. Conduit, Phys. Rev. B 94, 035157 (2016).

[31] G.L. Weerasinghe, P. López Ŕıos, and R.J. Needs, Phys. Rev. E 89, 023304 (2014).

[32] J.B. Foresman and M.J. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaus-
sian, Inc., Pittsburgh, PA, 2nd edition (1996).

[33] D. Alfè and M.J. Gillan, Phys. Rev. B 70, 161101 (2004).

[34] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.M. Teller and E. Teller, J. Chem. Phys.
21, 1087 (1953).

[35] M. Dewing, J. Chem. Phys. 113, 5123 (2000).

291

http://www.scm.com

[36] C.J. Umrigar and C. Filippi, unpublished.

[37] D.M. Ceperley, M.H. Kalos and J.L. Lebowitz, Macromolecules 14, 1472 (1981).

[38] P.J. Reynolds, D.M. Ceperley, B.J. Alder and W.A. Lester, Jr., J. Chem. Phys. 77, 5593 (1982).

[39] C.J. Everett and E.D. Cashwell, A Third Monte Carlo Sampler, Los Alamos Technical Report
No. LA-9721-MS (1983).

[40] P.R.C. Kent, R.Q. Hood, A.J. Williamson, R.J. Needs, W.M.C. Foulkes and G. Rajagopal, Phys.
Rev. B 59, 1917 (1999).

[41] A. Ma, M.D. Towler, N.D. Drummond and R.J. Needs, J. Chem. Phys. 122, 224322 (2005).

[42] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957); R.T. Pack and W.B. Brown, J. Chem.
Phys. 45, 556 (1966).

[43] L. Mitas, E.L. Shirley and D.M. Ceperley, J. Chem. Phys. 95, 3467 (1991).

[44] E.L. Shirley and R.M. Martin, Phys. Rev. B 47, 15413 (1993).

[45] W. Müller, J. Flesch and W. Meyer, J. Chem. Phys. 80, 3297 (1984).

[46] P.P. Ewald, Ann. Phys. 64, 253 (1921).

[47] M.P. Tosi, in Solid State Physics, Vol. 16, edited by H. Ehrenreich and D. Turnbull (Academic,
New York, 1964), p. 1.

[48] V.R. Saunders, C. Freyria-Fava, R. Dovesi, L. Salasco and C. Roetti, Mol. Phys. 77, 629 (1992).

[49] D.E. Parry, Surf. Sci. 49, 433 (1975); erratum, Surf. Sci. 54, 195 (1976).

[50] V.R. Saunders, C. Freyria-Fava, R. Dovesi and C. Roetti, Comp. Phys. Commun. 84, 156 (1994).

[51] L.M. Fraser, W.M.C. Foulkes, G. Rajagopal, R.J. Needs, S.D. Kenny and A.J. Williamson,
Phys. Rev. B 53, 1814 (1996).

[52] A.J. Williamson, G. Rajagopal, R.J. Needs, L.M. Fraser, W.M.C. Foulkes, Y. Wang and M.-Y.
Chou, Phys. Rev. B (Rapid Communications) 55, 4851 (1997).

[53] G.E. Astrakharchik, J. Boronat, J. Casulleras and S. Giorgini, Phys. Rev. Lett. 93, 200404
(2004).

[54] J. Carlson, S.-Y. Chang V.R. Pandharipande and K.E. Schmidt, Phys. Rev. Lett. 91, 050401
(2003).

[55] P.O. Bugnion, R.J. Needs and G.J. Conduit, Phys. Rev. A 90, 033626 (2014).

[56] B. Ganchev, N.D. Drummond, I. Aleiner and V. Fal’ko, Phys. Rev. Lett. 114, 107401 (2015).

[57] L.V. Keldysh, JETP Lett. 29, 658 (1979).

[58] E. Alves, G. L. Bendazzoli, S. Evangelisti and J. A. Berger, Phys. Rev. B 103, 245125 (2021).

[59] N.D. Drummond, M.D. Towler and R.J. Needs, Phys. Rev. B 70, 235119 (2004).

[60] Y. Kwon, D.M. Ceperley and R.M. Martin, Phys. Rev. B 48, 12037 (1993).

[61] M. Holzmann, D.M. Ceperley, C. Pierleoni and K. Esler, Phys. Rev. E 68, 046707 (2003).

[62] H. Flyvbjerg and H.G. Petersen, J. Chem. Phys. 91, 461 (1989).

[63] U. Wolff, Comput. Phys. Commun. 156, 143 (2004).

[64] W. Janke, Statistical Analysis of Simulations: Data Correlations and Error Estimation, pub-
lished in J. Grotendorst, D. Marx, A. Muramatsu (Eds.), Quantum Simulations of Many-Body
Systems: From Theory to Algorithms, John von Neumann Institute for Computing, Jülich, NIC
Series 10, 423 (2002).

[65] P.R.C. Kent, R.J. Needs and G. Rajagopal, Phys. Rev. B 59, 12344 (1999).

292

[66] J.E. Dennis, D.M. Gay and R.E. Welsch, Algorithm 573: NL2SOL—An Adaptive Nonlinear
Least-Squares Algorithm, ACM Transactions on Mathematical Software 7, 369 (1981).

[67] N.D. Drummond and R.J. Needs, Phys. Rev. B 72, 085124 (2005).

[68] C. Filippi and C.J. Umrigar, J. Chem. Phys. 105, 213 (1996).

[69] M. Snajdr and S.M. Rothstein, J. Chem. Phys. 112, 4935 (2000).

[70] F.J. Gálvez, E. Buend́ıa and A. Sarsa, J. Chem. Phys. 115, 1166 (2001).

[71] A. Badinski and R.J. Needs, Phys. Rev. E 76, 036707 (2007).

[72] D.M. Ceperley, J. Stat. Phys. 43, 815 (1986).

[73] A. Ma, N.D. Drummond, M.D. Towler and R.J. Needs, Phys. Rev. E 71, 066704 (2005).

[74] C.J. Umrigar, J. Toulouse, C. Filippi, S. Sorella and R.G. Hennig, Phys. Rev. Lett. 98, 110201
(2007).

[75] J. Toulouse and C.J. Umrigar, J. Chem. Phys. 126, 084102 (2007).

[76] M.D. Brown, PhD Thesis, University of Cambridge, Cambridge (2007).

[77] M.P. Nightingale and V. Melik-Alaverdian, Phys. Rev. Lett. 87, 043401 (2001).

[78] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in Fortran
77, Second Edition, (Cambridge University Press, 1992).

[79] V.R. Saunders and I.H. Hillier, Int. J. Quant. Chem. 7, 699 (1973).

[80] M.F. Guest and V.R. Saunders, Mol. Phys. 28, 819 (1974).

[81] J.R. Trail, Phys. Rev. E 77, 016703 (2008); Phys. Rev. E 77, 016704 (2008).

[82] A. Badinski, P.D. Haynes, J.R. Trail and R.J. Needs, J. Phys.: Condens. Matter 22, 074202
(2010).

[83] J.R. Trail and R. Maezono, J. Chem. Phys. 133 174120 (2010).

[84] D. Alfè and M.J. Gillan, J. Phys.: Cond. Matt. 16, L305 (2004).

[85] F.A. Reboredo and A.J. Williamson, Phys. Rev. B 71, 121105 (2005).

[86] A.J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87, 246406 (2001).

[87] N.D. Drummond, PhD Thesis, University of Cambridge, Cambridge (2004).

[88] G. Rajagopal, R.J. Needs, S. Kenny, W.M.C. Foulkes and A. James, Phys. Rev. Lett. 73, 1959
(1994); G. Rajagopal, R.J. Needs, A. James, S. Kenny and W.M.C. Foulkes, Phys. Rev. B 51,
10591 (1995).

[89] C. Lin, F.H. Zong and D.M. Ceperley, Phys. Rev. E 64, 016702 (2001).

[90] A. Baldereschi, Phys. Rev. B 7, 5212 (1973).

[91] M.D. Jones, G. Ortiz and D.M. Ceperley, Int. J. Quant. Chem. 64, 523 (1997); G. Ortiz, D.M.
Ceperley and R.M. Martin, Phys. Rev. Lett. 71, 2777 (1993); G. Ortiz and D.M. Ceperley, Phys.
Rev. Lett. 75, 4642 (1995).

[92] G.G. Spink, N.D. Drummond and R.J. Needs, Phys. Rev. B 88, 085121 (2013).

[93] R. Maezono, N.D. Drummond, A. Ma and R.J. Needs, Phys. Rev. B 82, 184108 (2010).

[94] M.S. Becker, A.A. Broyles and T. Dunn, Phys. Rev. 175, 224 (1968).

[95] S.D. Kenny, G. Rajagopal and R.J. Needs, Phys. Rev. A 51, 1898 (1995).

[96] S.D. Kenny, G. Rajagopal, R.J. Needs, W.-K. Leung, M.J. Godfrey, A.J. Williamson and
W.M.C. Foulkes, Phys. Rev. Lett. 77, 1099 (1996).

293

[97] R. Maezono, M.D. Towler, Y. Lee and R.J. Needs, Phys. Rev. B 68, 165103 (2003).

[98] G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994).

[99] L.M. Fraser, PhD thesis, Imperial College, London (1995).

[100] C.N. Yang, Rev. Mod. Phys. 34, 694 (1962).

[101] S. De Palo, F. Rapisarda and G. Senatore, Phys. Rev. Lett. 88, 206401 (2002).

[102] G.E. Astrakharchik, J. Boronat, J. Casulleras and S. Giorgini, Phys. Rev. Lett. 95, 230405
(2005).

[103] W. Kohn, Phys. Rev. A 133, 171 (1964).

[104] R.D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, R1651 (1993).

[105] D. Vanderbilt and R.D. King-Smith, Phys. Rev. B 48, 4442 (1993).

[106] R. Resta and S. Sorella, Phys. Rev. Lett. 82, 370 (1999).

[107] I. Souza, T. Wilkens and R. Martin, Phys. Rev. B 62, 1666 (2000).

[108] M. Veithen, X. Gonze and Ph. Ghosez, Phys. Rev. B 66, 235113 (2002).

[109] R. Resta, Phy. Rev. Lett. 95, 196805 (2005).

[110] N.D.M. Hine and W.M.C. Foulkes, J. Phys. Condens. Matter 19, 506212 (2007).

[111] H. Hellmann, Einführung in die Quantenchemie, 285 (1937).

[112] R.P. Feynman, Phys. Rev. 56, 340 (1939).

[113] P. Pulay, Mol. Phys. 17, 197 (1969).

[114] M.M. Hurley and P.A. Christiansen, J. Chem. Phys. 86, 1069 (1987).

[115] A. Badinski and R.J. Needs, Phys. Rev. E 76, 36707 (2007).

[116] A. Badinski, P.D. Haynes and R.J. Needs Phys. Rev. B 77, 85111 (2008).

[117] P.J. Reynolds, R.N. Barnett, B.L. Hammond and W.A. Lester, Jr., J. Stat. Phys. 43, 1017
(1986).

[118] P.J. Reynolds, R.N. Barnett, B.L. Hammond, R.M. Grimes and W.A. Lester, Jr., Int. J. Quant.
Chem. 29, 589 (1986).

[119] F. Schautz and H.-J. Flad, J. Chem. Phys. 110, 11700 (1999).

[120] R. Assaraf and M. Caffarel, Phys. Rev. Lett. 83, 4682 (1999).

[121] R. Assaraf and M. Caffarel, J. Chem. Phys. 113, 4028 (2000).

[122] S. Chiesa, D.M. Ceperley and S. Zhang, Phys. Rev. Lett. 94, 36404 (2005).

[123] A. Badinski, PhD thesis, University of Cambridge (2008).

[124] A. Badinski and R.J. Needs, unpublished (2008).

[125] A. Badinski and R.J. Needs, unpublished (2008).

[126] R.N. Barnett, P.J. Reynolds and W.A. Lester, Jr., J. Comp. Phys. 96, 258 (1991).

[127] J. Casulleras and J. Boronat, Phys. Rev. B 52, 3654 (1995).

[128] Petascale computing opens up new vistas for quantum Monte Carlo, M.J. Gillan, M.D. Towler
and D. Alfè, Psi-k Scientific Highlight of the Month (Feb 2011).
Available at http://www.psi-k.org/newsletters/News_103/Highlight_103.pdf.

[129] http://www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf (2008).

294

http://www.psi-k.org/newsletters/News_103/Highlight_103.pdf
http://www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf

	Introduction
	The quantum Monte Carlo method
	Miscellaneous issues
	Support
	Legal stuff
	Getting the latest version of the code

	Functionality of CASINO
	Installation
	Detailed instructions
	The CASINO_ARCH system
	Further installation notes
	Note for Windows users
	Note for Apple Mac users
	Discussion forum

	Introductory user's guide: how to use CASINO
	Getting started
	How to do a VMC calculation
	Wave function optimization
	How to do a DMC calculation
	How to perform QMC calculations for periodic systems
	How to run the code: RUNQMC
	How to run coupled DFT-DMC molecular dynamics calculations: the runqmcmd script

	Files used by CASINO
	Complete list of the input files
	Complete list of the output files
	Basic input file: input
	Optimizable-parameter file: correlation.data
	Pseudopotential file: xx_pp.data
	MPC-interaction file: mpc.data
	The CASL file format
	Wave function parameter file: parameters.casl
	Compressed multi-determinant expansions: mdet.casl and cmdet.casl
	Orbital files: awfn.data, bwfn.data, dwfn.data, gwfn.data, pwfn.data and stowfn.data
	External-potential file: expot.data
	Raw QMC data files: vmc.hist and dmc.hist
	Expectation-value file: expval.data

	Generating CASINO trial wave functions with other programs
	ABINIT
	ADF
	ATSP2K
	CASTEP
	CFOUR
	CRYSTAL
	DALTON
	GAMESS-US
	GAUSSIAN94/98/03/09
	GP
	MCEXX
	MOLPRO
	ORCA
	PSI-4
	PWSCF/Quantum Espresso
	TURBOMOLE
	2DHF
	Unsupported programs
	Request for help

	Using CASINO with blip functions
	Utilities provided with the CASINO distribution
	Making movies with CASINO
	How to make movies
	Visualization

	Detailed information: the VMC method
	Evaluating expectation values
	The sampling algorithm
	Two-level sampling
	Optimal value of the VMC time step

	Detailed information: the DMC method
	Imaginary-time propagation
	The ensemble of configurations
	Drift and diffusion
	Branching and population control
	Modifications to the Green's Function
	Modifications to the DMC Green's function at bare nuclei
	Evaluating expectation values of observables
	Growth estimator of the energy
	Automatic block-resetting
	Determinant locality approximation and T moves

	Evaluation of Gaussian orbitals in the Slater wave function
	Constructing real orbitals
	Cusp corrections for Gaussian orbitals
	Electron–nucleus cusp corrections
	Cusp correction algorithm

	General-purpose cusp corrections
	Wave-function updating
	Evaluating the local energy
	Evaluating the kinetic energy
	Evaluating the nonlocal pseudopotential energy
	The core-polarization potential energy
	Evaluation of infinite Coulomb sums

	Model interactions
	Manual interactions block
	Square-well interaction
	Modified Pöschl-Teller interaction
	Hard sphere
	Polynomial
	Interactions between charges in 2D semiconductors
	Dipolar interaction
	Pseudodipolar interaction
	Clifford interaction

	Multi-determinant expansions
	Compressed multi-determinant expansions

	The Jastrow factor
	General form of CASINO's Jastrow factor
	The u, and f terms in the Jastrow factor
	The p and q terms in the Jastrow factor
	The three-body W term
	The ucyl term
	The cyl term

	Backflow transformations
	The generalized backflow transformation
	Constraints on the backflow parameters
	Improving the nodes of T

	Statistical analysis of data
	The reblocking method
	Estimate of the correlation time given by CASINO
	Estimating equilibration times and correlation periods

	Wave-function optimization
	Variance minimization: the standard method
	Variance minimization: the `varmin-linjas' method
	Energy minimization

	Alternative sampling strategies
	Summary
	Alternative sampling

	Use of localized orbitals and bases in CASINO
	Theoretical background
	Using CASINO to carry out `linear-scaling' QMC calculations

	Twist averaging in QMC
	Periodic and twisted boundary conditions
	Using twisted boundary conditions in CASINO
	Monte Carlo twist averaging within CASINO

	Finite-size correction to the kinetic energy
	Finite-size correction due to long-ranged correlations
	Fourier transformation of CASINO's two-body Jastrow factor
	Fitting form for the long-ranged two-body Jastrow factor (3D)
	Applying the correction scheme in practice

	Finite-size correction to the interaction energy
	Electron–hole systems
	Mahan wave function module
	Relativistic corrections to energies
	Expectation values computable by CASINO
	Basics
	Density and spin density
	Reciprocal-space and spherical real-space pair-correlation functions
	Structure factor and spherically averaged structure factor
	One-body density matrix, two-body density matrix and condensate fraction
	One- and two-body momentum densities
	Localization tensor
	Dipole moment (molecules only)
	Population

	Atomic forces
	Forces in the VMC method
	Forces in the DMC method
	The mixed DMC forces
	The pure DMC forces
	Implementation of forces in CASINO
	Explanation of the force estimators printed by CASINO

	The future-walking method
	Derivation of the FW method
	The FW algorithm
	Some practical advice

	Noncollinear-spin systems
	Wave functions for noncollinear-spin systems
	Spiral spin-density waves in the HEG

	Magnetic fields and the fixed-phase approximation
	Hamiltonian when an external magnetic field is present
	VMC in the presence of an external magnetic field
	DMC in the presence of an external magnetic field
	Importance sampling
	Applying magnetic fields in CASINO

	CASINO on parallel computers
	VMC in parallel
	Optimization in parallel
	DMC in parallel
	Shared memory support
	Using CASINO on the Knights Landing manycore processor
	OpenMP support
	OpenACC support

	Appendices
	Appendix 1: Programming guide for CASINO
	Making changes to the CASINO source code
	Languages
	Style
	Content
	Testing and debugging CASINO
	Performance
	Bug reports
	Requests for new features

	Appendix 2: Automatic testing of CASINO
	Overview
	Running the set of examples
	Adding a new example
	Using git-bisect with autotest

	Appendix 3: Converting CASINO v1.x input files to CASINO v2.x format
	Appendix 4: Specification of the format of the correlation.data file
	Appendix 5: CASINO system-specific data files
	Appendix 6: Switching between double- and single-precision arithmetic in CASINO
	Bibliography

